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Abstract— Auditory perception is one of the most important
functions for robotics applications. Microphone arrays are
widely used for auditory perception in which the spatial
structure of microphones is usually known. The structure from
sound (SFS) approach addresses the problem of simultaneously
localizing a set of microphones and a set of acoustic events
which provides a great flexibility to calibrate different setups of
microphone arrays. However, the existing method does not take
measurement uncertainty into account and does not provide un-
certainty estimates of the SFS results. In this paper, we propose
a probabilistic structure from sound (PSFS) approach using
the unscented transform. In addition, a probabilistic sound
source localization (PSSL) approach using the PSFS results
is provided to improve sound source localization accuracy.
The ample results of simulation and experiments using low
cost, off-the-shell microphones demonstrate the feasibility and
performance of the proposed PSFS and PSSL approaches.

I. INTRODUCTION

While visual perception using cameras or laser scanners
has been widely addressed and discussed, only a few works
in the robotics literature addressed auditory perception using
microphones. To accomplish sound source localization using
microphone arrays, the methods using interaural time differ-
ence, interaural phase difference, interaural level difference,
or fusing different cues have been demonstrated successfully
[1][2][3]. To deal with the issues of noise, complicated envi-
ronment acoustics and microphone mismatch, Hu et al. [4]
utilized Gaussian mixture models for detecting a speaker’s
position within a noisy vehicle cabinet. Valin et al. [5][6]
demonstrated the feasibility of simultaneous multiple sound
source localization. A comprehensive survey of auditory
perception in robotics is available in Chapter 2 of [7]. It is
shown that microphone arrays are widely used for auditory
perception.

In most of the auditory perception applications, the mi-
crophone locations are usually known or calibrated. The
calibration process could be tedious in which other means
or equipments are required. The structure from sound (SFS)
problem is to simultaneously localize a set of microphones
and a set of sound sources. A solution to the SFS problem
can provide a means to calibrate microphone arrays easily.
Without using any additional equipments, creating sound
events at different locations is sufficient to complete the
calibration process. In [8], Thrun proposed an affine SFS
algorithm and demonstrated its performance using a micro-
phone array comprised of seven Crossbow sensor motes.
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(a) The Affine SFS results under
measurement uncertainty
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(b) The Probabilistic SFS results
under measurement uncertainty

Fig. 1. A microphone array is located around the origin and nine
sound events are generated at different locations surrounded the microphone
array. Our probabilistic SFS algorithm properly deals with the measurement
uncertainty. The ellipses show 2σ estimates of the sound sources.

However, measurement uncertainty is not taken into account
and the SFS estimate uncertainties are not provided. Fig. 1
shows a simulation result in which the affine SFS converges
to an incorrect results under measurement uncertainty.

Based on Thrun’s approach, we propose a probabilistic
structure from sound (PSFS) algorithm using the unscented
transform [9]. Given the uncertainty estimates of interaural
time differences between microphones, sample sets of time
delay estimates are generated and used as inputs of the SFS
algorithm. Accordingly, sample sets of estimated locations
of microphones and sound sources are computed using the
SFS algorithm. The location estimates of microphones and
sound sources can be represented by these weighted SFS
output samples. Unfortunately, as only one microphone is
selected as the origin of the coordinate system in the SFS
framework, the SFS output samples may suffer from the
rotate effect and the mirror effect as depicted in Fig. 2. To
estimate the uncertainties correctly, these axis inconsistency
problems should be dealt with. In this paper, the coordinate
systems of the SFS output samples in 2D cases are aligned
by selecting one microphone as the origin of the coordinate
system and then letting another selected microphone move
only in the x-axis of this coordinate system.

In the SFS framework, the location estimates of micro-
phones are more accurate than the sound source location
estimates as more measurements or constraints are involved
with microphones than with sound sources. However, given
the PSFS results, sound source localization can be further
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(a) SFS output samples can be rotated around the
origin (the selected microphone).
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(b) SFS output samples can be flipped over around
some axis.

Fig. 2. The axis inconsistency problems. The different results all satisfy
the constraints.

improved with more measurements. We again utilize the un-
scented transform to accomplish probabilistic sound source
localization (PSSL). In addition, we demonstrate that sound
source localization can be further improved with a moving
microphone arrays using the proposed framework. Ample
simulations and experiments using off-the-shell microphones
verify the proposed PSFS and PSSL algorithms.

