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Abstract— Localization is one of the most essential capabili-
ties of autonomous robots. Cooperative localization has been
proved to be effective in multi-robot localization. However,
nearby moving objects could degrade the cooperative local-
ization performance. In this paper, we demonstrate that the
cooperative simultaneous localization and tracking approach is
superior in challenging scenarios. Localization and moving ob-
ject tracking are mutually beneficial. The proposed approach is
evaluated using humanoid robots in the RoboCup environment
in which only uncertain data from onboard cameras and odom-
etry are used. Ample experimental results with ground truthing
from laser scanners demonstrate the accuracy and feasibility of
the proposed vision-based cooperative simultaneous localization
and tracking algorithm.

I. INTRODUCTION

Localization is one of the most essential capabilities
of autonomous robots [2]. In the single robot localization
problem, the location of the robot is inferred based on
motion controls and measurements of relative information
between the robot and a given map. By properly modeling the
uncertainty of the motion commands and the measurements,
the robot pose can be estimated in a probabilistic manner
[10], [6]. In the multiple robot scenario, the state estimates
can be refined through the assistance of other robots. With
the ability to detect the teammates, the cooperative local-
ization algorithms improve the localization performance by
incorporating measurements of relative information among
teammate robots [5], [13], [8]. In the scenarios of tracking
using multiple robots, both localization and moving entities
should be accomplished [3], [14]. It would be critical for
autonomous robots to accomplish localization and tracking
in dynamic environments.

This work was motivated by the localization and tracking
challenges in the RoboCup Standard Platform League (SPL)
competitions as illustrated in Fig. 1. There are six robots
playing a 3-by-3 soccer game in the field which consists of
two goals in different colors and several white field lines. Fig.
2 illustrates the first challenging scenario in which only few
map features are observed by a robot near the field boundary.
Fig. 3 illustrates the other challenging scenario in which a
robot is asked to look at the ball for preparing a kick but not
to observe map features. In these two cases, the observations
are insufficient to perform accurate robot localization.
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(b) The result of the proposed approach.

Fig. 1. Cooperative simultaneous localization and tracking for the RoboCup
Standard Platform League competitions. In (b), the estimated poses and the
uncertainties of the teammate robots are shown in magenta ellipses and the
opponents in cyan. By fusing the relative measurements (red lines) among
the teammates and the opponents, states of all the robots are estimated
simultaneously in the proposed approach.

The state-of-the-art cooperative localization approaches
may improve localization performance in these two chal-
lenging scenarios. In this paper, we will demonstrate that the
proposed cooperative simultaneous localization and tracking
approach is superior to the cooperative localization ap-
proaches. In other words, moving object tracking does con-
tribute to localization. Based on the theoretical framework
of simultaneous localization, mapping and moving object
tracking [17], an Extended Kalman filter (EKF) is used to
accomplish the task in which the poses of the teammate
robots and all moving objects are augmented into one state
vector. The proposed approach can model the dynamics of
the teammate robots and the moving objects in one coherent
framework. Three types of measurements are aggregated: (1)
relative information between the teammate robots and the
map (robot-to-map), (2) relative information between two
teammate robots (robot-to-robot), and (3) relative informa-



Fig. 2. The Boundary Case: the robot indicated by the red rectangle detects
only one field line and two corners. The bottom images are a sequence of
images captured during a right to left head motion (in 2 seconds).

Fig. 3. The Ball Gazing Case: the robot indicated by the red rectangle
only detects the ball without any map feature. The bottom images are a
sequence of images captured during the task.

tion between teammate robots and moving objects (robot-to-
moving-object). All of the pairwise correlations between the
teammates and the moving objects are maintained.

The proposed approach is evaluated using the Aldebaran
Nao robots in a RoboCup Standard Platform League (SPL)
environment. Only onboard cameras and odometry of the
robots are used to perform the localization and tracking tasks.
Laser scanners are used to collect ground-truth data. The
experimental results will demonstrate the effectiveness of the
proposed approach in both localization and moving object
tracking. In particular, the proposed approach well performs
in the difficult cases in which observations are insufficient
for self-localization.

The rest of this paper is organized as follows. The next sec-
tion reviews related works. The front-end image processing
modules and their performance are described in Section III.
Section IV describes the proposed EKF-based cooperative
simultaneous localization and tracking approach. Section
V shows the experimental results, and the conclusions are
addressed in Section VI.

