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Abstract— Body-language understanding is essential to hu-
man robot interaction, and hand posture recognition is one of
the most important components in a body-language recognition
system. The existing hand posture recognition approaches based
on robust local features such as SIFT can be invariant to
background noise and in-plane rotation. However the ignorance
of the relationships among local features is a fundamental issue.
The part-based models argue that objects of the same category
share the same part-structure which consists of parts and
relationships among parts. In this paper, a discriminative part-
based model, Hidden Conditional Random Fields (HCRFs),
is used to recognize hand postures. Although the existing
global locations of features have been used to consider large
scale dependency among parts in the HCRFs framework, the
results are not invariant to in-plane rotation. New features by
the distance to the image center are proposed to encode the
global relationship as well as to perform in-plane rotation-
invariant recognition. The experimental results demonstrate
that the proposed approach is in-plane rotation-invariant and
outperforms the approach using AdaBoost with SIFT.

I. INTRODUCTION

Body language is an important part of communication
between people. Understanding body language could play
a key role in human robot interaction as illustrated in Figure
1. A body-language recognition system could consist of face
detection and analysis, arm gesture recognition and hand pos-
ture recognition. In our body-language recognition system,
the Viola-Jones face detector [1] and a skin color model [2]
are integrated into a robust frontal face detector. False alarms
from the Viola-Jones face detector can be rejected by the
skin color constraint. A 3D Active Appearance Model [3]
is used to align 3D faces in 2D images for estimating the
orientation of the user’s head. Figure 2(a) shows the positive
face detection result in which a person is facing toward the
robot. Given the location of the face, the upper body of the
detected person is extracted using the disparity map from the
stereo cameras as shown in Figure 2(b). Kernel Sliced Inverse
Regression [4] and Support Vector Machine [5] are used to
train a raising-arm detector. The disparity map of the upper
body is binarized as depicted in Figure 2(c) and used as the

Te-Cheng Liu was with the Department of Computer Science and
Information Engineering, National Taiwan University, Taipei, Taiwan
atwood@robotics.csie.ntu.edu.tw

Ko-Chih Wang is with the Graduate Institute of Networking
and Multimedia, National Taiwan University, Taipei, Taiwan
casey@robotics.csie.ntu.edu.tw

Augustine Tsai is with the Innovative DigiTech-Enabled Applications
and Services Institute, Institute for Information Industry, Taipei, Taiwan
atsai@iii.org.tw

Chieh-Chih Wang is with the Department of Computer Science
and Information Engineering, and the Graduate Institute of Net-
working and Multimedia, National Taiwan University, Taipei, Taiwan
bobwang@ntu.edu.tw

Fig. 1. A person uses his body language to interact with the NTU-PAL2
robot.

(a) Face detection using single
camera

(b) Upper body localization using
stereo cameras

(c) The input of the
raising-arm detector

(d) The extracted
hand posture image

Fig. 2. The results of face detection, raising-arm detection and hand posture
image extraction in our body-language recognition system.

input of the raising-arm detector. The hand posture classifier
is called only when both the face detector and the raising-
arm detector provide positive results. In addition, the face
detector and the raising-hand detector serve as the localizer
of hand posture for further classification as shown in Figure
2(d). As the current human robot interaction design of our
NTU-PAL2 robot depends on hand postures of users, a robust
hand posture classifier is critical.

Wang and Wang [6] proposed to recognize hand posture
using AdaBoost with Scale Invariant Feature Transform
(SIFT) features [7]. Their model is invariant to background
noise, illumination and in-plane rotation. In their model
an image is represented only by a set of SIFT features.



The relationship among SIFT features are not considered.
However, Lazebnik et al. [8] proposed a matching algorithm
which considers spatial information in conjunction with spa-
tial location to match objects. But they did not consider in-
plane rotation problem. In additions, the part-based models
argue that objects of the same category share the same part-
structure which consists of parts and relationships among
parts. Under the part-based model, relationships among fea-
tures are expected to be helpful for recognition. In this paper,
we propose to recognize hand posture by a part-based model
in which relationships among features are taken into account.