The rest of this paper is arranged as follows: In Section II,
the affine SFS algorithm is briefly reviewed; Section III
addresses the proposed PSFS algorithm in detail; Section IV
describes our PSSL algorithm. The simulation and experi-
mental results are in Section V, and the conclusion and future
work are in Section VI .

II. AFFINE STRUCTURE FROM SOUND

In this section, Thrun’s affine SFS algorithm [8] is de-
scribed briefly to provide a foundation for understanding the
proposed PSFS algorithm. The SFS problem is to localize
the N microphones and M sound sources simultaneously.
All the sound sources are emitted from unknown locations
at unknown time and all the microphones are located at
unknown positions. It is assumed that all microphones are
synchronized.

Let X be the microphone location matrix of size N × 2
and A be the sound source location matrix of size M × 2.

X =




x1 y1
x2 y2
...

...
xN yN


 A =




a1 b1
a2 b2
...

...
aM bM


 (1)

The SFS problem can be formulated as a least square
problem in which X and A are computed by minimizing the

cost function:

argmin
A,X

N

∑
i=2

M

∑
j=1

{∣∣∣∣
(

xi
yi

)
−

(
a j
b j

)∣∣∣∣−
∣∣∣∣
(

a j
b j

)∣∣∣∣−∆i, j

}2

(2)

where ∆i, j denotes the difference between the distance from
the jth sound source to the ith microphone and the distance
from the jth sound source to the reference microphone. ∆i, j
is computed by multiplying the time delay estimate with
the sound speed. This problem can be solved through the
gradient descent method. However, a good initial guess of
the locations of microphone and sound sources is critical to
minimize Eqn. 2.

Following the idea of affine structure from motion [10]
in the computer vision literature, the affine SFS approach
assumes that sound sources are far away from the micro-
phones and the incoming sound wave hits each microphone
at the same incident angle. The SFS problem is simplified
to recover the incident angles of the sound sources. This
assumption is used to get a reasonable initial guess of the
locations of microphones and sound sources. The gradient
descent method is then applied to recover the microphone
and sound source locations.

III. PROBABILISTIC STRUCTURE FROM SOUND

In this section, we describe the proposed PSFS approach
using the unscented transform [9].

A. The Unscented Transform

Let x be a L-dimensional Gaussian with the mean µx
and covariance matrix Σx. Let y = f (x) be a nonlinear
transformation from x to y. In the unscented transform,
the mean and covariance of x can be presented by the
2L +1 sigma points. Each sigma point Xi has two weights
associated with it. The first one, w(m)

i , is used to recover
the mean and the second one, w(c)

i , is used to recover the
covariance. These sigma points are passed through the the
function f :

Yi = f (Xi) where i = 0, . . . ,2L (3)

The corresponding sigma point Yi is computed. Finally,
the mean µy and covariance Σy can be calculated by:

µy = ∑2L
i=0 w(m)

i Yi

Σy = ∑2L
i=0 w(c)

i (Yi−µy)(Yi−µy)T
(4)

B. PSFS

As the relative distance matrix ∆ of size (N− 1)×M is
the input of the nonlinear SFS process, the sigma points
can be computed given ∆ and the corresponding covariance
matrix. To apply the formula of the unscented transform, ∆
is reformed as a long L = (N−1)×M-dimensional random
vector.

µ∆ =
[
µ1 . . . µL

]T (5)



Fig. 3. The sigma points were produced from the unscented transform.
The mean and the covariance can be found from the weighted sum of these
sigma points.

As each element in µ∆ is a time delay with a variance σ2
i .

The corresponding covariance matrix is a diagonal matrix of
the form:

Σ∆ = diag
(
σ2

1 . . . σ2
L
)

(6)

Now the mean µ∆ and covariance matrix Σ∆ can be used to
extract the sigma points using the unscented transform. These
sigma points are reformed as matrices of size (N−1)×M,
which are passed through the standard SFS procedure. The
location mean and covariance of each microphone and each
sound source are recovered with the weighted combination
of each corresponding sigma point using Eqn. 4. Fig. 3
illustrates the PSFS approach using the unscented transform.

Fig. 4 shows the simulations results of PSFS using the
same microphone array with different sound source con-
figurations. Although the performances of sound source
localization may depend on sound source configurations,
microphone array calibration remains accurate. Noted that
the microphone location estimates are more accurate than
the sound source location estimates as more constrains are
involved with microphones than sound sources in the SFS
framework.

