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Abstract—To improve safe driving and prevent traffic injuries 
caused by human factors such as speeding, fatigue and 
distraction, techniques to understand the surroundings of the 
vehicle are critical. We believe that being able to detect and track 
every stationary object and every moving object, to reason about 
the dynamic traffic scene, to detect and predict every critical 
situation, and to warn and assist drivers in advance, is essential 
to prevent these kinds of accidents. As an initial step towards 
understanding whole scenario around a vehicle, in this paper we 
have made an attempt to address the issues related to roadway 
environment monitoring by only utilizing laser measurement 
systems (LMS) as a perception sensor. Extensive experiments 
were carried out to analyze the robustness of the proposed 
methodologies in real campus and city environments.  The results 
are appealing and robust to various traffic and road scenarios. 
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I. INTRODUCTION 
Road safety is a major concern for today’s automotive 
industry. The endeavors in solving this problem include a 
complete understanding and monitoring of whole traffic scene 
around a vehicle, which is a safety cushion for safe driving. 
The interested traffic scenes include, but not limited to road 
boundary and other visual traffic sign detection, moving and 
stationary obstacle detection, pedestrians and other vehicle 
monitoring and vehicle localization.  
 
The most extensively favored, researched, tested, and 
evaluated automotive perception sensor is the camera. Being a 
passive non-invasive sensor, camera has the advantages of 
high information content, lower costs, lower operating power 
and absence of a sweep time. However, ill-illumination due to 
night time, bad weather, over illumination due to sun’s glare, 
head lights of other passing by vehicles, and poor depth 
estimations make the usage of camera based systems less 
effective. On the other hand, laser based measurements, do not 
degrade with such illumination associated problems and have 
high quality range bearing measurements, which are important  
in safe driving.  
 
Laser measurement systems (LMS) have been gaining 
popularity in robotics community in the past decade. The 
application areas range from, obstacle detection [1], 
navigation [2], localization [3], map building [4] and 
simultaneous localization and map building (SLAM) [5]. 
There is also literature on the utilization of LMS for 

automotive applications ranging from, vehicle detection [6], 
road boundary detection [7], SLAM [8] and moving object 
tracking [9]. In all applications, the LMS stands as a high 
reliable sensor, which motivates us for further exploitation.  
 
In Section II, a road boundary detection and tracking 
methodology is described. Section III provides the extensive 
work on simultaneous localization and mapping with detection 
and tracking of moving objects. Section IV summarizes the 
paper indicating future directions.  
 

II. ROAD BOUNDARY DETECTION AND TRACKING 
 
Road boundary detection and tracking is an important aspect 
in safe driving as it can be used to identify drivable and non-
drivable areas and subsequently generate road departure 
warnings. There is an extensive amount of literature on 
camera based road boundary detection methods using visual 
features [10-16]. All those camera based systems suffer the 
camera specific problems due to illumination problems. One 
way to overcome this is to use another sensor modality (and 
may fuse with camera based observations). In this section, an 
alternate way of extracting road boundaries using LMS sensor 
is described. One way of detecting road boundaries using 
LMS is to analyze the range/bearing data corresponding to the 
road surface as in [17]. The performance can be adversely 
affected by road camber and spurious data due to the presence 
of water puddles. Another way of extracting road boundaries 
are to use features alongside the road, such as reflective posts 
[18] and guard rails and posts [19]. Disadvantages can be the 
non-existence of such regular features in most road scenarios. 
These problems can be overcome by extracting vertical curb 
edges defining the road boundaries.  
 

A. Road boundary detection 
 
Especially in urban environments, road boundaries are defined 
by curbs. Detection of these vertical curb surfaces is feasible 
with a front mount, tilted down LMS. Therefore, in this 
application the LMS was mounted in front of the vehicle, with 
a small tilt angle, which allows the laser beam to intersect the 
pavement, curb and road surfaces at 10-15m ahead. Since the 
LMS scans in a plane, its intersection with other planar 
surfaces such as vertical curb surfaces give rise to straight 
lines (see Fig.1. (a)). In the plot, data in between x = -3m and 
x = 5m correspond to the road surface and curbs. It is to be 
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noted that there is a bank on the left hand side of the road and 
scatter of data on the right hand side are due to trees, poles 
and other man-made structures. Ideally the data corresponding 
to the road surface should be a single straight line, however 
due to the cylindrical nature of the road surface, the data 
forms a “V” shape. The LMS data belonging to straight lines 
can be segmented and line parameters (mid point of the line 
segment in Cartesian coordinates and the orientation of the 
line with respect to the x- axis: { }, ,x y φ ) can be extracted 
using a Kalman filter based approach [7] (see Fig. 1). Then, 
these lines can be fed to a bank of filters [7] to detect the line 
segments corresponding to the vertical surfaces of the curbs 
(see Fig. 1(b)). 
 

