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Abstract— Interactions between targets have been exploited
to solve the occlusion problem in multitarget tracking but
not to provide higher level scene understanding. As indoor
environments are relatively unconstrained than urban areas,
interactions in indoor environments are weaker and have more
variants. Weak interactions make scene interaction modeling
and neighboring object interaction modeling challenging. In this
paper, a place-driven scene interaction model is proposed to
represent long-term interactions in indoor environments. To deal
with complicated short-term interactions, the neighboring object
interaction model consists of three short-term interaction models,
following, approaching and avoidance. The moving model, the
stationary process model and these two interaction models are
integrated to accomplish weakly interacting object tracking. In
addition, higher level scene understanding such as unusual activ-
ity recognition and important place identification is accomplished
straightforwardly. The experimental results using data from a
laser scanner demonstrate the feasibility and robustness of the
proposed approaches.

I. INTRODUCTION

Multiple moving object tracking or multitarget tracking is a
key prerequisite for automating many useful robotics applica-
tions. The classical approaches such as the multiple hypothesis
tracking (MHT) algorithm [1] and the joint probabilistic
data association (JPDA) approach [2] have been extensively
applied in many applications. However, only a few works
addressed the observation and motion modeling issues of
interactions among the tracked objects and the scene. Khan et
al. [3] proposed a Markov chain Monte Carlo (MCMC)-based
particle filter to track interacting ants in which interactions
are modeled through a Markov random field motion prior.
Their interaction potential is only based on static poses which
cannot provide higher level scene understanding. Smith et
al. [4] adopt a simple interaction model to penalize object
overlapping. Sullivan and Carlsson [5] proposed to construct
an interaction graph and then apply a two-stage clustering
scheme to label the identity of the target. Instead of modeling
or understanding interactions explicitly, these studies use the
term, interaction, to describe the situations that the target and
adjacent objects share the common measurements and cannot
be correctly labeled. In these existing approaches, interactions
represent negative information.

Wang et al. [6] proposed a variable structure multiple model
(VSMM) estimation framework[7] with a scene interaction
model and a neighboring object interaction model to perform
multiple interacting object tracking in urban areas using a
laser scanner. In this framework, interactions gain positive

information. The scene interaction model and the neighboring
object interaction model respectively take the long-term and
short-term interactions between the tracked object and its
surroundings into account. This approach not only solves the
data association problem but also provides higher level scene
understanding.

As moving objects in urban areas always obey the strict
traffic rules, the interactions in these urban areas are stronger
than in indoor environments. Weaker interactions make scene
interaction and neighboring object interaction modeling more
challenging as objects have more freedom to move and the in-
teractions could have more variants. In this paper, we propose
to accomplish weakly interacting object tracking by exploiting
a place-driven scene interaction model and a neighboring
object interaction model consisting of three short interaction
models. The basic maneuver model, the stationary process
model and these two interaction models are seamlessly fused
via a digraph switching algorithm in the VSMM estimation
framework. In addition, higher level scene understanding such
as unusual activity recognition and important place identifica-
tion is accomplished straightforwardly through the proposed
interacting object tracking framework. The performance of
the proposed approaches is evaluated with manually labeled
ground truth data.

The remainder of the paper is organized as follows. Section
II reviews the VSMM estimation framework, and describes
our approaches to integrate the basic maneuver and interaction
models. The scene interaction model and the neighboring
object model are described in Sections III and IV, respectively.
In Section V, we demonstrate that the proposed approaches
are able to solve the difficult occlusion problem and to provide
higher level scene understanding. The experimental results and
performance evaluation are in Section VI. Finally, conclusion
and future work are in Section VII.

II. VARIABLE-STRUCTURE MULTIPLE MODEL
ESTIMATION

In this section, we review the theoretical foundations of the
variable-structure multiple model (VSMM) estimation frame-
work briefly, and describe our approaches to integrate the
moving models, the stationary model, the scene interaction
model and the neighboring object interaction model in detail.