Recently, the part-based models have significant progress
in modeling the structure of an object. Fergus et al. [9]
proposed a part-based model to overcome the variance of
illumination and background noise in training images without
labeling parts. Quattoni et al. [10] proposed a discriminative
part-based model without labeling parts called Hidden Con-
ditional Random Fields (HCRFs). The part-based models are
expected to more accurately describe objects of which most
instances share similar spatial configuration. Our experiments
show that part-based models considering the global position
features have higher accuracy, and this can be explained
by two reasons. First, the relationship among parts is one
of the necessary relationships for an instance of this kind
to belong to such object class. Second, the within-class
variance of local features of an object class could be large.
By dividing an object into sub-classes with lower variance,
the original problem is divided into easier sub-problems.
Moreover, HCRFs obtain higher accuracy mainly due to
the abandonment of the assumption on the form of the
distribution of data.

In this paper, Global relationships among features are
incorporated into HCRFs to consider large scale dependency
among parts. Our experiments show that HCRFs are success-
fully applied on the upright hand posture dataset, but not on
the cases with in-plane rotation, since the global relationship
used by Quattoni et al. [10] is not invariant to in-plane
rotation. In human robot interaction scenarios, hand postures
are frequently in the rotated cases. In this paper, we propose
to encode the global relationship of features by the distance
to the image center to perform in-plane rotation-invariant
hand posture recognition. The difference of part-structures
with different global relationships is further discussed. The
ample experiments demonstrate that the proposed approach
has an advance in accuracy from 2.5% to 3.5% compared
with the model of Wang and Wang [6], which supports our
statements.

The rest of this paper is organized as follows. HCRFs are
briefly reviewed in Section II and the cognitive meanings
of HCRFs and part-structures are addressed and discussed
in Section III. In Section IV, the ample experimental results
and the comparisons are shown. Finally, we conclude the
paper in Section V.

II. HIDDEN CONDITIONAL RANDOM FIELDS

In order to investigate the part-structure representation
under HCRFs in Section III, HCRFs are briefly reviewed

Fig. 3. An illustration of a double-layer CRF

in this section. The motivation of HCRFs is to construct
a part-based model by Conditional Random Fields (CRFs)
[11] without the efforts to label parts. Let X be a vector
of node features in an image, Y the set of class labels for
images and Y the set of assignments of Y to X. Instead of
modeling P(X|Y)P(Y) by some forms of distributions such
as Gaussian distributions, the conditional probability P(Y|X)
is computed directly from X in CRFs.

A. Formulation

Quattoni et al. [10] defined a double-layer CRF with a
random variable of parts h as illustrated in Figure 3. Let
H be the set of part labels and H the set of all possible
assignments of H to X. The probability of a double-layer
CRFs conditioned on observation x is :

P(Y=y,H=h|X=x;θ) =
1

Zy′,h′(x)
exp

{
∑

i
θi fi(y,h,x)

}
(1)

where θ is the vector of parameters and Zy′,h′(x) is a
normalization factor over Y ×H. As h is unobserved and
one method to deal with hidden variables is to marginalize
out h and work with P(Y=y|X=x;θ):

P(y|x;θ) = ∑
h

P(y,h|x;θ)

=
1

Zy′,h(x) ∑
h

exp

{
∑

i
θi fi(y,h,x)

} (2)

Let N be the number of node features in an image, D
the dimension of a node feature and E the edge set. Three
specific forms of feature functions fi(y,h,x) are defined:

∑
i

θi fi(y,h,x) =
D

∑
j=1

N

∑
t=1

θ node
ht , j f node

j (xt)+

|H|
∑
k=1

∑
(s,t)∈E

θ edge
yk f edge

yk (hs,ht)+

|H×H|
∑
l=1

N

∑
t=1

θ node
yl f node

yl (ht)

(3)

Let (u,v) be the normalized image location of a SIFT
feature and s be the normalized scale at which the SIFT
feature is found. A feature in the specific form of HCRFs is
(u,v,s,S) where S is a SIFT descriptor of 128 dimensions.



Thus, D is 131 in this case. θ node
ht , j is used to evaluate the

score for a node to be labeled as ht , and is shared by all
classes. θ edge

yk and θ node
yl are used to evaluate the score for

a part assignment to be of a class. Moreover, θ edge
yk is for

the histogram of edges in the part layer. θ node
yl is for the

histogram of nodes in the part layer. f edge
yk and f node

yl are
designed as binary counting features:

f node
yl (ht) =

{
1, if ht = l ∈ H
0, otherwise (4)

f edge
yk (hs,ht) =

{
1, if (hs,ht) = edgek ∈ H×H
0, otherwise (5)

The underlying expectation is that each category has its
own distribution of parts different from other categories, and
the scores from f edge

yk and f node
yl will discriminate the cases in

which the scores from node features are not discriminative
enough.