II. RELATED WORK

For improving self-localization, Fox et al. [5] proposed a
collaborative localization algorithm based on the histogram
filter and the particle filter (PF) to utilize the measurements
of relative information between team robots. Based on EKF,
Roumeliotis and Bekey [13] proposed augmenting poses of
team robots into one state vector and localize all robots
simultaneously. Howard et al. [8] formulated the multiple
robot localization problem as an optimization problem based
on the maximum likelihood criteria. These works extended

the localization problem from a single robot to multiple
robots.

In the multi-robot simultaneous localization and mapping
(SLAM) problem, the single robot SLAM problem is refor-
mulated in which the states of the team robots and the map
are estimated concurrently. A number of algorithms based on
different filtering techniques have been proposed to solve this
problem [9], [16], [4]. In [18], [1], the multi-robot SLAM
problem was treated as a map merging problem. However,
the environments are assumed to be static in these approaches
which could fail in dynamic environments. Given correct
moving object detection, the proposed cooperative localiza-
tion and tracking approach directly deals with the non-static
environment by explicitly considering the dynamics of robots
and moving objects.

Solving both localization and tracking has been proposed
in the literature. In [3], localization is first accomplished
using data from laser scanners, and then moving object
observations from different robots are shared in which the
poses of the robots are assumed to be accurate. Tracking
of moving objects is accomplished using multiple EKFs.
The correlation between robots and moving objects is not
maintained. In [14], localization and tracking are also solved
separately. In these works, the mutual benefits of localization
and tracking could be limited.

In [7], the relative information between a moving object
and a static landmark in one captured image is utilized to
track this moving object using a particle filter. Although this
approach can theoretically separate localization and tracking
as all measurements are related to the map directly, the
coexistence of the map features and the moving objects in
one image is needed. In [15], a moving object is used to
localize and calibrate a sensor network. However, the sensor
nodes are stationary.

III. FRONT-END IMAGE PROCESSING

Recall that three kinds of relative measurements are used
in this work. In this section, the front-end image processing
modules such as map feature, ball, and robot detection are
described as well as the accuracies and uncertainties of
the modules. Note that our modules were developed based
on the B-Human code release 2009 framework [12], from
which the low-level image processing functions such as color
segmentation, map feature detection, and ball detection are
used in this work.

A. Localization and Tracking in the 2D Space

Although the cameras on the Nao humanoid robots are
moving in 3D space, the localization and tracking problems
could be reasonably tackled in the 2D space in the RoboCup
fields. Given the lowest-center point of an object in an image
and the 3D pose of the camera, relative range and bearing of
the object in 2D are computed based on the assumption that
all the map features and the robots are on the same ground
plane.



B. Map Feature and Ball Detection

Map features including point features and line features
are extracted for robot self-localization. The goal posts, the
center circle, and the corners are three different types of point
features. The detection module returns range and bearing
measurements of point features. The range accuracy, the
angle accuracy, and the maximum sensing range of each kind
of features are shown in Table I. Note that the range accuracy
and the angle accuracy of the line features are compared in
the Hesse normal form. For localization, the center circle and
the goal posts are preferred as these features can be easily
identified and the measurements are relatively accurate.

TABLE I
STANDARD DEVIATION AND MAXIMUM SENSING RANGE OF MAP

FEATURES

Goal Center Circle Corner Line
σrange(cm) 33.68 18.75 42.45 96.56

σangle(degree) 11.92 2.49 18.88 41.99
max range(cm) 600 300 300 300

The performance of the ball detection is shown in Table
II. The standard deviation of the range increases as the
ball becomes farther. The recall rate (the number of the
true positives reported by the detection module divided by
the number of positives recognized by human) decreases
oppositely. The maximum sensing range of the ball detection
is about 400 centimeters. The precision is nearly 1 because
of the unique color and shape of the ball in the field.

TABLE II
STANDARD DEVIATION AND RECALL OF BALL DETECTION IN DIFFERENT

RANGES

75cm 225cm 375cm 450cm
σrange(cm) 13.09 20.96 32.56 -

σangle(degree) 4.31 2.94 3.17 -
recall 0.973 0.623 0.076 0.0

C. Nao Robot Detection

The Nao robot detection is the basis of the robot-to-robot
and robot-to-moving-object measurements. Our Nao robot
detection module works as follows: First, the parts above
the field border are removed as depicted in Fig. 4. Second,
based on the color segmentation module in [12], the pixels
sampled from non-line white segments are clustered. The
extracted clusters are classified as Nao robots if the following
three criterions are satisfied: (1) the number of segments in
the cluster should be larger than 3, (2) the width-to-height
ratio should be larger than 0.2, and (3) the highest point of
the cluster should be close enough to the border line within
10 pixels as the observed robot should intersect with the
field border in the camera view if both of the observing and
observed robots are standing in the field. Fig. 4 illustrates a
Nao robot detection example. The relative range and bearing
can be computed as mentioned in Subsection III-A.

