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Abstract— Based on the framework of simultaneous local-
ization and mapping (SLAM), SLAM with generalized objects
(GO) has an additional structure to allow motion mode learning
of generalized objects, and calculates a joint posterior over
the robot, stationary objects and moving objects. While the
feasibility of monocular SLAM has been demonstrated and
undelayed initialization has been achieved using the inverse
depth parametrization, it is still challenging to achieve unde-
layed initialization in monocular SLAM with GO because of
the delay decision of static and moving object classification. In
this paper, we propose a simple yet effective static and moving
object classification method using the velocity estimates directly
from SLAM with GO. Compared to the existing approach in
which the observations of a new/unclassified feature can not
be used in state estimation, the proposed approach makes the
uses of all observations without any delay to estimate the whole
state vector of SLAM with GO. Both Monte Carlo simulations
and real experimental results demonstrate the accuracy of
the proposed classification algorithm and the estimates of
monocular SLAM with GO.

I. INTRODUCTION

The feasibility of monocular simultaneous localization and
mapping (SLAM) has been demonstrated [1], [2] in which
the 6 degree-of-freedom (DOF) camera pose and 3 DOF
feature locations are simultaneously estimated using a single
camera following the extended Kalman filter (EKF) frame-
work. An inverse depth parametrization [3], [4] was proposed
to accomplish undelayed initialization in monocular SLAM.
It is also shown that the inverse depth parametrization has
a better Gaussian property for EKF and has a capability for
estimating features at a potentially infinite distance. However,
SLAM could fail in dynamic environments if moving entities
are not dealt with properly [5].

A few attempts have been made to solve the monocular or
visual SLAM problems in dynamic environments. Sola [6]
mentioned the observability issue of bearings-only tracking
and pointed out the observability issues of monocular SLAM
in dynamic environments. Accordingly, two cameras instead
of single one were used to solve the monocular SLAM
and moving object tracking problem with some heuristics
for detecting moving objects. In [7], moving object effects
are removed given that the geometry of known 3D moving
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objects are available in which manual operations such as
deleting features on non-static objects are needed. Migliore et
al. [8] demonstrated a monocular simultaneous localization,
mapping and moving object tracking (SLAMMOT) system
where a SLAM filter and a moving object tracking filter are
used separately. The stationary and moving object classifica-
tion is based on the uncertain projective geometry [9].

In our ongoing work following the SLAM with GO
framework [5], an augmented state SLAM with GO approach
using the existing inverse depth parametrization was pro-
posed to solve monocular SLAM and bearings-only tracking
concurrently. A stereo-based SLAM with GO system has
been demonstrated [10] in which the observability issue is
solved straightforwardly. In these monocular- and stereo-
based approaches, stationary or moving classification of a
new detected feature is accomplished by comparing two local
monocular SLAM results: one is local monocular SLAM
without adding this new feature and the other is local
monocular SLAM under the assumption that this new feature
is stationary. The difference of these two hypotheses is
temporally integrated using a binary Bayes filter. A threshold
is determined for stationary or moving object classification
after a fixed number of updates. Although the modified
inverse depth parametrization is used, initialization of these
monocular and stereo-based systems is still delayed as the
observations of new features during the classification stage
are not used in the estimation.

In this paper, we propose a simple yet effective static
and moving object classification method using the velocity
estimates directly from SLAM with GO. A new feature is
classified as stationary or moving using two thresholds which
are determined intuitively. The number of the time steps
for classification is not fixed in the proposed classification
method which avoids misclassification due to insufficient
observation updates and reduces unnecessary computational
cost in the cases that new features can be easily classified.
The proposed approach makes the uses of all observations
without any delay to estimate the whole state vector of
SLAM with GO. Both Monte Carlo simulations and real
experimental results demonstrate the accuracy of the pro-
posed classification algorithm and the estimates of monocular
SLAM with GO.

II. THEORETICAL FOUNDATION

In this section, the theoretical foundation of monocular
SLAM with GO is described.



A. Representation in Monocular SLAM with GO

Following the EKF-based SLAM framework, a state vector
χ in SLAM with GO consists of the pose and velocity of
the camera/robot and locations and velocities of generalized
objects.
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where xk composes of the camera position rW in the world
coordinate system, the quaternion defining the camera orien-
tation qW in the world coordinate system, and the camera
velocity vW in the world coordinate system and the camera
angular velocity ωC in the camera coordinate system.
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oik denotes the i-th generalized object which can be stationary
or moving in the framework of SLAM with GO. The existing
parametrization for only stationary objects is insufficient
to represent generalized objects. In [10], the inverse depth
parametrization is added with 3-axis speeds in the world
coordinate system to represent generalized objects. Each
generalized object is coded with the 9-dimension state vector.
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where ok is the 3D location of a generalized object presented
using the inverse depth parametrization.

