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Abstract— The NTU-PAL1 and NTU-PAL2 robots for the
elderly are introduced in this paper. The emphasis of NTU-
PAL1 is offering increased mobility for elderly people who are
less-mobile. NTU-PAL2, an emotional expressive robot, is used
to stimulate interaction, to supply relaxed companionship and
to fulfill a sense of affection for senior citizens staying alone. The
core software modules in terms of dynamic scene understanding
and human understanding are summarized to demonstrate our
progress towards socially assistive robotics for the elderly.

I. INTRODUCTION

Nowadays in Taiwan and other countries around the world,
elderly care is an imperative issue since our society appears
to be aging rapidly. Statistics show that citizens over 65 years
old are accounting for 10.4 percent of the total population.
It is estimated that the number will grow to 20 percent by
2025. Resulted from the aging trend is a dropping aged
dependency ratio - the ratio of the number of people in the
workforce to the number of people aged 65 and over. The
averaged number of active workers supporting one elderly
person is currently around seven and is going to drop to
3.2 by 2026. This demographic shift brings us to face the
problem that a growing number of elderly people demand
urgent attention but insufficient human resource is available.
Aiming to relief this burden and improve the living quality of
senior citizens, we have been undertaking the development
of socially assistive robots for elderly care. It is our hope to
promote elderly independence and provide company in their
daily life with the help of robotics technology.

For achieving the goals of socially assistive robotics, we
have built two robotic systems with advanced perception and
action capabilities. The first robot for the purpose of elderly
care is the NTU-PAL1 robot, which laid its emphasis on
offering increased mobility for elderly people who are less-
mobile. Figure 1 shows the intelligent wheelchair robot. Het-
erogeneous sensors such as cameras, laser scanners and sonar
equipped on this robot are integrated, and the corresponding
algorithms are implemented to give assistance to the elderly
in advanced perception. A camera-projector system was
developed for human robot interaction as well as perception.
In addition, the electric wheelchair-based platform makes it
feasible for our NTU-PAL1 robot to move in both indoor
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Fig. 1. The NTU-PAL1 robot.
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Fig. 2. The NTU-PAL2 robot.

and outdoor environments in which the elderly could obtain
greater action capabilities. By enhancing their mobility, the
elder users can achieve higher independence and will be
exposed to more opportunities to interact with and connect
to their social surroundings.

Our second robot, NTU-PAL2, is an emotional expressive
robot as shown in Figure 2. This robot is designed to have
an expressive face and other actuators such as arms. NTU-
PAL2 can provide functionalities that assist daily life of
the elderly such as schedule reminder, memory training and
entertainment. Intended to serve as a companion for the
elderly that needs to perform a lot of high-level interactions
with users every day, this robot is given an animal-like
appearance and the ability to present emotions to make
interacting with the robot more natural and interesting. The
human-like but simplified behaviors of the robot stimulate
interaction, supply relaxed companionship and fulfill a sense
of affection for senior citizens staying alone.



With the use of these two robots, we have been devel-
oping the core perception and action capabilities such as
motion control in dynamic environments, dynamic scene
understanding and human understanding which are essen-
tial to socially assistive robotics. Regarding motion control
in dynamic environments, imitation learning is applied to
increase the flexibility of the existing obstacle avoidance
algorithm such as the nearness diagram navigation algorithm
as well as to reduce the burden of parameter tuning. In
[1], a mapping between the environment information and
the control comments from humans is learned and is later
used to control the robot. It is our hope that the elderly may
feel more comfortable with the proposed approach compared
the classical control approaches based on predefined cost
functions.

In this paper, the core perception software modules are
summarized to demonstrate our progresses towards socially
assistive robotics. Regarding dynamic scene understanding,
our ladar-based solutions to the mapping, localization and
tracking problems are described in Section III. In addition,
our probabilistic structure from sound (PSfS) and proba-
bilistic sound source localization (PSSL) algorithms using
microphones are addressed. With regard to human under-
standing, 3D face alignment in 2D images and hand posture
recognition using cameras are described in Section IV. In
addition to these perception software modules, the camera-
projector system and the expressive robot face and arms are
described firstly in Section II.

While the wheelchair robot increases physical mobilities
of the users and thus enlarges the world they can touch, the
emotional expressive robot offers both useful assistance in
life and certain level of mental care. We have applied robotics
technology to construct systems which cope with issues of
elderly care we are confronted with in our aging society.
Although a robot can never replace a human being, the
existence of these robots still ease human resource shortage
and contribute to better life quality when designed and
applied with care.