A. Theory

The tracking problem can be solved with the mechanism of
Bayesian approaches such as the Kalman filter and the particle
filter. As the true motion mode is often unavailable in many
applications, online motion modeling is needed. Moving object
tracking can be formalized in the probabilistic form as:

p(xk,sk | Zk) ∝ p(zk | xk,sk) (1)

∑
sk−1

∫
p(xk,sk | xk−1,sk−1)p(xk−1,sk−1 | Zk−1)dxk−1

where xk is the true state of the moving object at time k,
sk is the true motion mode of the moving object at time k,
Zk = {z1,z2, · · · ,zk} is the perception measurement set leading
up to time k, p(xk−1,sk−1 | Zk−1) is the posterior probability
at time k−1, p(xk,sk | Zk) is the posterior probability at time
k, p(xk,sk | xk−1,sk−1) is the motion model and p(zk | xk,sk) is
the measurement or observation model.

For online motion modeling, using more models is not
necessarily the optimal solution. Additionally, it increases
computational complexity considerably. Use of a fixed set
of models is not the only option for multiple model based
tracking approaches. The details of the VSMM estimation and
the related algorithms are available in [8].

In the VSMM estimation framework, it is assumed that the
true motion mode sk is the set of all model states. Thus the
equation can be further expanded as:

P(xk,sk|Zk)
∝ ∑

mk∈sk

P(zk|xk,mk) ∑
sk−1

∑
mk−1∈sk−1∫

xk−1

P(xk,mk|xk−1,mk−1) ·P(xk−1,mk−1|Zk−1)

(2)

where P(xk−1,mk−1|Zk−1) is the posterior probability of
tracked object pose and motion models at time k − 1.
P(xk,mk|xk−1,mk−1) is the motion model including model
transitions.

B. Weakly Interacting Object Tracking Framework

In our weakly interacting object tracking framework, sk
consists of the following motion models.
• The moving model (mmv): the moving model consists

of the constant velocity (CV) model and the constant
acceleration (CA) model. These two models are fused
using the interacting multiple model (IMM) approach [9].

• The stationary process model (msp): the stationary process
model is assumed to be properly described by a second
order stationary series. Because of limited data and time
in practice, the mean and the covariance of the series are
used to decide if the series is a stationary process.

• The scene interaction model (msi): this model is designed
to represent the long term interactions between the target
and the static scene. The details of implementing msi will
be described in Section III.

• The neighboring object interaction model (mni): this
model is designed to represent the short-term or imme-
diate interactions between the target and its neighboring
and moving objects. The details of implementing mni will
be addressed in Section IV.

All these models are seamlessly intergraded through the
VSMM framework.

We further predetermine three model sets as:

D[1] = {mmv,msi}
D[2] = {mmv,msi,mni}

D[3] = {msp,msi} (3)

D[1] is designed for the situations where the speed of the
target is higher than a minimum detection velocity and no
moving object is nearby. D[2] is designed for the situation
where the target is moving and a moving object is nearby.
D[3] is designed for the situations where the tracked object is
stationary.

To deal with move-stop-move maneuvers, the moving model
and the stationary process model should not be mixed [6].
Therefore, a digraph switching algorithm [7] is applied to
select one or two model sets for state estimation. Equation 4
show the rules to switch the model sets. Let υ be the minimum
detection velocity and ρ be the distance between the target and
the neighboring and moving object. t1 and t2 are thresholds.

sk =


D[1] υ > t1, ρ > t2
D[2] υ > t1, ρ 5 t2
D[1]&D[3] υ 5 t1, ρ > t2
D[2]&D[3] υ 5 t1, ρ 5 t2

(4)

In the situations of υ 5 t1, the model sets associated with the
moving model and the stationary process model are evaluated
separately without making any hard decision. While switching
between the predetermined model sets, some models are added
or removed and the probabilities of the model sets and the
motion models are normalized or initialized.