(
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)
is the

camera location when this object is first observed.

vk =
(
vxk vyk vzk

)>
(5)

where vk denotes the 3-axis velocities of the generalized
object in the world coordinate system.

The 3D location of a generalized object w.r.t. to the world
coordinate system can be computed as:

loc(oik) =

xkyk
zk

+
1
ρk
× G(θk, φk) (6)

where the direction vector G(θ, φ) defines the direction of
the ray and ρ is the inverse depth between the feature and
camera optical center.

B. EKF-based SLAM with GO

In the prediction stage of the EKF algorithm, the constant
velocity and constant angular velocity motion model [3] is
applied for predicting the camera pose at the next time step
as the camera is the only sensor used to accomplish SLAM
with GO in this work.

For generalized objects, the constant velocity model is
applied and the location of a generalized object at the next
frame can be calculated in a closed form:

oik+1 = loc(oik) + vik ·∆t (7)

= ri +
1
ρk
Gk + vik ·∆t

= ri +
1

ρk+1
Gk+1

where Gk and Gk+1 are the directional vectors.
In the observation update stage of EKF, generalized ob-

jects are transformed to the camera coordinate system and
then projected on the camera image plane. Let Rc

k be the
rotation matrix defined by the camera orientation qck. The
points are transformed to the camera coordinate by:
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The predicted measurements on the image plane are:
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where Proj is the project function, (u0, v0) is the camera
center in pixels, f is the focal length, dx and dy represent
the pixel size. The monocular SLAM with GO state vector
is updated by the EKF algorithm.

C. Undelayed Initialization

The location initialization of a new generalized object is
the same as the approach in [3]. To initialize the velocity
of a generalized object, v0 is set to be 0 in this work. The
covariance value of the velocity estimate σv is designed to
cover its 95% acceptance region [−|v|max, |v|max].

σv =
|v|max

2
(11)

|v|max is set to 3 m/sec in this work. A generalized
object is augmented to the state vector of SLAM with GO
straightforwardly and the new covariance of the SLAM with
GO state is updated accordingly.

By using the modified inverse depth parametrization, a
new generalized object is augmented to the state vector at the
first observed frame. Through this undelayed initialization,
the proposed monocular SLAM with GO system uses all
measurements to estimate both the camera pose and the
locations generalized objects.

D. Classification in SLAM with GO

In SLAM with GO, generalized objects are represented in-
stead of representing stationary and moving objects directly.
From a theoretical point of view, it could be unnecessary to
have a stationary and moving object classification module in



SLAM with GO. However, from a practical point of view,
stationary objects could further improve the accuracy and
convergence of the state estimates under the static object
model. After classification, generalized objects can be easily
simplified to stationary objects for reducing the size of the
state vector or can be maintained as moving objects using
the same parametrization of generalized objects. In addition,
stationary objects could contribute to loop detection more
than moving objects in most cases. Stationary and moving
object classification still plays a key role in SLAM with GO.

III. STATIONARY AND MOVING OBJECT CLASSIFICATION
USING VELOCITY ESTIMATES FROM MONOCULAR SLAM

WITH GO

Stationary and moving object classification from a moving
camera is a daunting task. In this section, the proposed clas-
sification approach using velocity estimates from monocular
SLAM with GO is described in detail.

A. Velocity Convergency

For using velocity estimates from SLAM with GO to clas-
sify stationary and moving objects, it should be demonstrated
that velocity estimates can be converged and are sufficient
to differentiate stationary and moving objects. A simulation
using the proposed monocular SLAM with GO is discussed
to show the feasibility of the proposed classification algo-
rithm. In this simulated scene, there were 40 static landmarks
and 2 moving landmarks. 39 static landmarks were added
to the state vector using the inverse depth parametrization
as known features. One static landmark (Target 1) and two
moving landmarks (Target 2 and Target 3) were initialized
as generalized objects at the first observed frame using the
modified inverse depth parametrization and were added to
the state vector. The camera trajectory was designed as a
helix. Fig. 1 shows the velocity estimates of Targets 1, 2
and 3 after 150 EKF updates.

