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Abstract 
 
     Detection and tracking of moving objects (DATMO) in 
crowded urban areas from a ground vehicle at high 
speeds is difficult because of a wide variety of targets and 
uncertain pose estimation from odometry and GPS/DGPS.  
In this paper we present a solution of the simultaneous 
localization and mapping (SLAM) with DATMO problem 
to accomplish this task using ladar sensors and odometry. 
With a precise pose estimate and a surrounding map from 
SLAM, moving objects are detected without a priori 
knowledge of the targets. The interacting multiple model 
(IMM) estimation algorithm is used for modeling the 
motion of a moving object and to predict its future 
location. The multiple hypothesis tracking (MHT) method 
is applied to refine detection and data association. 
Experimental results demonstrate that our algorithm is 
reliable and robust to detect and track pedestrians and 
different types of moving vehicles in urban areas.       
 

1  Introduction 
 
     Detection and tracking of moving objects (DATMO) is 
one of the most important and challenging problems for 
driving assistance and autonomous driving. Although the 
DATMO problem has been extensively studied for 
several decades [1, 2, 3, 4, 9, 10], it is still very difficult 
to accomplish DATMO in crowded urban environments 
from a ground vehicle at high speeds. 
     One of the most difficult issues is to separate moving 
objects and stationary objects. In indoor environments, 
the most important targets are people. If cameras are used 
to detect people, the appearance-based approaches are 
widely used and people can be detected no matter if they 
are moving or not. If laser scanners are used, the feature-
based approaches are usually the preferred solutions [5, 6, 
7]. Both appearance-based and feature-based methods 
rely on a priori knowledge of targets. In urban areas, 
because there are many kinds of moving objects such as 
pedestrians, animals, wheelchairs, bicycles, motorcycles, 
cars, buses, trucks, trailers, etc., it is very difficult to 
define features or appearances by using laser scanners.  

     In order to accomplish DATMO from a moving 
platform, a precise localization system is essential [7, 8, 
14]. Unfortunately, a good inertial measurement system is 
very expensive and it is known that GPS and DGPS often 
fail in the urban areas because of the urban canyon effects. 
In the past decade, the simultaneous localization and 
mapping (SLAM) problem has received substantial 
interest in robotics and AI literature [11], which provides 
a more precise pose estimate than inertial measurement 
systems; and a global consistent surrounding map without 
a priori map and without access to independent position 
information. However, most of the published work on 
SLAM assumes that the environment is static. 
     In [12], we presented an approach to tackle the SLAM 
problem and the DATMO problem at once. SLAM 
provides more accurate pose estimation and a surrounding 
map, which are used to detect moving objects reliably. 
SLAM can be more accurate because moving objects are 
filtered out of the SLAM process thanks to the moving 
object location prediction from DATMO. SLAM and 
DATMO are mutually beneficial, as shown in Figure 1. 
In [13], we derived the Bayesian formula of the SLAM 
with DATMO problem, which provides a solid basis for 
understanding and solving this problem. Our solution of 
the SLAM with DATMO problem satisfies both the 
safety and navigation demands of the driving assistant and 
autonomous driving systems by using laser scanners and 
odometry. 
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Figure 1: SLAM with DATMO 
 

     Since SLAM in urban and suburban areas was 
addressed in [12], in this paper the SLAM part of the 
whole problem is treated as a black box, which provides a 



surrounding map and a better pose estimate than 
odometry. In order to establish the basic terminology used 
throughout this paper, the Bayesian formula of the SLAM 
with DATMO problem is briefly introduced and its 
meaning is explained in Section 2. Section 3 addresses 
our DATMO algorithms step by step. The results of 
experiments, carried out with the CMU Navlab11 vehicle 
in crowded urban areas, are shown in Section 4, and the 
conclusion is in Section 5.  
 

2  SLAM with DATMO 
 
     The SLAM with DATMO problem is not only to solve 
the SLAM problem in dynamic environments but also to 
detect and track these dynamic objects. More specifically, 
what we discuss is how to estimate the pose of the robot, 
build a map, detect other moving objects and to predict 
their motions, given odometry and laser scanner 
measurements from the robot. In this section, the 
Bayesian formula of the SLAM with DATMO problem is 
introduced and its meaning is explained. In addition, local 
SLAM with DATMO is addressed. 
 
2.1  Notation 
 
     We denote the discrete time index by the variable k, 
the vector describing an odometry measurement from 
time 1−k  to time k  by the variable ku , a laser scanner 
measurement from the vehicle at time k  by the variable 

kz , the state vector describing the true location of the 
vehicle at time k  by the variable kx , and the stochastic 
map which contains l  features by the variable 

{ }lmmM ,,1
m= . { }n

kkk yyY m,1= are the locations of 
moving objects, of which there are n  moving objects that 
appeared inside the sensor’s range at time k. In addition, 
we define the following set to refer data leading up to 
time k. 

{ } { } OdometryuUuuuU kkkk //,,...,, 110 −==          (1) 

{ } { } LadarzZzzzZ kkkk //,,...,, 110 −==         (2) 

{ } { } LocationTruexXxxxX kkkk ./,,...,, 110 −==      (3) 

where the initial location of the vehicle 0x is assumed 
known. 
 
