
Safe Robot Driving 
Chuck Thorpe, Romuald Aufrere, Justin Carlson, Dave Duggins, Terry Fong, Jay Gowdy, 
John Kozar, Rob MacLaughlin, Colin McCabe, Christoph Mertz, Arne Suppe, Bob Wang, 

Teruko Yata 
<firstname.lastname>@ri.cmu.edu 

The Robotics Institute, Carnegie Mellon University, Pittsburgh PA USA 
 
1 Abstract 
The Navlab group at Carnegie Mellon University has a long history of development of 
automated vehicles and intelligent systems for driver assistance. The earlier work of the 
group concentrated on road following, cross-country driving, and obstacle detection. The 
new focus is on short-range sensing, to look all around the vehicle for safe driving. The 
current system uses video sensing, laser rangefinders, a novel light-stripe rangefinder, 
software to process each sensor individually, and a map-based fusion system. The complete 
system has been demonstrated on the Navlab 11 vehicle for monitoring the environment of 
a vehicle driving through a cluttered urban environment, detecting and tracking fixed 
objects, moving objects, pedestrians, curbs, and roads. 
 
2 The need for 360 degree safeguarding 
Robot driving has concentrated on forward-looking sensing, for road following and 
obstacle detection. This is an appropriate first step, but real deployment of mobile robots 
will require additional sensing and reasoning to surround the robot with safeguard sensors 
and systems. Our group is currently building short-range sensing to surround vehicles to 
improve the safety of robotic and human-controlled vehicles. 
 
In the civilian context, our focus is driver assistance for transit busses. Busses drive at 
relatively slow speeds, in crowded urban environments. One of the most frequent types of 
accidents in transit busses is side collision, where the driver does not have adequate 
awareness of objects near the bus, then turns too sharply and sideswipes a fixed object or 
(less often) hits a pedestrian. Preventing these accidents requires short-range sensing along 
the side and front of the bus, detecting fixed objects, detecting and tracking moving objects, 
predicting the motion of the bus itself, and a suitable driver interface for alerting the driver. 
 
In the military context, our focus is short-range sensing for full automation of scout 
vehicles. An autonomous vehicle moving through a cluttered environment, such as a forest, 
may need to move between objects (e.g. trees) with very little clearance on either side of 
the vehicle. The conventional approach is to sense trees with forward-looking sensors, enter 
those trees into a map, and estimate the clearance as the vehicle moves forward and the 
trees move out of the field of view of the forward-looking sensor. If sensor data is noisy, or 
if the vehicle slips and slides in mud, the estimated clearance may be incorrect. It is better 
to directly and continuously sense nearby objects all along the side of the vehicle as it 
moves through the forest. 
 



Both civilian and military vehicles, and both driver assistance and full automation, need to 
pay special attention to moving objects, and particularly to humans. People move in 
unpredictable ways. Seeing a person with a forward-looking sensor, or having the driver 
note the position of a person in front of a bus, is no guarantee that the person will remain 
safely out of the vehicle’s way. Thus, we pay special attention to detecting moving objects, 
classifying them if possible as people, continuously tracking their motion, and attempting to 
predict their future actions. 
 
3 Testbed Vehicle 

 
Figure 1: Navlab 11 testbed 

Our testbed vehicle for this work is the Navlab 11. It is equipped with: 
• motion sensors (IMU, GPS, differential odometry,  compass, inclinometer, and 

angular gyro);  
• video sensors (5 video cameras, 3 in front and two looking along the sides);  
• ladars (3 Sick single-axis scanning laser rangefinders mounted in various positions, 

typically one looking forward and two along the sides);  
• a light-stripe rangefinder typically mounted looking for the curb on the right;  
• 5 500-MHz Pentium computers;  



• high-accuracy time synchronization; and  
• various other sensors and actuators.  

 
4 Perception Modules 
We have built, tested, and integrated a number of perception modules, designed specifically 
for short-range sensing.  

 
 

Figure 2: Optical flow tracking: omnicam image, unwarped image with edges, map of tracking result 

Optical Flow: Our work with optical flow uses an Omnicam and optical flow tracking to 
detect nearby objects from a moving vehicle. The omnicam is a video sensor with a 
hemispherical mirror, which enables one image to capture a 360 degree view of the world. 
In software, we unwrap the image, detect vertical edges, then track those edges from frame 
to frame as the vehicle moves. We use a Kalman filter to track each of the detected objects, 
to update the position estimate of the objects with time. The result is a map of all the 
detected objects, suitable for obstacle avoidance and map-building. This subsystem has not 
yet been integrated into the full data fusion path. 



 

Figure 3: light stripe sensor use on a bus for curb and obstacle detection 

Light-stripe scanner: We have designed, built, and integrated a light-stripe sensor as a 
proof-of-principle of a no-moving-parts range sensor, designed for use outdoors at modest 
ranges. We tested the sensor on board a transit bus operating in the city of Pittsburgh under 
a full range of weather conditions. The idea of light-stripe sensing is well-known: shine a 
plane of light (in this case, a vertical plane) on the scene, then look from a different vantage 
point for the shape that the light makes as it hits the surface. Triangulation gives the 3-D 
scene geometry. The novel additions we have made to the process enable range sensing 
under full sun outdoors. First, we filter the camera, so that it only sees light in the same 
wavelength as the laser illumination. Second, we shutter the camera, in sync with a pulsed 
laser. That allows much higher instantaneous power output, while still having a total 
integrated emitted energy low enough to keep the laser eye safe.  
 