In this simulation, the estimates using the modified inverse
depth parametrization are converged to the true values in
terms of both locations and velocities whether the target
is moving or stationary. The simulation result shows that
moving object classification using velocity estimates from
SLAM with GO should be feasible.

B. Thresholding Classification

As velocity estimates directly show the motion properties
of generalized objects, two simple score functions are defined
here for thresholding classification.

1) Score function for detecting static objects: Given the
3-dimension velocity distribution X = N (µ,Σ) of a gener-
alized object, the score function is defined as:

Cs(X) = fX(0) =
1

(2π)3/2|Σ|1/2e−
1
2 (0−µ)>Σ−1(0−µ)

(12)

where fX is the probability density function of Gaussian
distribution X . This score function calculates the proba-
bility density function value of the velocity distribution at

(a) Target 1 (a static object marked with green circle). The true velocity of
Target 1 is (0, 0, 0)

(b) Target 2 (a moving object marked with green circle). The true velocity of
Target 2 is (1, 0, 0)

(c) Target 3 (a moving object marked with green circle). The true velocity of
Target 3 is (0, 0, 0.5)

Fig. 1. Velocity convergency of 3 targets under an observable condition.
The estimates using the modified inverse depth parametrization are con-
verged to the true values.

(0, 0, 0)>. The score reveals the relative likelihood of the
velocity variable to occur at (0, 0, 0)>.

If a generalized object oik is static, its velocity vik is
expected to converge closed to (0, 0, 0)>. This score would
thus increases and exceeds a threshold ts.

2) Score function for detecting moving objects: Given
a 3-dimension velocity distribution X = N (µ,Σ) of a
generalized object, the score function is defined as:

Cm(X) = DX(0) = 2

√
(0− µ)>Σ−1(0− µ) (13)

where DX is the Mahalanobis distance function under dis-
tribution X . Mahalanobis distance is often used for data
association and outlier detection. For a moving feature oik,
its velocity vik is expected to converge away from (0, 0, 0)>.
The score would thus increases and exceeds threshold tm if
the generalized object is moving.

C. Classification States in SLAM with GO

There are three classification states in SLAM with GO:
unknown, stationary and moving. Each new feature is initial-
ized at the first observed frame using the modified inverse
depth parametrization and the classification state is set to
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(b) Unobservable scenario

Fig. 2. The simulation scenarios to evaluate the effects of different
thresholds on the classification results. Grey dots denote stationary objects
and black dots with lines denote moving objects and their trajectories.

unknown. In each of the following observed frames, the two
score functions are computed based on the estimated velocity
distribution for determining if the feature is stationary or
moving.

1) From Unknown to Stationary: If the score value Cs(X)
of a new feature exceeds the predetermined threshold ts at
a certain frame, this new feature is immediately classified as
stationary. The velocity distribution of this feature is adjusted
to satisfy the property of a static object in which the velocity
is set to (0, 0, 0)> and the corresponding covariance is also
set to 0. There will be no motion prediction at the prediction
stage to ensure the velocity of this object fixed at (0, 0, 0)>.

2) From Unknown to Moving: If the score value Cm(X)
of a new feature exceeds the predetermined threshold tm
at a certain frame, this feature is immediately classified as
moving. As the feature has been initialized with the modified
inverse depth parametrization and both the position and the
velocity are already being estimated, there is no need to
adjust the state distribution and the motion model.

D. Simulation Results

The proposed classification approach is first evaluated
using Monte Carlo simulations with the perfect ground truth
in this section. The effects of different thresholds and moving
object speeds on classification are shown and discussed.

1) Effect of Different Thresholds under Observable and
Unobservable Conditions: While the observability issues
of SLAM and bearings-only tracking are well understood,
SLAM with GO also inherits the observability issues of
SLAM and bearings-only tracking. In other words, velocity
estimates of generalized or moving objects may not be
converged in unobservable conditions. Two scenarios, one
is under an observable condition and the other is under an
unobservable condition, were designed as depicted in Fig.
2(a) and Fig. 2(b). In Fig. 2(a), the camera moved at a non-
constant speed on a circle to avoid unobservable situations.
In Fig. 2(b), the camera moved at a constant speed on four
connected lines to test the classification performance under
an observable situation. 300 static landmarks and 288 moving
landmarks with different speed were randomly located in a
3D cube with a width of 30 meters in each scenario. Each
scenario has 50 Monte Carlo simulations.