-5 0 5 10 15 20
0

5

10

15

20

 ( )x m

 ( )y m

 
(a) Crosses: laser data, circles: detected discontinuity points for data 
segmentation 
 

 
 
(b) Line segments corresponding to vertical curb surfaces 
 
Fig.1.  Curb detection using LMS data 
 

B. Road boundary tracking 
 
Now, the road boundaries can be perceived as trajectories of 
line segments evolved with time, which can be observed by 
the LMS on the moving vehicle. Tracking of these line 
segments (vertical surface of the curbs) is nontrivial due to the 
maneuvering nature and the presence of clutter due to various 
structures. Therefore, an adaptive state estimation technique 
using a multiple model approach is proposed.  
 
   1) Track formation and termination: The initial tracks 
corresponding to the curbs can be formed using the detected 
line segments in the above section. Although, these initial 
tracks are sufficient for various road scenarios, there can be a 
little possibility that those are due to some other structures, but 

not curbs. Therefore, these initial tracks are used to form 
tentative tracks and ideas from the integrated probabilistic 
data association (IPDA) [23] with sequential probability ratio 
test (SPRT) [24] are used for track confirmation and 
termination. In track confirmation, the initial tracks are 
considered tentative until the log likelihood ratio (LLR) is 
higher than a predefined threshold. On the other hand, when 
the LLR is below a predefined threshold the track is 
terminated.   
 
   2) Track maintenance: The Interacting Multiple Model 
(IMM) is capable of tracking highly maneuvering targets in 
clutter [25]. A primitive approach in handling clutter is to use 
the global nearest neighbor data association, which merely 
seeks the single most likely hypothesis and use Interacting 
Multiple Model Global Nearest Neighbor Filter (IMMGNNF). 
However, the performance of a tracking filter with cluttered 
data can be improved by using all-neighbor data association 
methods rather than using a single most likely hypothesis as in 
GNN. One way of incorporating all neighbors is to use 
probabilistically weighted all neighbors as in Probabilistic 
Data Association (PDA). Therefore Interacting Multiple 
Model Probabilistic Data Association Filter (IMMPDAF) 
algorithm [24,26] based method is used for track maintenance.  
 
The robustness of the IMMPDAF algorithm for curb tracking 
was evaluated experimentally using a car-like vehicle [7]. The 
vehicle was driven at a speed of 4ms-1 in a test site, which has 
straight road segments, bend, right road branching and a x-
intersection. The test site is hilly consisting of more than 10o 
slopes. Fig. 2 shows the curb tracking results using the 
IMMPDAF in various road scenarios including straight road 
segments, bend, right road branching and x-intersection.  
 
Fig. 3 (a) shows consecutive Laser data corresponding to the 
window, W1, in Fig. 2 (a), which is a straight road segment. 
Fig. 3 (b) shows the laser data corresponding to the window, 
W2, of Fig. 2 (a). It is a right turn. Window, W3, in Fig. 2 (a) 
corresponds to a right road branching. The laser data refers to 
that segment of the road is as shown in Fig. 3 (c). It is to be 
noted the loss of laser data on the right hand side of the road. 
That is because of the unavailability of a curb on the right 
hand side of the road and also because of the downward 
inclination of the branched road. In this portion of the road, 
the right hand side track is terminated (see Fig. 2) due low 
LLR. With the track termination, the IMMPDAF simply 
predicts until it finds a new observation. Once it finds an 
observation, it goes through a series of filters [7] namely, 
orientation filter, neighborhood filter and road width filter 
before a tentative track is initiated. Then sequential probability 
ratio test is carried out for track confirmation. Fig. 3 (d) shows 
the laser data referring to the window, W4, in Fig. 2 (a). It is 
corresponding to an x- intersection where there are no curbs 
present on both sides of the road. As seen from Fig. 2, both 
tracks were being deleted during the x-intersection and both 
were reinitiated after the x-intersection showing the 
robustness to target loss and reappearing. 
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(b) Orientation tracking 
Fig. 2 Experimental curb tracking results using IMMPDAF  
 

 
 

(a) Laser data corresponding to W1 of Fig. 2 (a) 