B. Learning and Inference

The maximum-likelihood method is applied to estimate θ
of P(y|x). Since the result of optimization remains and the
computation is easier to deal with in the log domain , the
log-likelihood function L(θ) is to be maximized:

L(θ) = logP(θ ;y,x) = logZh(y,x)− logZy′,h(x) (6)

Zh(y,x) is the summation of P(y,h|x) over H. For n train-
ing instances, the objective function is ∑n

k=1 log(θ ;yk,xk).
The functions of the log-sum-exp form is convex [12].
However this log-likelihood function is the difference of two
functions of this form and thus might not be concave [13].
The multiple initial cases are needed.

With learned θ̂ , which class x belongs to and what
the most possible part assignment is for x are two im-
portant questions which are solved simultaneously by
argmaxy′,h P(y′,h|x). However it is intractable and thus ap-
proximated by two tractable stages using belief propagation:

ŷ = argmax
y

P(y|x; θ̂) (7)

ĥ = argmax
h

P(h|ŷ,x; θ̂) (8)

C. Multi-class Recognition

For the multi-class recognition problems, there are two
main approaches. One is the combination of multiple binary
classifiers and the other is to solve a multi-class problem
directly. The formulation of HCRFs can solve the multi-
class recognition problem directly. In order to compare our
approaches with others, we also implement the one-against-
other approach. Let ci(x) be a classifier for class i. ci(x)1
is the probability that x belongs to class i and ci(x)0 is the
probability that x do not belong to class i. As our system is
currently implemented to recognize three hand postures, we
have a three dimensional classifier ti(x):

{
ti(x)p = cp(x)1
ti(x)q 6=p = 1

2 cp(x)0
(9)

Given the assumption that the prior probability of each
classifier is uniform, we have a combined one-against-other
classifier O(x):

O(x) =
1
3

2

∑
i=0

ti(x) (10)

Experiments on these two approaches are shown in Section
IV-C.

III. PART-STRUCTURE

In this section the cognitive meaning of HCRFs is in-
troduced. In HCRFs, a part-structure is not characterized
by a part assignment. It is expressed in terms of θ edge

yk

and θ node
yl . θ edge

yk is the histogram of the edges of parts
and θ node

yl is the histogram of the nodes of parts in the
objective function. θ edge

yk and θ node
yl does not directly cor-

respond to a part assignment, although the most possible
part assignment can be inferred from θ edge

yk and θ node
yl . Such

part-structure representations are more abstract than part
assignments. Therefore, the setting of these parameters is
obscure to human beings. One advantage of HCRFs is that
these parameters for part-structures are learned in a semi-
supervised way.

A. Semi-supervised Learning

A part-based model with supervised learning requires both
of class labels and part labels. The definition and annotation
of parts are two difficult tasks. In HCRFs, the part labels
are hidden and the selection of part-structures is guided
merely by class labels. In the parameter estimation of HCRFs
by maximum-likelihood, the optimization converges if the
gradient of L(θ) reaches ~0. Assume the derivative of L(θ)
with respect to θ node

yl and the one with respect to θ edge
yl are

0. Then,

∑
t

P(ht = j|y,x; θ̂) = ∑
y′,t

P(ht = j|y′,x; θ̂)P(y′|x; θ̂) (11)

∑
(s,t)∈E

P(hs = a,ht = b|y,x; θ̂) =

∑
y′,(s,t)∈E,a,b

P(hs = a,ht = b|y′,x; θ̂)P(y′|x; θ̂)
(12)

,in which H is the set of part labels.
The left side of Equation 11 is the sum of the marginal

probabilities for all nodes of class y to be labeled as part
j. The left side of Equation 12 is the sum of marginal
probabilities for all edges of class y to be labeled as (a,b).
The right side of each equation is the same sum weighted
by class probabilities P(y′|x; θ̂). That is, before convergence
θ edge

yk and θ node
yl are adjusted according to the difference

between the sum of the marginal probabilities in data and



2

3

3

2

2

2

2

33

2

232
2

2 3
33

2

2
3

23

2
2

22

22

7

2

7
2

2 2

22

7

72

7

2 77

3

7
2

3

7 3

72

7

7
22

(a) The fist posture

7

1

77
7

1

7

777

7

1
1 1

71

1

1

1
77 1

1

1

17

1
111 11 11 11

17
1

1

1
1

1 1

1

1
1

1

11
1 111

1 1
11 1

1

1 11 1 1
1

1

(b) The six posture
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(c) The palm posture
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(d) The part counts

Fig. 4. The most possible part assignments from a three-class model with
86.7% accuracy.

the same sum weighted in current model during optimization.
With convergence, with respect to the sum of marginal prob-
abilities, the empirical expected value equals the expected
value under the model. That is a variant of the equation
between the empirical expected value and the expected value
under the model for each feature function in CRFs [14].