IV. PROBABILISTIC SOUND SOURCE LOCALIZATION

As the PSFS framework may not provide very accurate
sound source localization under uncertainty, a probabilis-
tic sound source localization (PSSL) algorithm to improve
accuracy and performance of sound source localization is
proposed and addressed in this section. The process we apply
to solve the SSL problem is similar to SFS. The SSL problem
can be formalized as an optimization problem in which we
need to find a sound event location to minimize the quadratic
difference between the predicted and real measurements. The
proposed PSSL algorithm applies the unscented transform to
utilizes the microphone array estimate and the corresponding
uncertainty from PSFS with the measurements.

Recall that PSFS provides a location mean mi and co-
variance matrix Σmi for each microphone i. For any new
measurement of a sound source/event, we can compute a
vector of time delays between microphones:

∆ =
[
δ1,2 δ1,3 δ1,4 · · · δN−1,N

]T (7)
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(a) The sound source setup 1.
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(b) The microphone structure esti-
mate under the sound source setup
1.
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(c) The sound source setup 2.
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(d) The microphone structure esti-
mate under the sound source setup
2.
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(e) The sound source setup 3.
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(f) The microphone structure esti-
mate under the sound source setup
3.

Fig. 4. PSFS simulation results with different sound source configurations.

where δi, j denotes the time delay between the ith microphone
and the jth microphone. This data vector is of dimension
CN

2 × 1. We can also have the variance of each time delay
estimate σ2

i, j.
To extract sigma points in the unscented transform, the

microphone estimate X and the time delay estimates ∆ are
combined and reformed as:

µ =
[
x1 y1 · · · xN yN δ1,2 · · · δN−1,N

]T (8)

where µ is of dimension L = (2N +CN
2 )×1.

The covariance matrix of the input can be computed by:

Σ =




Σm1
. . .

ΣmN

0

0
σ2

1,2
. . .

σ2
N−1,N




(9)

The sigma points can be computed straightforwardly using
the unscented transform formulation. These sigma points are
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Fig. 5. Experimental result of PSSL using three microphones.

of the form:

χi =
[
x(l)

1 y(l)
1 · · · x(l)

N y(l)
N δ (l)

1,2 · · · δ (l)
N−1,N

]T

where l = 0, . . . ,2L (10)

Each sigma point is then passed through a least square
problem solver:

A(l)∗ = argminA ∑N−1
i=1 ∑N

j=i+1{∣∣∣∣∣

(
x(l)

i

y(l)
i

)
−

(
a(l)

b(l)

)∣∣∣∣∣−
∣∣∣∣∣

(
x(l)

j

y(l)
j

)
−

(
a(l)

b(l)

)∣∣∣∣∣−δ (l)
i, j

}2

where l = 0, . . . ,2L (11)

A location of the sound source A(l) = (a(l),b(l)) is found
accordingly. The mean µ ′ and covariance Σ′ of the sound
source location can be recovered through the standard un-
scented transform procedure (Eqn. 4). Fig. 5 shows a real
experimental result of the proposed PSSL algorithm using
three microphones. The microphone is pre-calibrated using
PSFS. The result demonstrates that PSSL provides a proper
sound sound location estimate. The experiment details will
be described in the next section.

V. EXPERIMENTAL RESULTS

In this section, the proposed PSFS and PSSL algorithms
are evaluated through experiments using real speeches col-
lected from a person. Fig. 6 shows the experiment setup in
which a 8 channel A/D board is used to collect sound source
data and six low-cost, off-the-shell microphones are mounted
on the NTU-PAL2 robot. A SICK S200 laser scanner is used
for collecting ground truth. Two types of experiments were
conducted: one is to calibrate the microphone array using
the proposed PSFS algorithm and the other is to localize
the sound source with the calibrated microphone array using
the proposed PSSL algorithm. We further demonstrate PSSL
with a moving microphone array.

A. Time Delay Estimation

In each experiment, 10 seconds of speech data at different
locations were collected from six microphones. All sound
source signals were sampled at 44.1 kHz. The time delay

(a) The NTU-PAL2 robot, a person and a SICK S200 laser
scanner.

mic1

mic2

mic3

mic4

(b) The microphone positions.

mic1

mic2

mic3
mic6

mic5

(c) The microphone positions.