 
 

(b) Laser data corresponding to W2 in Fig. 2 (a) 

 
 

(c) Laser data corresponding to W3 in Fig. 2 (a) 

 
(d) Laser data corresponding to W4 in Fig. 2 (a) 

Fig. 3. Laser data corresponding to windows, W1, W2, W3 and W4. 
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III. SIMULTANEOUS LOCALIZATION AND MAPPING 
WITH DETECTION AND TRACKING OF MOVING 

OBJECTS 
 
In this section, we explain Simultaneous Localization and 
Mapping (SLAM) with Detection and Tracking of Moving 
Objects (DATMO) intuitively and describe the practical 
algorithms for accomplishing SLAM with DATMO from a 
ground vehicle at high speeds in crowded urban areas using 
laser scanners and odometry.   
 
In order to detect and track moving objects by using sensors 
mounted on a moving ground vehicle at high speeds, a precise 
localization system is essential. It is known that GPS and 
DGPS often fail in urban areas because of urban canyon 
effects, and good inertial measurement systems (IMS) are very 
expensive. If we can have a stationary object map in advance, 
the map-based localization techniques can be used to increase 
the accuracy of the pose estimate. Unfortunately, it is difficult 
to build a usable stationary object map because of temporary 
stationary objects such as parked cars.  Stationary object maps 
of the same scene built at different times could still be 
different, which means that we still have to do online map 
building to update the current stationary object map. 
 
SLAM allows robots to operate in an unknown environment 
and then incrementally build a map of this environment and 
concurrently use this map to localize robots themselves. Over 
the last decade, the SLAM problem has attracted immense 
attention in the mobile robotics literature, and SLAM 
techniques are at the core of many successful robot systems. 
However, we have shown that SLAM can perform badly in 
crowded urban environments because of the static 
environment assumption [8]. Moving objects have to be 
detected and filtered out. 
 
DATMO problem has been extensively studied for several 
decades. Even with precise localization, it is not easy to solve 
the DATMO problem in crowded urban environments because 
of a wide variety of targets [9].  
 
When cameras are used to detect moving objects, appearance-
based approaches are widely used and moving objects can be 
detected no matter whether they are moving or not. If laser 
scanners are used, feature-based approaches are usually the 
preferred solutions. Both appearance-based and feature-based 
methods rely on prior knowledge of the targets. In urban 
areas, there are many kinds of moving objects such as 
pedestrians, animals, wheelchairs, bicycles, motorcycles, cars, 
buses, trucks and trailers. Velocities range from under 5 mph 
(such as a pedestrian's movement) to 50 mph. When using 
laser scanners, the features of moving objects can change 
significantly from scan to scan. As a result, it is very difficult 
to define features or appearances for detecting specific objects 
using laser scanners. 
 

Both SLAM and DATMO have been studied in isolation. 
However, when driving in crowded urban environments 
composed of stationary and moving objects, neither of them is 
sufficient. The simultaneous localization, mapping and 
moving object tracking problem aims to tackle the SLAM 
problem and the DATMO problem at the same time. Because 
SLAM provides more accurate pose estimates and a 
surrounding map, a wide variety of moving objects are 
detected using the surrounding map without using any 
predefined features or appearances, and tracking is performed 
reliably with accurate robot pose estimates. SLAM can be 
more accurate because moving objects are filtered out of the 
SLAM process thanks to the moving object location 
prediction from DATMO. SLAM and DATMO are mutually 
beneficial, as shown in Fig.  4. Integrating SLAM with 
DATMO would satisfy both the safety and navigation 
demands of safe driving. It would provide a better estimate of 
the robot's location and information of the dynamic 
environments, which are critical to driving assistance and 
autonomous driving. 
 

Simultaneous Localization and Mapping 
(SLAM)

• Maps
• Accurate pose

Detection and Tracking of Moving Objects 
(DATMO)

• MO detection
• MO future location 

prediction

 
 

Fig.  4: SLAM with DATMO 
 
Although performing SLAM and DATMO at the same time is 
superior to doing just one or the other, the integrated approach 
inherits the difficulties and issues from both the SLAM 
problem and the DATMO problem. In the following 
subsections, we will describe the implementation of SLAM 
with DATMO from a ground vehicle at high speeds in 
crowded urban areas using laser scanners and odometry. The 
experimental data were collected with the Navlab11 vehicle. 
One SICK LMS221 and two SICK LMS291 laser scanners 
were mounted in various positions on Navlab11, performing 
horizontal or vertical profiling. The range data were collected 
at 37.5 Hz with 0.5 degree resolution. The maximum 
measurement range of the scanners is 81m.  
 