It is observed that part-structures selected by the maximum
likelihood method do not conform to our intuition on hand
posture, but are more similar to a result of clustering in the
defined feature space. This could be an essential property
of a discriminative classifier. Part assignments annotated by
people are filled with prior knowledge which may not be
apparent in the defined feature space. Without an analysis
of the similarity among features, the annotation are highly
likely to be unreasonable in the sense that the within-part
variance is unexpectedly high.

B. Sharing and Non-Sharing Parts for Multi-class Recogni-
tion

A HCRF with higher accuracy tends to have a part-
structure capable of indicating sharing and non-sharing parts.
As depicted in Figure 4, each hand posture class has its
own distribution of part counts in the most possible part
assignment. For instance, Part 1 is only labeled in the six
posture class, Parts 2 and 3 are only labeled in the fist posture
class. These parts are non-sharing. Part 7 is a part shared by
the fist and six posture classes. It conforms to our intuition
on the similarity between Fist and Six. On the other hand,
Part 1, 2 and 4 seem to have large potential to respectively
indicate the existence of the classes six, fist and palm

C. Global Relationship

In HCRFs, any two nodes are not assumed to be indepen-
dent and thus may be overlapped as shown in Figure 5(a). In

(a) Overlapping (b) Global dependency

Fig. 5. The data relationship of nodes in HCRFs.

addition, global relationship of nodes may be incorporated
into HCRFs so as to represent large scale dependency among
data as shown in Figure 5(b).

In the specific form of Quattoni et al.[10], the scales
and global positions of features are taken into account.
The scales of features are used to discriminate the cases in
which the thumb of an adult is of the size of a baby. The
global positions of features are designed to discriminate the
cases where a thumb is not at the proper position. However,
the global locations of features extracted from 90◦-rotated
images do not work well using the model trained with upright
images. Such models with significant weights on global
locations are not invariant to in-plane rotation. We propose to
encode the global relationship by the distance of each feature
to the image center. Let the normalized distance of a feature
in an image to the image center be d, then our feature form
in HCRFs is (d,s,S). Our experiments show that models
with the proposed global relationship is invariant to in-plane
rotation.

It could be argued that encoding the global relationship
by the distance to the image center ignores the angular
information. Thus, the distances to the image center are
less informative than the global locations. However, our
experiments show that a model considering global location
is better than a model considering global distance to a
small extent. HCRFs with our feature form performs in-
plane rotation-invariant recognition with a quite small cost of
accuracy. Additionally, the proposed models are better than
the models considering no global relationship.

The differences of the part-structures trained with different
global relationships can be easier observed via the most
possible part assignment evaluated by Equation 8. The global
positions could be a spatial cue to make features of a part
compact in space. As depicted in Figure 6(a), Part 5 are
mostly distributed in the top half of the image and Part 1
are mostly distributed in the bottom half of the image. The
distances to the image center could be also a spatial cue but
make features of a part less compact in space. Figure 6(b)
shows that the distribution of Part 7 is mainly restricted in the
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Fig. 6. The most possible part assignments from the models with and
without considering the global relationships of features.

Fig. 7. The flowchart of the body-language recognition system. The NTU-
PAL2 robot greets, head to or leave a user according to his/her hand postures.

central region. Without taking the global relationships into
account, parts could be distributed over the whole image as
shown in Figure 6(c) .

IV. EXPERIMENTS AND DISCUSSION

A. System Overview and Dataset

The body-language recognition system is developed for
the NTU-PAL2 robot to perform human robot interaction.
The NTU-PAL2 robot greets, heads to or leaves a user
according to his/her hand postures. Figure 7 is the flowchart
of our body-language recognition system. A laptop computer
with 1.66G CPU and 1.5G RAM is used in our system.
The VIDERE Design STOC stereo camera with an image
resolution of 640x480 is used to collect visual images. The
average executing time of the face detector for each frame

Fig. 8. Four sample images of the hand posture dataset. The corresponding
trees of SIFT features for HCRFs are shown.

is 230 ms, the raising-hand detector is 140 ms, and the hand
posture recognizer is 385 ms.