III. SCENE INTERACTION MODEL

In this section, we briefly review the scene interaction model
for tracking in urban areas [6] and describe our approaches to
modify the scene interaction model for indoor environments.

A. Modeling

In urban areas, the simultaneous localization, mapping and
moving object tracking (SLAMMOT) [10] maps are auto-
matically generated and maintained according to different
behavior patterns. The long-term interactions with surrounding
environments in urban areas are strong as most moving entities
obey the traffic laws. The behavior patterns of urban scenes
could be easily classified according to moving directions of all
moving objects in the scene[6]. Unfortunately, this approach
does not work in indoor scenes because of no traffic control.

To deal with this issue, we follow an observation that
the weak and long term interactions with dynamic environ-
ments in indoor scenes could be governed by places, and



(a) The test scene. Five places are predeter-
mined.
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(b) Place D-driven Scene Interac-
tion Pattern.
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(c) Place E-driven Scene Interac-
tion Pattern.

Fig. 1. The place-driven scene interaction model. In the visual images of
(a), a SICK LMS 291 laser scanner is located at the place indicated by a
white rectangle. (b) and (c) show the place-driven patterns of place D and E
respectively. Black solid grids are belonging to stationary objects. White grids
are unobserved or unoccupied areas. Regarding the remainder grids, only the
most observed motion direction of a grid is shown by an arrow inside the grid.
The laser scanner is located at the origin (0,0) of the SLAMMOT maps.

propose a place-driven scene interaction model in which the
SLAMMOT maps are generated and maintained according to
predetermined or online recognized places such as entrances
and exits. To illustrate the fundamental principle of the place-
driven scene interaction model, Figure 1 shows an example in
which five important places are predetermined in the lobby of
the a building. In this paper, visual images from the cameras
mounted on the second floor are only for visualization. Fig-
ures 1(b)∼(c) depict different long term interaction patterns
between people and the indoor environment and show that
the place-driven scene interaction model well represents the
long-term interactions.

B. Prediction and Update

For the place-driven scene interaction model, the place that
the target came from is used to select the proper SLAM-
MOT map, and the sampling technique is used to predict
possible future motions. In addition, the k-means clustering
algorithm [11] is applied to find a couple possible predictions.
An iterative process is applied to determine the appropriate
number of clusters k. Figure 2 shows an example of motion
predication of the scene interaction model using the proposed
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Fig. 2. The prediction stage of the scene interaction model using the sampling
and k-means approaches. Solid gray circles are predicted samples and three
2σ ellipses show the state predictions using the k-means algorithm. Empty
grids are belonging to unoccupied or unobserved space. Black solid girds are
belonging to stationary objects. Inside the grids belonging to the moving object
map, the distributions of eight canonical moving directions are represented by
lines. The length of the line indicates the speed distribution. The width of the
line shows the distribution of the occurrence times. It is more likely for an
object to follow a direction if the width of the line in the direction is bigger.
See [6] for more details.

approaches in which three state predictions are generated.
All the estimates are weighted with probabilities which are
proportional to cluster sizes. Note that the prediction from
the scene interaction model only depends on the location of
the tracked object in the SLAMMOT map which contains
the statistical information but not on the previous estimates
from the scene interaction model. The update of the scene
interaction model is straightforward via the VSMM state
estimation framework.

IV. NEIGHBORING OBJECT INTERACTION MODEL

The neighboring object interaction model is designed to
represent the short-term or immediate interactions between
the target and its neighboring and moving objects. In this
paper, three short-term interactions, following, approaching
and avoidance, are modeled for indoor environments. The
following interaction represents the situations that the target
changes its moving direction to follow its neighboring object.
The approaching interaction represents that the object moves
toward to its neighboring object. The avoidance interaction
represents that the target performs avoidance maneuver to
avoid collision with its neighboring object.