A. Detection and tracking of moving objects in crowded 
urban areas 
 
In order to accomplish moving object tracking in crowded 
urban areas, three key issues have to be solved: detection, data 
association, and moving object motion modelling. 
  
   1) Detection: Recall that detection of ground moving objects 
using feature- or appearance-based approaches is infeasible 
because of the wide variety of targets in urban areas. In [8], 
the consistency-based detection and the moving object map 
based detection was proposed for robustly detecting moving 
objects using laser scanners. 
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   2) Cluttered Environments: In the tracking literature, there 
are a number of techniques for solving data association in the 
cluttered such as multiple hypothesis tracking (MHT) 
approaches and joint probabilistic data association (JPDA) 
approaches. In addition to the MHT approach, we use 
geometric information of moving objects to aid data 
association in cluttered scenes because of the rich geometric 
information contained in laser scanner measurements. Fig.  5 
shows a result of multiple vehicle detection and data 
association. Five different cars were detected and associated 
over 11 consecutive scans. This result demonstrates that our 
detection and data association algorithms are reliable even 
with moving objects 60 meters away. Additionally, the visual 
image from the tri-camera system illustrates the difficulties of 
detection using cameras. 
 

 
 

Fig.  5: Multiple vehicle detection and data association. Rectangles denote the 
detected moving objects. The segment numbers of the moving objects are 

shown. 
 
Fig.  6 shows a result of pedestrian detection and data 
association where object 19, 40, and 43 are detected 
pedestrians, object 17 is a detected car and Object 21 is a false 
detection. Without using features or appearances, our 
algorithms detect moving objects based on motion. Fig.  7 
shows a result of bus detection and data association. 
 

 
 

Fig.  6: Pedestrian detection and data association. 
 

 

 
 

Fig.  7: Bus detection and data association. 
 
   3) Motion Modeling: In SLAM, we can use odometry and 
the identified robot motion model to predict the future location 
of the robot, so that the SLAM problem is an inference 
problem. However, in DATMO neither a priori knowledge of 
moving objects' motion models nor odometry measurements 
about moving objects is available. In practice, motion modes 
of moving objects are often partially unknown and time-
varying. Therefore, the motion modes of the moving object 
tracking have to be learned online. In other words, moving 
object tracking is a learning problem. 
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In the tracking literature, multiple model based approaches 
have been proposed to solve the motion modeling problem. 
Compared to air and marine target tracking, ground moving 
object tracking is more complex because of more degrees of 
freedom (e.g., move-stop-move maneuvers). In [21], we 
present a stationary motion model and a move-stop hypothesis 
tracking algorithm to tackle this issue. 
 
B. City-sized Simultaneous Localization and Mapping   
 
Over the last decade, the SLAM problem has attracted 
immense attention in the mobile robotics literature. SLAM 
involves simultaneously estimating locations of newly 
perceived landmarks and the location of the robot itself while 
incrementally building a map. The web sites of the 2002 and 
2004 SLAM summer schools provide a comprehensive 
coverage of the key topics and state of the art in SLAM. In 
this section, we address two key issues to accomplish city-
sized SLAM: representation and revisiting. 
 
   1) Representation: Even with an advanced algorithm to deal 
with computational complexity, most SLAM applications are 
still limited to indoor environments or specific environments 
and conditions because of significant issues in defining 
environment representation and identifying an appropriate 
methodology for fusing data in this representation. For 
instance, feature-based approaches have an elegant solution by 
using a Kalman filter or an information filter, but it is difficult 
to extract features robustly and correctly in outdoor 
environments. Grid-based approaches do not need to extract 
features, but they do not provide any direct means to estimate 
and propagate uncertainty and they do not scale well in very 
large environments. In [22], we addressed the representation 
related issues in detail and describe a hierarchical object based 
representation for overcoming the difficulties of the city-sized 
SLAM problem. 

 
   2) Revisiting: Given correct revisiting or loop detection, 
SLAM can build a globally consistent map regardless of the 
size of the map. In order to obtain correct data association in 
the large, most large scale mapping systems using moving 
platforms are equipped with expensive state estimation 
systems to assure the accuracy of the state estimation. In 
addition, independent position information from GPS or aerial 
photos are used to provide global constraints. Without these 
aids, the accumulated error of the pose estimate and 
unmodelled uncertainty in the real world increase the 
difficulty of loop detection. For dealing with this issue without 
access to independent position information, our algorithm 
based on covariance increasing, information exploiting and 
ambiguity modelling is presented in [21]. Fig.  8 shows a raw 
dataset collected from the Navlab11 test-bed. Fig.  9 shows 
the results from our SLAM with DATMO algorithms, which 
demonstrate that it is indeed feasible to accomplish city-sized 
SLAM. 
 