Fig. 4. The robot detection results are plotted on the image as indicated
by cyan lines. Black dashed line indicates the field border and yellow dots
indicate pixels sampled from non-line white segments.

TABLE III
STANDARD DEVIATION OF ROBOT DETECTION IN DIFFERENT RANGES

100cm 150cm 200cm 250cm 300cm
σrange(cm) 27.32 31.77 37.91 41.92 65.82

σangle(degree) 7.95 7.13 6.80 7.28 8.17

The performance of the Nao robot detection module is
summarized in Table III and Fig. 5. The recall rate is higher
when the target is in the front view than it is in the side
view or the back view. The samples of the observations from
different views are shown in Fig. 6. In average, the recall rate
is above 0.6 within 2 meters and it decreases as the target gets
farther. The range accuracy is around 30 centimeters when
the target is nearer than 2 meters but grows to around 60
centimeters as the target gets farther. The bearing accuracy
is around 7.5 degree. The overall precision is 0.92 where the
false positives are mainly arising from the misclassifications
of the field lines.
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Fig. 5. Recall rates of the proposed robot detection module in different
robot views and at different distances.

(a) Front (b) Side (c) Back

Fig. 6. Photos of different views of the Nao robot.



IV. COOPERATIVE LOCALIZATION AND TRACKING

Thus far, the materials for building the measurement
models of the whole system are provided. In this section,
the theoretical formulation of the proposed approach is
addressed.

A. Augmented State EKF

In order to simultaneously estimate the states of both
robots and moving objects in one coherent framework, we
augment them all into the state vector Xt:

Xt =
[

(R1
t )T . . . (RN

t )T (O1
t )T . . . (OM

t )T
]T

where t denotes the time index, N denotes the number of
robots, M denotes the number of moving objects, Ri

t is the
pose of the ith robot at time t, and Oj

t contains the position
and velocity of the jth moving object at time t.

B. The Process Model

For teammate robots, the odometry motion model is used.
For moving objects, as there is no odometry information, we
apply the multiple model tracking approach to account for
the unknown motion mode uncertainty. The GPB-1 algorithm
[11] combining the constant velocity (CV) model and the
stationary model is used to model moving objects.

With the assumption that the motion of robots and
tracking objects are all independent, the propagation ma-
trix of the whole system can be written as Gt =
diag(G1

Rt
, . . . , GN

Rt
, G1

Ot
, . . . , GM

Ot
), where Gi

Rt
and Gj

Ot

are the Jacobian matrices of the motion models of the ith

robot and the jth moving object respectively. The mean and
covariance of the state after the prediction stage at time t
can be calculated through the standard EKF procedure.

C. Data Association

Before updating with the incoming measurements, the
data associations must be established first. Here, we apply
the maximum likelihood data association algorithm with a
threshold gating on the Mahalanobis distance between the
incoming measurement and the expected measurement. Then
the state is updated according to the three sensor models
defined in the following subsection.

D. The Sensor Model

In the case that the ith robot detects a moving object and
associates it with the jth moving object, the sensor model
for robot-to-moving-object measurements is computed as:

z
Oj

Ri
= hRO(Ri

t, O
j
t ) + ΣROt

.

where hRO(·) is a function that transforms the expected jth

moving object position in the global coordinate system to
the local coordinate system of the ith robot. The Jacobian
matrix of this function is

∂hRO(R̄i
t, Ō

j
t )

∂X̄t

=
[

0 . . . 0 Hi
ROt

0 . . . 0 Hj
ROt

0 . . . 0
]

with

Hi
ROt

=
∂h(R̄i

t, Ō
j
t )

∂R̄i
t

and

Hj
ROt

=
∂h(R̄i

t, Ō
j
t )

∂Ōj
t

where Hi
ROt

is the ith and Hj
ROt

is the (M + j)th element
of the matrix.