It is assumed that interactions change the moving direction
of the tracked object. The prediction steps of these models
first determine the moving direction of the tracked object and
then estimate the next pose of the tracked object with this new
direction. The spatial relationships between the target and its
neighboring and moving object are computed to determine the
moving directions of the three interactions as shown in Figure
3. The direction of the shortest distance between the target
and its neighboring object is the direction of the approaching
interaction model. The direction of the following interaction



−1.5 −1 −0.5 0 0.5 1 1.5 2

5

5.5

6

6.5

7

7.5

8

8.5

X (meter)

Y
 (

m
et

er
)

Avoidance

Approaching

Following

Fig. 3. Moving direction determination of the approaching, following and
avoidance interaction models. See the text for more details.

is the same as the moving direction of the target’s neighboring
object. Eight canonical directions are considered as the moving
direction candidates of the avoidance model. The directions
of the avoidance interaction are chosen by selecting two
canonical directions which are the most closest to the moving
direction of the target, but not close to the moving direction
of its neighboring object. The speed estimates of these models
are set to equal to the speed estimate of the moving model.
The covariance of these short-term interaction estimates is
transformed accordingly.

Note that these three interaction models are not mixed
during tracking. Figure 4 shows the tracking results using
the proposed neighboring object interaction model in which
the probability history of these short-term interaction models
successfully represent different short-term interaction patterns
in indoor environments. The probability can be computed by
the following equation:

P(m) ∝ exp[−d2
m/2]/((2π)M|Sm|)0.5

where d2
m = y′S−1

m y (5)

where p(m) is the probability of the model m, Sm is the
predicted observation covariance and ym is the difference
between the actual and expected observation with model m.

V. OCCLUSION AND HIGHER LEVEL SCENE
UNDERSTANDING

In this section, we will demonstrate that the proposed frame-
work is capable of solving the challenging occlusion problem
and is able to provide higher level scene understanding such as
unusual activity recognition and important place identification.

A. Occlusion

The classical approaches can not deal with the situations
where the target is occluded and abruptly changes its motion
due to short-term interactions. Figure 5 shows an example of
this challenging occlusion problem. The IMM approach fails
in this case. The proposed approaches solve this challenging
problem successfully.
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Fig. 5. Dealing with occlusion. Left columns show the tracking results of
the proposed algorithm. Right columns show the tracking results of the IMM
approach. Middle column are visual images. See the text for more details.

B. Unusual Activity Recognition

Usual or normal activities are embedded in the scene in-
teraction model and the neighboring object interaction model.
Low probabilities of these interaction models could indicate
unusual or abnormal activities. Figure 6 shows an example
in which a person was wandering in the lobby. Our approach
quickly shows that the probabilities of the place-driven scene
interaction model is very low. This event is highly likely to
be unusual or abnormal.

Figure 7 shows the unusual activity recognition results under
different patterns. Note that it is also possible to recognize
unusual or abnormal activities using the neighboring object
interaction model.

C. Important Place Identification

As the scene interaction model is place-driven, important
place determination is critical. Although we demonstrated the
feasibility of the scene interaction model with predetermined
places, it is feasible to online recognize new important places
and build the SLAMMOT map accordingly by accumulating
and analyzing the results of unusual activity recognition. In
Figure 7(a)∼(c), the locations at which the targets performed
unusual activities and their speeds were less than the mini-
mum detection velocity are indicated. These places could be
important. Figure 7(d) shows the sum of all detected unusual
activities of the five place-driven interaction patterns. Three
new important places are identified. These new identified
places are consistent with the real world setting.

There is a bulletin board at Location (-3,2). People stopped
at location (-1,5) to watch a flat screen TV showing infor-
mation at the location (-3, 5). Interestingly, Location (0,0)
is identified as important simply because our experiment
equipments were located there and people stopped by to figure
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(a) The following interaction.
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(b) The avoidance interaction.
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(c) The approaching interaction.