As there are three possible states (unknown, static and
moving), the wrongly classified error and the misclassified
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(b) Misclassified ratio in the unob-
servable scenario

Fig. 3. Effects of the different ts on the classification results. tm is fixed
at 3.5830.

error are accordingly defined:
Wrongly Classified Error: If a feature is classified as

a different type as it should be, this feature is wrongly
classified. For instance, a static feature is classified as moving
or a moving feature is classified as stationary.

Misclassified Error: If a feature is wrongly classified or
not be classified as either static or moving, this feature is
misclassified.

a) Effects of ts: Fig. 3(a) and Fig. 3(b) show the effects
of ts under an observable and an unobservable condition,
respectively. In both scenarios, the misclassified ratio of
stationary features increases when the threshold ts increases,
while the misclassified ratio of moving features decreases.

The misclassified ratio of moving features is decreasing
when ts is increasing under the observable situation. Mean-
while, the misclassified ratio of moving features is decreasing
when ts is increasing under the unobservable situation.

These results satisfy the expectation that a larger threshold
ts would result in less features classified as static. Thus,
when a larger threshold ts is chosen, the misclassified ratio
of static features would increase and misclassified ratio of
moving features would decrease. The trade-off between these
two misclassified ratios could be considered according to the
usage of the monocular SLAM with GO system.

Furthermore, the classification performance is better under
observable situations than under unobservable conditions by
comparing Fig. 3(a) and Fig.3(b). The observable situations
could be critical to achieve better classification performance
based on the proposed approach.

b) Effects of tm: Fig. 4(a) and Fig. 4(b) show the effects
of tm. In both scenarios, the misclassified ratio of static
features decreases when the threshold tm increases, while the
misclassified ratio of moving features increases. This finding
satisfies our expectation that a larger threshold tm would
result in less features classified as moving. Accordingly,
when a larger threshold tm is chosen, the misclassified ratio
of static features would decrease and misclassified ratio of
moving features would increase. However, it should be noted
that only a small portion of misclassified features are caused
by wrongly classification. This means that the proposed
classification algorithm does not provide incorrect results.
The situations should be more about insufficient data for
classification.
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Fig. 4. Effect of different tm on the classification results. ts is fixed at
1.6.
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Fig. 5. Effects of speed variation of moving objects on classification.

2) Effects of Speed Variation of Moving Objects: In this
simulation, the effects of speed variation of moving objects
are evaluated. Fig. 5(a) shows that the classification error
decreases when the speeds of moving objects increase under
the setting of ts = 1.6 and tm = 3.5830. Regarding
stationary objects, the error ratio is near 0 which means that
almost all stationary objects are correctly detected.

Fig. 5(b) shows the number of frames needed for classi-
fication. Recall that the number of frames for classification
is data-driven and not fixed in the proposed approach. The
result shows that the number of frames needed decreases
when the speeds of moving objects increase.

These two findings satisfy the expectation that moving
objects at higher speed can be detected within fewer frames
and the classification results are more accurate.

3) Convergency of our SLAM algorithm: The conver-
gency of the proposed monocular SLAM with GO algorithm
in the observable scenario is checked. The estimate errors of
the camera, static features and moving features of 50 Monte
Carlo simulation results are shown in Fig. 6. The errors of the
camera pose estimates increase when the robot is exploring
the environment from Frame 1 to Frame 450. The camera
starts to close loop from Frame 450 and the errors decrease
which is depicted in Fig. 6(a). Fig. 6(b) and Fig. 6(c) show
that the estimate errors of static features and moving features
decrease when the number of the frames increases.

IV. CLASSIFICATION FAILURE IN UNOBSERVABLE
SITUATIONS

In this section, we discuss the failures of the proposed
stationary and moving object classification in unobservable
situations.

 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ca
m

er
a 

es
tim

at
io

n 
er

ro
r 

[m
]

frame

estimation error of the camera

(a) The estimate errors of the camera pose. Exploring: Frame
1 to Frame 450), Revisiting: Frame 450 to Frame 600.