II. SYSTEMS FOR HUMAN ROBOT INTERACTION

Instead of describing the whole hardware systems of NTU-
PAL1 and NTU-PAL2, only systems for human-robot inter-
action are addressed. In this section, the camera-projector
system on NTU-PAL1 and the expressive robot face and arms
on NTU-PAL2 are described.

A. The Camera-Projector System

The camera-projector systems have been shown to be
effective for human computer/robot interaction as illustrated
in Figure 3. However, an ideal display surface for a projector
is often unavailable for robotics applications. With the geom-
etry and color of the scene, projected images or videos can
be adjusted accordingly. It has been shown in the computer
vision literature that the camera-projector systems can be a
low-cost 3-dimensional range sensor in which the geometry
and color of the scene can be obtained via triangulation.
The environment-adaptive display can be accomplished in

Fig. 3. The camera-projector system for human robot interaction.

Fig. 4. The one-shot scanning approaches.

which it is feasible to project images on curved and non-
planar surfaces using the camera-projector systems. Figure 4
shows a result using the one-shot scanning approach with our
system [2]. An active stereo system was also implemented
in which a digital light processing (DLP) projector and a
stereo camera are used. Figure 5 shows the result of our
active stereo system in which the featureless regions are well
modeled.

Our experiments show that the camera-projector system
with the proposed algorithms can be reliable for 3D model-
ing, and can be a useful device for human robot interaction.
However, we observed that the data association problems of
the camera-projector systems in ambient lighting environ-
ments are daunting [2]. The power consumption is another
critical factor to use the camera-projector systems on mobile
robotic platforms. New projector systems such as small
portable laser-light projectors may effectively resolve some
of these issues.

(a) Stereo without projected patterns

(b) Stereo with projected patterns

Fig. 5. The active stereo approach.



(a) The neutral expression (b) Wink as a happy expres-
sion

(c) The angry expression (d) The sad expression

Fig. 6. Emotional expressions of the robot face.

B. Expressive Robot Face and Arms

It is important to provide the user a simple and comfortable
channel to recognize the state of the robot [3]. To this
end, we designed an expressive robot face and arms on
our NTU-PAL2 robot to mimic a natural way that humans
use to communicate every day. As shown in Figure 6, the
expressive robot face has seven servo motors mounted to
control two eyebrows, four eyelids and its beak respectively.
Furthermore, it has full color LED lighting inside the eyes.
Subtle movements of these facial features, together with
congruous colors of the lighting [4], we are able to endow the
robot with the ability to present several different emotional
expressions such as happy, angry and sad. These emotional
expressions are useful since traditional text or voice channel
to convey messages can be replaced. For example, when a
user is performing an improper action which is likely to
damage the robot system, an angry expression can be used
to warn the user to stop the unwanted action. In addition to
the robot face, a set of two arms is also available to help the
robot make use of body language. Each arm has six degrees
of freedom, making the robot able to imitate human gestures
such as waving. Figure 7 shows a shot of our NTU-PAL2
robot showing a waving gesture.

The robot face and arms are chosen for the reason that they
convey non-verbal messages that are common in daily usage
and easy to understand. Moreover, this kind of representa-
tion is eye-catching and often elicits emotional responses
from the user, and thus provides more enjoyable interacting
experiences [5].

III. DYNAMIC SCENE UNDERSTANDING

Establishing the spatial and temporal relationships among
a robot, stationary objects and moving objects in a scene
serves as a basis for scene understanding. In this section, we
summarize the capabilities of NTU-PAL1 and NTU-PAL2 in
terms of dynamic scene understanding. In particular, our ego-
motion estimator, interacting object tracking framework and

Fig. 7. The robot showing a waving gesture.

probabilistic structure from sound algorithm are described.

A. Mapping and Localization

Localization is the process of establishing the spatial rela-
tionships between the robot and stationary objects and map-
ping is the process of establishing the spatial relationships
among stationary objects, and moving object tracking is the
process of establishing the spatial and temporal relationships
between moving objects and the robot or between moving
and stationary objects.