Fig. 6. The experiment setup.
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from two microphones
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Fig. 7. The example of the TDOA estimation.

of arrival (TDOA) estimation was performed using 1024
samples and 512 samples was shifted at the next frame.
The generalized cross-correlation approach [11] is utilized
to estimate time delays between microphones. As there
are silent segments in these speeches, the TDOA estimates
may be unstable. The peak of the histogram of the TDOA
estimates of 10s speech was chosen as the input of PSFS or
PSSL. Fig. 7 illustrates the approach to estimate time delay
between microphones.

B. PSFS Results

The PSFS experiments were conducted in two different
environments in terms of environment size. The first ex-



−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

X(meter)

Y
(m

et
er

)

a
1

a
2

a
3 a

4

a
5

a
6

(a) The sound source estimates

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.4

−0.3

−0.2

−0.1

0

0.1

X(meter)

Y
(m

et
er

)

m
1

m
2

m
3

m
4

m
5

m
6

(b) The microphone structure estimates

Fig. 8. The near field situation. The result of the PSFS experiment was
performed in a seminar room. The blue circles show the ground truth of the
microphone locations and the blue squares show the true locations of the
sound sources.

periment was performed in a seminar room for the near
field condition. The room is of the size about 6m×6m. The
second experiment was performed in an atrium for the far
field condition. The atrium is of the size about 16m×18m.
The laser scanner was used to detect the speaker’s location
for ground truthing.

1) The Near Field Condition: The experiment was con-
ducted in the seminar room and the sound sources were away
from the microphones about 2-3 meters. Six speeches were
collected at different locations. Fig. 8 shows the experimental
results of PSFS with 6 sound sources. The average angular
error is 0.35 degree. The average microphone location error
is 0.0081 m. The average sound source location error is 0.75
m.

2) The Far Field Condition: The experiment was con-
ducted in the atrium and the sound sources were away
from the microphones about 6-8 meters. Six speeches were
collected at different locations. Fig. 9 shows the experimental
results of PSFS with 6 sound sources. The average angular
error is 2.0245 degree. The average microphone location
error is 0.0041 m. The average sound source location error
is 7.0773 m.
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Fig. 9. The far-field situation. The results of the PSFS experiment
performed in the atrium. The blue circles show the ground truth of the
microphone locations and the blue squares show the ground truth of the
sound sources.

C. PSSL Results

With the PSFS results, two experiments of PSSL were
conducted. One is to localize the sound source using the
static robot with more measurements. Fig. 10 shows the
PSSL results in a series of measurement updates. It is shown
that the estimates are more accurate and certain with more
measurement updates.

The other experiment is to localize the sound source using
the moving robot. Fig. 11 shows that the PSSL results can
be greatly improved. The robot movement was estimated by
scan matching using laser scanner data. As odometry can also
provide good robot movement estimates locally, the similar
performance can be achieved using inexpensive odometry.

VI. CONCLUSION

Microphone arrays are widely used for auditory percep-
tion. However, microphone array calibration could be tedious
in practice, and other devices or means are required. The
existing SFS framework provides a nice approach to simul-
taneously calibrate microphones and sound sources without
using any other devices. Unfortunately, SFS does not take
time delay estimate uncertainty into account. In this paper,
we proposed the PSFS approach using the unscented trans-
form to deal with this issue. The uncertainty estimates of the
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Fig. 10. The PSSL results with a series of measurement updates. Blue ellipse shows the estimate uncertainty (2σ ) of the PSSL result. Red ellipse shows
the estimate uncertainty (2σ ) of the PSSL result after the measurement update.
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Fig. 11. The PSSL result with a moving robot. Green circle shows the true location of the sound source. Blue ellipse shows the estimate uncertainty (2σ
) of the PSSL result. Red ellipse shows the estimate uncertainty (2σ ) of the PSSL result after the measurement update.

PSFS results are also available in our framework. We have
shown that the estimates of sound sources are more uncertain
than microphones in both SFS and PSFS. Accordingly, we
proposed the PSSL approach to improve the accuracy of
SSL with more measurements. We also demonstrated that the
accuracy of PSSL can be greatly improved with a moving
microphone array/robot. The simulation and experimental
results verify the proposed PSFS and PSSL algorithms.

As SFS could converge to an incorrect result under
measurement uncertainty, PSFS may provide an incorrect
estimate as well. Detecting SFS failures by analyzing time
delay estimates between microphones could be a feasible
approach to deal with this issues. In addition, applying
particle filters to PSFS and PSSL should be of our interest.
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