  6  12  18  24  30  36  42  48  54  60
0

2

4

6

8

10

12

st
at

ic
 o

bj
ec

t e
st

im
at

io
n 

er
ro

r 
[m

]

frame

estimation error of the static objects

(b) The estimate errors of the static
objects

  6  12  18  24  30  36  42  48  54  60
0

2

4

6

8

10

12

m
ov

in
g 

ob
je

ct
 e

st
im

at
io

n 
er

ro
r 

[m
]

frame

estimation error of the moving objects

(c) The estimate errors of the mov-
ing objects

Fig. 6. Convergency of the proposed SLAM with GO algorithm shown
with boxplot. The lower quartile, median, and upper quartile values of each
box shows the distribution of the estimate errors of all the objects in each
observed frame.

A. Unobservable Situations

As shown in the previous section, the proposed clas-
sification approach could be less reliable in unobservable
situations than in observable situations. A simulation was
designed to analyze the effects of unobservable situations.
The scenario here is the same as the scenario in Fig. 1 except
that the camera moves at a constant velocity. Fig. 7 shows
the velocity distribution of these 3 targets using the modified
inverse depth parametrization after 150 EKF steps.

The results show that the estimate uncertainties of these
targets could be too large to reliably determine if these targets
are static or moving. In addition, the observations of Target
1 are the same as Target 3 under this camera trajectory
even though Target 1 is static and Target 3 is moving. It
is impossible to correctly classify Target 1 and Target 3
using the observations from a camera moving at a constant
velocity. This means that we can find a corresponding
moving object whose observations are the same as a specific
stationary object in unobservable situations. Note that such
corresponding moving objects must moves parallelly to the
camera and at some specific speeds.

However, the velocity distribution of Target 2 reveals
another fact. The 95% confidence region of the velocity
estimate of Target 2 does not cover the origin point (0, 0, 0)>.
This means that Target 2 can be correctly classified as
moving using the proposed approach even in unobservable



(a) Target 1 (static object marked with green circle). The true velocity of Target
1 is (0, 0, 0)

(b) Target 2 (moving object marked with green circle). The true velocity of
Target 2 is (1, 0, 0)

(c) Target 3 (moving object marked with green circle). The true velocity of
Target 3 is (0, 0, 0.5)

Fig. 7. Velocity convergency of 3 targets in an unobservable condition.

situations. We argue that no static object would have the same
projection as the non-parallelly moving objects. Therefore,
it is feasible to determine thresholds to correctly classify
non-parallelly moving objects as moving under unobservable
situations.

V. EXPERIMENTAL RESULTS

Fig. 8 shows the robotic platform, NTU-PAL7, in which
a Point Grey Dragonfly2 wide-angle camera was used to
collect image data with 13 frames per second, and a SICK
LMS-100 laser scanner was used for ground truthing. The
field of view of the camera is 79.48 degree. The resolution of
the images is 640 × 480. The experiment was conducted in
the basement of our department. 1793 images were collected
for evaluating the overall performance of monocular SLAM
with GO such as loop closing, classification and tracking. In
this data set, there is a person moving around and appearing
3 times in front of the camera.

There are 107 static features and 12 moving features.
When the person appeared, 4 features on the person were
generated and initialized. Table I shows the performance of
the proposed classification algorithm. None of the feature is
wrongly classified. 107 static features in the environment are

Fig. 8. The NTU-PAL7 robot.

all classified correctly as static, and 12 moving features are
also classified correctly as moving.

classification state
static moving unknown

Static 107 0 0
Moving 0 12 0

TABLE I
TOTAL CLASSIFICATION RESULT OF REAL

EXPERIMENT

Fig. 9 shows some of the input images and corresponding
SLAM with GO results. At the beginning of the experiment,
the checkerboard with known sizes was used for estimating
the scale. It is demonstrated that the camera poses are prop-
erly estimated, the 3D feature-based map is constructed using
the proposed monocular SLAM with GO algorithm, and
moving features are correctly detected using the proposed
velocity estimate-based classification approach.

VI. CONCLUSION AND FUTURE WORK

We proposed a simple yet effective static and moving
object classification method using the velocity estimates
directly from monocular SLAM with GO. The promising
results of Monte Carlo simulations and real experiments
have demonstrated the feasibility of the proposed approach.
The modified inverse depth parametrization and the proposed
classification method achieves undelayed initialization in
monocular SLAM with GO. We also showed the interesting
issues of classification in unobservable situations.

The constant acceleration model and other more advanced
motion models should be applied for tracking moving objects
with high-degree motion patterns. Evaluating the tracking
performance of moving objects with more complicated mo-
tion pattern using SLAM with GO is of our interest. In
addition, solutions to move-stop-move maneuvers should be
developed.
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