We previously established a mathematical framework to
integrate SLAM and moving object tracking [6] in which
two solutions are described: SLAM with generalized objects,
and SLAM with detection and tracking of moving objects
(DATMO). SLAM with generalized objects calculates a joint
posterior over all generalized objects and the robot. Such an
approach is similar to existing SLAM algorithms, but with
additional structure to allow for motion modeling of general-
ized objects. Unfortunately, it is computationally demanding
and generally infeasible. SLAM with DATMO decomposes
the estimation problem into two separate estimators. By
maintaining separate posteriors for stationary objects and
moving objects, the resulting estimation problems are much
lower dimensional than SLAM with generalized objects.
The implementation of SLAM with DATMO was previously
demonstrated using laser scanner data collected from the
CMU Navlab11 vehicle at high speeds in crowded urban
environments [7]. Figures 8 and 9 show 3D (2.5D) outdoor
maps of our department building and the Palm Tree Boule-
vard in National Taiwan University using data collected from
NTU-PAL1 and Figure 10 shows an indoor map of the 4th
floor of our department building. Two SICK LMS 291 laser
scanners mounted on NTU-PAL1 were used to collect data
for building 3D maps. In a number of applications, 2D maps
could be sufficient. Figure 11 shows a 2D map of the first
floor of the MSRL at Taiwan ITRI.

In the SLAM with DATMO framework, a robust ego-
motion estimator is essential. In [8], we proposed a ran-
dom sample consensus (RANSAC) based ego-motion es-
timator to deal with highly dynamic environments using
one planar laser scanner. Instead of directly sampling on
individual measurements, the RANSAC process is performed
at a higher level abstraction for systematic sampling and
computational efficiency. We proposed a multiple model
approach to solve the problems of ego-motion estimation
and moving object detection jointly in a RANSAC paradigm.



(a) (b)

Fig. 8. 3D Mapping: The CSIE building in NTU.

Fig. 9. 3D Mapping: The Palm Tree Boulevard in NTU

To accommodate RANSAC to multiple models - a static
environment model for ego-motion estimation and a mov-
ing object model for moving object detection, a compact
representation models moving object information implicitly
is proposed. The experimental results show that accurate
identification of static environments can help classification
of moving objects, whereas discrimination of moving ob-
jects also yields better ego-motion estimation, particularly in
environments containing a significant percentage of moving
objects. It is feasible to build globally consistent maps of
highly dynamic environments using the proposed RANSAC-
based ego-motion estimator with scan matching techniques
[9], [10].

For accomplishing robot localization, Monte Carlo local-
ization [11] is implemented and run in both NTU-PAL1
and NTU-PAL2. We have successfully demonstrated Monte
Carlo localization with our RANSAC-based ego-motion es-
timator in several demonstrations in which moving entities
do not degrade the performance of localization.

B. Interacting Object Tracking

The SLAM with DATMO framework assumes that the
robot and moving objects move independently of each other

Fig. 10. 3D Mapping: The 4th floor of the CSIE building.

Fig. 11. 2D Mapping: MSRL, ITRI, Taiwan.

Fig. 12. Interacting Object Tracking at Crowded Traffic Intersections.

to reduce the complexity of SLAMMOT enormously. This
independence assumption may be unrealistic in human in-
habited environments such as crowded urban areas, shopping
malls and railway stations. These environments contain a
large number of constraints which affect the motions of
moving objects. Targets interact both with other moving ob-
jects and their surrounding environments. Interactions among
moving objects and stationary objects should be of interest
for higher level scene understanding.

Accompanying with traditional motion modeling tech-
niques, we introduced a scene interaction model and a
neighboring object interaction model to respectively take
long-term and short-term interactions between the tracked
objects and its surroundings into account [12], [13]. With the
use of the interaction models, anomalous activity recognition
is accomplished easily. In addition, move-stop hypothesis
tracking is applied to deal with move-stop-move maneuvers.
All these approaches are seamlessly intergraded under the
variable-structure multiple-model estimation framework [14].
The proposed approaches have been demonstrated using data
from a laser scanner mounted on the NTU-PAL1 robot at
a crowded intersection near the NTU campus. Interacting
pedestrians, bicycles, motorcycles, cars and trucks are suc-
cessfully tracked in difficult situations with occlusion. Figure
12 shows the test site and Figure 13 shows the experimental
result in which a number of moving objects were successfully
detected and tracked. See [12] for more information.

As indoor environments are relatively unconstrained than
urban areas, interactions in indoor environments are weaker



Fig. 13. An example of our interacting object tracking algorithm using
one laser scanner.

and have more variants. Weak interactions make scene inter-
action modeling and neighboring object interaction modeling
challenging. We proposed a place-driven scene interaction
model is proposed to represent long-term interactions in
indoor environments. To deal with complicated short-term in-
teractions, the neighboring object interaction model consists
of three short-term interaction models, following, approach-
ing and avoidance. The moving model, the stationary process
model and these two interaction models are integrated to
accomplish weakly interacting object tracking. See [13] for
more information.