 
 
 

 
 

Fig.  8: Raw data from the Navlab11 testbed. This dataset contains ~36,500 
scans and the travel distance is ~5 km. 

 
 

 
 

Fig.  9: Results of SLAM with DATMO. A globally consist map is generated 
and measurements associated with moving objects are filtered out. 

 
In order to build 3-D (2.5-D) maps, we mounted another 
scanner on the top of the Navlab11 vehicle to perform vertical 
profiling. Accordingly, high quality 3D models can be 
produced in a minute. Fig.  10 and Fig.  11 show the 3-D 
models of different objects such as buildings and parked cars. 
These precise 3-D models can be very useful to applications 
of civil engineering, architecture, landscape architecture, city 
planning, etc. 
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Fig.  10: 3-D models of buildings. 
 

 
 

Fig.  11: 3-D models of parked cars. 
 
 
C. 2-D Environment Assumption in 3-D Environments    
 
Although the formulations derived in [20] are not restricted to 
two-dimensional applications, it is more practical and easier to 
solve the problem in real-time by assuming that the ground is 
flat. But can algorithms based on the 2-D environment 
assumption survive in 3-D environments? For most indoor 
applications, this assumption is fair. But for applications in 
urban, suburban or highway environments, this assumption is 
not always valid. False measurements due to this assumption 
are often observed in our experiments. One is from roll and 
pitch motions of the robot, which are unavoidable due to turns 
at high speeds or sudden stops or starts. These motions may 
cause false measurements such as wrong scan data from the 
ground instead of other objects. Additionally, since the vehicle 
moves in 3-D environments, uphill environments may cause 
the laser beam to hit the ground as well (see Fig.  9). 
 

 
 

Fig.  12: False measurement from an uphill environment. 

 
In order to accomplish 2-D SLAM with DATMO in 3-D 
environments, it is critical to detect and filter out these false 
measurements. Our algorithms can detect these false 
measurements implicitly without using other pitch and roll 
measurement. First, the false measurements are detected and 
initialized as new moving objects by our moving object 
detector. After data associating and tracking are applied to 
these measurements, the shape and motion inconsistency will 
tell us quickly that these are false measurements. Also these 
false measurements will disappear immediately once the 
motion of the vehicle is back to normal. The results using data 
from Navlab11 show that our 2-D algorithms can survive in 
urban and suburban environments. However, these big and 
fast moving false alarms may confuse the warning system and 
cause a sudden overwhelming fear before these false alarm are 
filtered out by the SLAM with DATMO or SLAM with GO 
processes. Using 3-D motion and/or 3-D perception sensors to 
compensate these effects should be necessary. 
 
 

IV. DISCUSSION AND FUTURE WORK 
 
In this paper we have detailed methodologies for 
understanding the environment using only LMS as a 
perception sensor. The LMS was used for road boundary 
extraction and temporal tracking. The experimental results 
showed it is robust to various road scenarios. The LMS based 
SLAM and DATMO showed amazing and convincing results 
in a city environment. A major problem of SLAM due to the 
presence of moving objects was successfully overcome by 
utilizing the information from DATMO. Most importantly 
SLAM and DATMO were treated in a unified manner rather 
than separate treatments as in the literature. Issues related to 
experimenting in 3-dimensional environments with 2- 
dimensional assumptions were also addressed.  
 
Up to now we have discussed about favorable properties of 
LMS as an automotive sensor, however it has failure modes 
and limitations too. For example, LMS may not be capable of 
detecting glass or black objects. Further, LMSs are not 
sufficient to fully understand a complex urban scene. For 
instance, lane markings, traffic signs and lights can not be 
recognized using an LMS. Therefore, it is suggested to utilize 
heterogeneous sensor fusion methodologies for further 
improving the robustness.   
 
In the map building, we have shown our ability to build 
precise 2.5 dimensional models of several street blocks. 
However, the real world is indeed four-dimensional, three 
dimensions for space and one dimension for time. Therefore, 
it is suggested to build 4 dimensional maps for better 
understanding the environment.  
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