For the other two types of measurements, the measure-
ment function and the Jacobian matrix can also be defined
similarly. The state vector and the covariance matrix can
be updated with new retrieved measurements following the
standard EKF procedure.

E. Track Management

It is necessary to infer the existences of the moving objects
as the tracks of moving objects should be initialized when
new ones have been detected and should be pruned when
they have not been observed for a long time. Let Ei

t be a
binary random variable indicating the existence of the ith

track at time t. Then p(Ei
t |z1:t) can be estimated recursively

with the use of the log odd ratio:

lit = log
p(Ei

t |z1:t)
1− p(Ei

t |z1:t)

= lt−1 + log
p(Ei

t |zt)
1− p(Ei

t |zt)
+ log

p(Ei
t)

1− p(Ei
t)

In our implementation, p(Ei
t |zt) and p(Ei

t) are defined as:

p(Ei
t |zt) =

{
σ, if Oi

t is observed (associated) in zt

0.5, otherwise ,

and
p(Ei

t) = η,

where σ (= 0.9) and η (= 0.4) are experimentally determined
parameters.

V. EXPERIMENTAL RESULT

In this section, the ground truth system and the perfor-
mance of the proposed approach in the general and two
challenging situations are described.

A. Ground Truth System

Two SICK LMS 100 laser scanners and one Hokuyo URG-
04LX laser scanner are placed around the field to provide the
position ground truth of the robots and the ball. The setting of
these laser scanners is shown in Fig. 7. The angular sensing
ranges of SICK and Hokuyo laser scanners are 270 degrees
and 240 degrees respectively. The distance sensing range of
the SICK laser scanner is over 40 meters, which is sufficient
to cover the whole field. As the height of the ball is low,
the Hokuyo laser scanner is used to provide the ground truth
of the ball locations. The ball was placed or moved in the
4-meter sensing range of the Hokuyo laser scanner in our
experiments.

The data collected from these three laser scanners are
clustered and the mean positions of the clustered laser points
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Fig. 7. Filled squares indicate the poses of the laser scanners. The ground
truth positions are shown in crosses.

are viewed as the candidates of the ground truth locations of
the robots or the ball. These candidates are then associated
with the closest estimates and the incorrect associations are
re-labeled manually.

B. The General Case

A general case with three teammates and three opponents
was tested. The setting is illustrated in Fig. 8 in which the
moving patterns of T1, T2, E1, and E2 are indicated by the
black dashed arrows. T3 and E3 stayed standing imitating
the keepers in the soccer games.

Table IV summarizes the position errors and uncertainties
estimated using four different algorithms, including single
robot PF-based localization (S-PF), single robot EKF-based
localization (S-EKF), cooperative EKF-based localization
(CL), and the proposed cooperative EKF-based localiza-
tion and tracking algorithm (CLAT). The accuracy of the
proposed cooperative localization and tracking algorithm
outperforms the single robot localization algorithm and is
better than the cooperative localization algorithm.

In this case, incorporating moving object tracking slightly
improves the result as the single robot localization algorithms
have already achieved 13.95 cm accuracy. However, the
proposed algorithm not only achieves accurate localization
but also provides moving object information at the accuracy
around 30 cm and the recall rate 0.78. Table V compares
the tracking performance between the EKF-based tracking
algorithm by each robot and the proposed cooperative lo-
calization and tracking algorithm, which shows that the
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Fig. 8. The general 3-by-3 case. The behaviors of the robots are illustrated
by dashed arrows. The estimates and the 2σ uncertainty bounds of the
estimates are shown.

TABLE IV
EVALUATION OF THE GENERAL CASE

(a) Position Error (cm)
T1 T2 T3 Average

S-PF 26.99 28.22 12.26 23.25
S-EKF 8.63 15.05 16.82 13.95

CL 9.12 11.19 16.71 12.75
CLAT 9.19 11.40 16.44 12.71

(b) Uncertainty (cm)
T1 T2 T3 Average

σx

S-EKF 22.55 34.25 23.93 27.41
CL 19.90 29.53 22.89 24.44

CLAT 19.61 29.17 22.45 24.08

σy

S-EKF 23.03 37.66 34.46 32.33
CL 20.95 32.43 32.43 29.11

CLAT 20.78 31.76 31.96 28.65

TABLE V
GENERAL CASE TRACKING EVALUATION

EKF T1 EKF T2 EKF T3 CLAT
Position Error 28.74 35.08 36.44 31.51

Recall 0.37 0.28 0.34 0.78

proposed approach is superior in terms of accuracy and
recall.