Figure 8 shows four sample images of our upright hand
posture dataset and the corresponding trees of SIFT features.
There are four classes: Background, Fist, Palm and Six.
For each class, there are 200 images for training and 100
images for testing. For each hand posture, the variance of
lighting condition and deformation are collected as well as
the slight variance of 3D rotation. The 90◦ cases are obtained
by flipping the upright cases. The size of each image is
around 100×100 pixels.

B. Single-class Recognition

The performances of HCRF-based recognition with differ-
ent settings are shown in Table I. The UIUC car side dataset
and our hand posture dataset were used for evaluation. All
the test images were also in-plane rotated 90◦ to test if
the approaches are in-plane rotation-invariant. The algorithm
none indicates that no global relationship of features is used.
The algorithm global indicates that the global locations of
features are used, and distance indicates that the proposed
distances to the image center of features are used.

It is shown that the accuracy of our feature form of HCRFs
has no obvious decrease in the 90◦-rotated cases. thus,
our proposal is invariant to in-plane rotation. On the other
hand, models considering no global relationship are also
invariant to in-plane rotation. However, the proposed global
relationships can enhance the accuracy to the maximum of
4.5% in the class of Six. In terms of the upright cases, a
model considering global location is better than a model
considering global distance by 1.375% in average. That is,
our feature form of HCRFs obtains invariance of in-plane
rotation with a quite small cost of accuracy.

It should be noted that the accuracy of the algorithm
Location for the classes of Fist and Palm decrease much less
than the classes of Car Side and Six in the 90◦-rotated cases.
In addition, the algorithms Location and Distance make less
enhancements in accuracy in the classes of Fist and Palm
than Car Side and Six. A possible explanation could be that
the contribution of the global relationship information is in
proportion to its distribution to the rotated case.



TABLE I
THE ACCURACY OF THE MODEL TRAINED WITH ONLY UPRIGHT IMAGES

None Location Distance
UIUC Car Side 89.0% 94.0% 92.0%
UIUC Car Side 90◦ 88.0% 78.0% 92.0%
Fist 93.0% 94.5% 94.0%
Fist 90◦ 93.0% 91.0% 93.5%
Palm 87.0% 89.5% 89.5%
Palm 90◦ 86.0% 86.0% 88.5%
Six 83.0% 90.5% 87.5%
Six 90◦ 82.5% 75.0% 87.5%

The recognition results using HCRFs with the proposed
global relationships are also compared with the model on
hand posture recognition [6] which uses AdaBoost with SIFT
and is invariant to in-plane rotation. Table II shows that the
proposed approach has an advance from 2.5% to 3.5%.

TABLE II
THE COMPARISON BETWEEN THE PROPOSED APPROACH AND THE

APPROACH USING ADABOOST WITH SIFT

Fist Palm Six
HCRFs+Distance+SIFT 94.0% 89.5% 87.5%
AdaBoost+SIFT 91.0% 87.0% 84.0%

C. Multi-class Recognition

In this section, the one-against-other approach is com-
pared with the multi-class approach in a three-class hand
posture recognition problem. Table III and Table IV show
the confusion matrices from the one-against-other approach
and the multi-class approach, respectively. The accuracies
of two approaches do not differ evidently. It may require
experiments on more object classes to confirm if the multi-
class approach is better or not than the one-against-other
approach.

TABLE III
THE CONFUSION MATRIX OF THE ONE-AGAINST-OTHER APPROACH

Fist Palm Six Total Accuracy
Fist 85 3 12 100 85%
Palm 3 92 5 100 92%
Six 8 6 86 100 86%
Total 96 101 103 300 87.6%

TABLE IV
THE CONFUSION MATRIX OF THE MULTI-CLASS APPROACH

Fist Palm Six Total Accuracy
Fist 83 4 13 100 83.0%
Palm 1 92 7 100 92.0%
Six 7 8 85 100 85.0%
Total 91 104 105 300 86.7%

V. CONCLUSION AND FUTURE WORK

In this paper, HCRFs were successfully applied to solve
the multi-class hand posture recognition problem. HCRFs

with the proposed global relationships are in-plane rotation-
invariant and outperform the approach using Adaboost with
SIFT.

The future work is to test if the proposed approach is also
multiview invariant. A dataset with multiple viewpoints as
well as the theoretical foundations to tackle the variance of
viewpoint under the part-based models will be established.
In addition, it should be of our interest to integrate tempo-
ral information with the temporal extension of HCRFs to
increase hand posture recognition performance.
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