C. Auditory Perception

Auditory perception is one of the most important functions
for socially assistive robots. Microphone arrays are widely
used for auditory perception in which the spatial structure
of microphones is usually known. The structure from sound
(SFS) approach addresses the problem of simultaneously
localizing a set of microphones and a set of acoustic events
which provides a great flexibility to calibrate different setups
of microphone arrays. However, the existing method does not
take measurement uncertainty into account and does not pro-
vide uncertainty estimates of the SFS results. In [15], we pro-
posed a probabilistic structure from sound (PSFS) approach
using the unscented transform. In addition, a probabilistic
sound source localization (PSSL) approach using the PSFS
results is provided to improve sound source localization accu-
racy. The ample results of simulation and experiments using
low cost, off-the-shelf microphones mounted on the NTU-
PAL2 robot demonstrate the feasibility and performance of
the proposed PSFS and PSSL approaches. Based on this
foundation, sound event recognition would be the next step
to pursue.

D. Summary

Although we have demonstrated that localization, map-
ping, moving object tracking, and sound source localization

(a) The microphone locations. (b) The microphone locations.

Fig. 14. Microphone Array on NTU-PAL2.

(a) Yaw (b) Pitch

Fig. 15. 3D face alignment in 2D images.

can be reliably accomplished in both indoor and outdoor
environments, the current progress of scene understanding
may be insufficient for socially assistive robots. Higher
level scene understanding such as activity and interaction
recognition would be critical.

IV. HUMAN UNDERSTANDING

Human understanding is essential to socially assistive
robotics. In this section, our algorithm to align 3D faces
in 2D images and our hand posture recognition system are
introduced. The results are demonstrated using 2D images
from onboard cameras.

A. 3D Face Alignment in 2D Images

Perceiving human faces is one of the most important
functions for human robot interaction. The active appearance
model (AAM) is a statistical approach that models the shape
and texture of a target object. According to a number of
the existing works, AAM has a great success in modeling
human faces. Unfortunately, the traditional AAM framework
could fail when the face pose changes as only 2D information
is used to model a 3D object. To overcome this limitation,
we proposed a 3D AAM framework in which a 3D shape
model and an appearance model are used to model human
faces [16]. Instead of choosing a proper weighting constant
to balance the contributions from appearance similarity and
the constraint on consistent 2D shape with 3D shape in
the existing work, our approach directly matches 2D visual
faces with the 3D shape model. No balancing weighting
between 2D shape and 3D shape is needed. In addition, only
frontal faces are needed for training and non-frontal faces
can be aligned successfully. The experimental results with
20 subjects demonstrate the effectiveness of the proposed
approach. Figure 15 shows two alignment results.



(a) A PTZ camera and a web cam-
era are used for recognizing hand
postures.

(b) A Stereo camera is used for
recognizing hand postures.

Fig. 16. Hand Posture Recognition for Human Robot Interaction.

B. Hand Posture Recognition

Hand posture understanding is essential to human robot
interaction. The existing hand detection approaches using
a Viola-Jones detector have two fundamental issues, the
degraded performance due to background noise in training
images and the in-plane rotation variant detection. In [17],
we proposed a hand posture recognition system using the
discrete Adaboost learning algorithm with Lowe’s scale
invariant feature transform (SIFT) features to tackle these
issues simultaneously. In addition, we apply a sharing fea-
ture concept to increase the accuracy of multi-class hand
posture recognition. The experimental results demonstrate
that the proposed approach successfully recognizes three
hand posture classes and can deal with the background
noise issues. Our detector is in-plane rotation invariant, and
achieves satisfactory multi-view hand detection. Figure 16
shows the camera systems on NTU-PAL1 and NTU-PAL2
used for hand posture recognition.

C. Summary

The 3D AAM framework for aligning 3D face in 2D
images provides a strong foundation for human expression
recognition and emotion recognition. It would be critical to
speed up the current 3D AAM algorithm and to increase
face pose estimation accuracy in terms of large yaw and pitch
motions. Regarding hand posture recognition, we have imple-
mented hidden conditional random fields to further improve
the performance [18]. While improving the performance of
the camera-based systems, 3D flash ladar devices or 3D
cameras are being explored to accomplish these tasks.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced the robotic systems, NTU-
PAL1 and NTU-PAL2. In particular, the camera-projector
system on NTU-PAL1 and the expressive face and arms on
NTU-PAL2 were described. Our current progress on robot
perception was summarized. Several topics and directions for
future work were pointed out. Socially assistive robots for
the elderly need higher level scene and human understanding.
It is also critical to pursue user study in the near future to
understand the needs of the elderly.
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