Curb detection and tracking: In use, our side-looking light stripe range sensor measures the 
vertical profile of the road to the right of the testbed. When there is a curb present, the light 
stripe sensor can find the curb out to a range of approximately one lane width. We have 
tuned the software to detect the kinds of curbs commonly encountered in urban 
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environments. We also built a Kalman filter to integrate curb measurements and vehicle 
motion models over time, to create a track of where the curb has been and an estimate of its 
current heading.  
 
Road prediction: Once the curb has been detected and tracked, we project its location into 
the video image acquired by the camera mounted on the rear right of the testbed looking 
along the vehicle. Given the location of the curb in this image, an image processing 
algorithm generates a template of the curb’s appearance and tracks it forward in the image 
to generate a preview of where the curb and road are headed. 
 
 

 
Figure 4: Sick scanner range data processing, showing a single scan (left) and multi-scan matching 
(right) 

 
Sick processing: We have been using a Sick single-axis ladar for map building , moving 
object detection, and ego-motion detection. Since the Sick scans a single line across the 
scene, a horizontally-mounted Sick sensor maps a single plane of the scene. As long as the 
vehicle does not pitch or roll violently, and as long as the objects in the scene have 
adequate vertical extent, we can track those objects from frame to frame as the vehicle 
moves. In Figure 4, the left-hand side shows the data from a single rangefinder mounted on 
the right of the Navlab11. The solid rectangle represents the vehicle itself; the points show 
range returns. The right-hand side shows the result of data matching. The long vertical line 
is the wall of a building that has been seen in multiple frames. The partial rectangle near the 



bottom is a parked car, that has been observed from the rear, side, and front, so a more 
complete representation has been built. The circles in the top of the frame show small 
objects that have been observed multiple times, but with changing locations; these are 
tentatively classified as pedestrians. The faint chain of circles trailing from the vehicle is 
the list of positions from which the vehicle made its observations. 
 

Figure 5: Data Fusion paths 

Fusion: The individual perception and interpretation modules all generate output that is 
fused into a consistent map representation. The data flow is shown in Figure 5. The 
“vehicle motion model”, which keeps track of vehicle pose, is distributed to all modules. 
The other modules each process a variety of data, culminating in labeled objects flowing 
into the map. 
 
5 Collision Prediction 
Given the location of moving and fixed objects, as collected in the map, and the heading of 
the vehicle, it is possible to calculate the time of collision for each object. However, since 
objects may change their motion, and the vehicle may not continue along its current arc, 
those calculations cannot be exact; instead, they must take into account the probability 
distribution of likely future states of the testbed vehicle and other objects. This calculation 
is further complicated by different motion patterns for different kinds of objects: 
pedestrians on a sidewalk are less likely to step off the curb in front of a moving vehicle, 
and more likely to continue along the sidewalk. We have developed a probabilistic model 
of object motion that takes this kind of factor into account and generates a probability of 
collision as a function of time for each object in the environment. Rather than picking a 
fixed trajectory, we sample from the trajectories that the object could follow: faster or 
slower, turning more or less, and (for pedestrians) more or less likely to step off a curb and 
into the roadway. Each of these sampled trajectories is then examined to see if it causes a 
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collision with the vehicle, and at what time. The fraction of trajectories that causes 
collisions is used as the probability of collision, as a cumulative function of time. Hihg-
probability imminent collisions are triggers for either an urgent driver warning (for driver 
assistance systems) or an immediate cue for the vehicle tot ake evasive action (for 
automated vehicles). 
 
6 Demonstration System 
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Figure 6: integrated dmonstration system: left camera view with overlaid range data; right camera 
view with overlayed range data and curb location; and fused map. 

All of these modules have been integrated into a demonstration system. The system does 
the following: 

• Processes data in real time from two cameras looking along the sides of the vehicle, 
two laser scanners looking along the sides of the vehicle, the motion estimation 
sensors, and the side-looking curb tracker. 

• Optionally, logs all the data with time tags (sub-millisecond accuracy) for later 
replay and analysis 



• Calibrates all the sensors relative to each other and to the vehicle 
• Finds objects in the environment 
• Tracks the curb over time 
• Overlays the detected objects and the curb on the video data 
• Uses video processing to project the curb and road ahead of the vehicle, taking into 

account occlusions (as noted by 3-D objects projected onto the video image) to 
terminate tracking where the road edge is not visible 

• Determines whether each object is in the roadway or safely on the side 
• Estimates the potential of collision for each object 

Figure 6 shows the complete system in operation. The dials on the bottom right show 
vehicle state. The left camera view, on the top left, shows the range data from the left Sick 
rangefinder and object detection system overlaid on the left camera. The top right shows 
the right camera view, with the right-hand Sick system data; plus the laser striper’s current 
data, the detected curb, the track of the curb, and its future predicted position. The bottom 
right shows the combined map information. 
 
7 Status and Ongoing Development 
The systems as developed to date are good for demonstrations and proof of concept. The 
next steps are to mature the systems and deploy them on test vehicles for long-duration 
tests in real weather and real traffic conditions. Over the next year, the Navlab group will 
harden the electronics and improve the algorithms for full automation on robot vehicles, 
and for extended tests on transit busses. 
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