In the following two cases where the performance of single
robot localization degenerates due to insufficient environ-
mental information, our approach exhibits more significant
improvements.

C. The Boundary Case

This experiment constructed the boundary case as illus-
trated in Fig. 9. There were four robots, three teammates
in magenta and one opponent in cyan, moving as the black
dashed arrows indicated. In order to simulate the data defi-
ciency situation, the behavior of T2 was designed purposely
so that its body always faced outside the field and only few
map features were observed. An opponent was in front of
T2 and two teammates were nearby.

The evaluation results on T2 are summarized in Table
VI. For T2, single robot localization achieves the accuracy
of 20 cm. Cooperative localization outperforms the single
robot localization by 5.7 cm with the use of the robot-
to-robot measurements among teammates. By incorporating
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Fig. 9. The boundary case experiment setting illustration.



the moving object tracking, cooperative localization and
tracking further improves the accuracy by 4 cm compared
with cooperative localization.

TABLE VI
BOUNDARY CASE EVALUATION ON T2

(a) Position Error (cm)
S-PF S-EKF CL CLAT
34.43 20.47 14.82 10.78

(b) Uncertainty (cm)
σx σy

S-EKF 14.13 12.06
CL 13.10 11.32

CLAT 13.00 11.19

D. The Ball Gazing Case

The ball gazing case was tested as illustrated in Fig. 10. A
ball was put in the field and the behavior of T2 was designed
that it only gazed at the ball and approached the ball once
the ball had been detected. The challenge here is that almost
no map feature is observable for self-localization when the
gaze of the robot is fixed on the ball.

Localization results of different algorithms are shown in
Table VII. For T2, with insufficient robot-to-map measure-
ments, self-localization could only rely on the odometry and
thus the performance degenerates. Through cooperative lo-
calization, the accuracy is improved from 73.54 cm to 20.11
cm. By incorporating moving object tracking, cooperative
localization and tracking further improves the accuracy to
12.21 cm.

TABLE VII
EVALUATION OF THE BALL GAZING CASE

(a) Position Error (cm)
T2 Average

PF 105.35 62.59
EKF 73.54 45.00
CL 20.11 19.59

CLAT 12.21 14.96

(b) Uncertainty (cm)
T2 Average

σx

EKF 66.06 41.60
CL 22.73 20.01

CLAT 19.75 18.01

σy

EKF 149.81 88.70
CL 23.43 22.63

CLAT 19.06 20.48

Fig. 11 shows the results of the EKF-based single robot
localization algorithm, the EKF-based cooperative localiza-
tion algorithm, and the proposed cooperative localization
and tracking algorithm. The ball was detected at the first
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Fig. 10. The ball gazing case experiment setting illustration.
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Fig. 12. Trajectory estimates using different algorithms in the ball gazing
case. The ground truth is shown in black. The trajectory estimated by EKF
self-localization is shown in green, PF-based self-localization in yellow,
cooperative localization in red, and cooperative localization and tracking in
blue.

time step and the robot started to gaze at and move toward
the ball. It can be seen that the position error and the
corresponding uncertainty estimated by the EKF-based single
robot localization algorithm grows continuously as there is
no map feature measurement. The position estimates of the
cooperative localization algorithm were close to the ground
truth via the assistance from the teammates. The proposed
cooperative localization and tracking algorithm achieves
more accurate localization through the commonly tracked
ball. The estimated trajectories from different approaches are
shown in Fig. 12.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that the proposed
cooperative simultaneous localization and tracking approach
is superior to the state-of-the-art localization approaches. It is
shown that augmenting moving objects into the state vector
can further improve the performance of EKF-based coopera-
tive localization. The proposed approach was evaluated using
the Nao robots in the RoboCup environment with ground
truthing from the laser scanners. Only uncertain data from
the onboard cameras and odometry were used to accomplish
localization and tracking in the challenging scenarios. It is
in our interests to develop active localization and tracking,
and to investigate the feasibility of distributed localization
and tracking.
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(f) CLAT
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Fig. 11. The results of the ball gazing case using different algorithms. In the S-EKF approach, the uncertainty bound of the robot T2 grows gradually as
there are odometry data only. In the CL approach, the localization performance is improved by adding teammate-to-teammate information. In the proposed
CLAT approach, the result is further improved. The robot heading estimates are also improved by the proposed CLAT approach.
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