Fig. 4. Interacting object tracking using the neighboring object interaction model. Two ellipses indicate the target and its neighboring object. The laser scan
points collected at different times are shown and data collected at time A, B, C are highlighted. The predicted directions of the three interaction models are
shown. The probabilities successfully indicate the real situations.
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Fig. 6. Unusual or abnormal activity recognition using the scene interaction
model. The probabilities of the scene interaction model indicate unusual
events.

out what these devices are. The identified places using the
proposed approaches consist with the real world setting.

VI. EXPERIMENTS AND RESULTS

The proposed algorithm is evaluated using data from a SICK
LMS 291 laser scanner in the lobby of our department. The
ground truth of the testing data were labeled manually. The
performance of our approaches is shown in terms of tracking
accuracy, success rate and interaction classification.
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(a) Unusual activities under Place
A pattern.
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(b) Unusual activities under Place
D pattern.
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(c) Unusual activities under Place E
pattern.
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(d) Important place identification.

Fig. 7. Unusual activity recognition and important place identification. In
(a)∼(c), arrows inside the grids show the moving directions of the detected
unusual activities. Gray grids with arrows inside indicate the locations where
the speeds of the targets are less than the minimum detection velocity. The
darker the grid, the higher the occurrence times of these events. (d) shows
important place identification using the sum of all unusual activities under five
place-driven interaction patterns. Circles are the identified important places.
A rectangle indicates the location of a flat screen TV.



TABLE I
TRACKING PERFORMANCE EVALUATION

No Moving Object Nearby Other Moving Object Nearby

Error (µ,σ ) Success
rate Error (µ,σ ) Success

rate
IMM (2.37m,1.14m) 92% (2.89m,1.31m) 81%

WI (2.43m,1.50m) 95% (2.62m,1.54m) 93%

TABLE II
DETECTION OF INTERACTIONS

GroundTruth
approaching avoidance following no interaction

approaching 90% 4% 7% 6%
avoidance 1% 87% 27% 33%
following 5% 6% 51% 4%

no interaction 4% 3% 15% 57%
total 100% 100% 100% 100%

A. Tracking Performance

The tracking performance of the proposed approach is
compared with the IMM tracker. The results and comparison
are shown in Table I. In the situations that no other moving
object is nearby, the performance of the proposed approach is
similar the IMM approach. The scene interaction is suitable for
detecting abnormal activities but not for improving tracking
accuracy. In the situations that a moving objet is near the
tracked object, our approach outperforms the IMM tracker in
terms of tracking accuracy and occlusion handling. As the
scene interaction model and the neighboring object interaction
model provide a good prediction while the IMM tracker only
predicts using the current motion information, the success rate
of tracking using our approaches is better.

B. Interaction Classification

Here we show the correctness of short-term interaction
classification. As the neighboring object interaction models
are not fused during tracking, the probabilities of these models
are maintained and used to classify the short-term interaction
between the tracked object and its neighboring and moving
object. If the probability of some short-term interaction model
is greater than other models, we regard this model as the
interaction mode of the tracked object with its neighboring
and moving object. Table II shows the classification results.
The approaching and avoidance interactions are classified
accurately. However, the following interaction and the situation
of no interaction are easily confused. We would argue that the
results are reasonable as it may not be easy for human beings
to differentiate these two situation in indoor environments.

VII. CONCLUSION AND FUTURE WORK

Our interacting object tracking framework not only deals
with the challenging data association problem in multitarget
tracking but also provides a means to understand higher level
interactions and activities. Based on [6], the main contributions
of this work are to propose the place driven scene interaction
model and to apply three key short term interaction models to

accomplish weakly interacting object tracking in indoor envi-
ronments. We also contribute a simple yet effective approach
to accomplish unusual activity recognition and important place
identification via the interacting object tracking framework.

Future work will apply the proposed algorithms in both
indoor and outdoor environments to test their feasibility. The
computational complexity of the proposed algorithms will
be analyzed. It would be of interest to explore the issues
of simultaneous scene interaction modeling, unusual activity
recognition and important place identification.
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