2.2  Bayesian Formulation 
 
     Because the environment contains not only static 
objects but also dynamic objects, the measurements from 
sensors contain information from both static and dynamic 
objects. The general recursive formula for SLAM with 
DATMO can be expressed as:  
 

),|,,( kkkk UZMYxp        (4) 
 

We start with the following assumptions: 
• The vehicle motion model is Markov. 
• The sensor measurement can be separated into 

moving parts and stationary parts and that they are 
independent: 

            m
k

s
kk zzz +=    and hence   m

k
s
kk ZZZ +=    (5) 

Here the sensor measurement belonging to stationary 
objects is denoted by the variable s

kz  and the sensor 
measurement belonging to moving objects is denoted 
by the variable m

kz . 
• When estimating the posterior over the map and the 

vehicle pose, the measurements of moving objects 
carry no information, neither do their location kY . 

Then the general recursive Bayesian formula of (4) can be 
derived and expressed as (See [13] for the derivation of 
this equation): 
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2.3  Solving the SLAM with DATMO Problem 
 
     From (6), input to the SLAM with DATMO filter are 
two separate posteriors, one of the conventional SLAM 
form, ),|,( 111 −−− k

s
kk UZMxp , and a separate one for 

DATMO, ),|( 111 −−− kkk UZYp . The posterior of the SLAM 
part is recovered by:  
 

∝= ∫ kkkkkk
s
kk dYUZxMYpUZMxp ),|,,(),|,(        (7) 

),|( k
s
k xMzp 11111 ),|,(),|( −−−−−∫ kk

s
kkkkk dxUZMxpxuxp  

 
and the posterior of the DATMO part is computed by: 
 

),|( kkk UZYp ∫∫= kkkkk dMdxUZxMYp ),|,,(  
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kk
s
kk dxUZxp ),|(             (8) 

 
     Equation (8) shows that DATMO should take account 
of the uncertainty in the pose estimate of the robot 
because the laser scanner measurements are directly from 
the robot. Figure 2 illustrates the procedures for solving 
the SLAM with DATMO problem. Figure 2(a) shows the 
estimations and the corresponding distributions of the 
robot’s pose, a detected moving object’s pose (in green), 
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and the map at time 1−k . In Figure 2(b), the robot moves 
and gets a measurement ku  from odometry. The moving 
object also moves but there is no measurement directly 
associated with its motion. Unlike using ku  and the 
robot’s motion model to predict the robot’s pose, only 
previous measurements associated with this moving 
object are used to model the moving object’s motion and 
predict its pose. Figure 2(c) shows that the robot gets a 
new measurement kz at the new location. Here kz  
contains information from both stationary objects and 
moving objects. In Figure 2(d), the estimations and the 
corresponding distributions of the robot’s pose and the 
map at time k are updated using information only 
associated with stationary objects. Finally Figure 2(e) 
shows the pose estimate and the corresponding 
distribution of the moving object are updated using more 
precise information from SLAM. 
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Figure 2:  SLAM with DATMO procedures 

 
     Although the distributions are shown by ellipses in 
Figure 2, the Bayesian formula does not assume that the 
estimations are Gaussian distributions. 
 
2.2  Local SLAM with DATMO 
 
    The goal of SLAM is to build a globally consistent map, 
so the uncertainty estimate of the pose of the robot from 

SLAM is with respect to the global coordinate frame. 
Equation (8) shows that DATMO has to process more 
uncertain information because DATMO has to take into 
account the pose estimate uncertainty from SLAM, which 
makes data association and tracking of moving objects 
more difficult (See Figure 3). Fortunately for applications 
such as driving assistant systems, it is not necessary to 
solve DATMO globally. The absolute positions and 
velocities of moving objects can be estimated with respect 
to the temporary global coordinate frame instead of the 
true global coordinate frame. Figure 3 and Figure 4 
illustrate the differences between global SLAM with 
DATMO and local SLAM with DATMO. Once a moving 
object is detected at the first time 3−k , the test vehicle 
frame at 3−k  (O′  in Figure 4) would be assigned as the 
temporary global frame for tracking this moving object. 
This transforms relative error in a global frame into the 
equivalent, but more convenient, representation of 
absolute error in a local frame.  
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Figure 3: Global SLAM with DATMO 
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Figure 4: Local SLAM with DATMO 
      

3  DATMO Implementation 
 
     Using a precise pose estimate and a surrounding map 
from SLAM, the proposed DATMO algorithm solves the 
problems in the following manner. First, a new scan is 
segmented into several groups using a simple distance 
criterion. With the surrounding map and the pose estimate 
from SLAM, moving objects (groups) are detected by 
finding inconsistencies between the new scan and the map. 
Using the data associated with a moving object, the 
Interacting Multiple Model (IMM) estimation algorithm 
[2, 3, 4] tracks and predicts the motion of this moving 
object with the constant velocity model and the constant 
acceleration model. The multiple hypothesis tracking 
(MHT) [9, 3] method is applied to refine detection and 
data association. 
  
3.1  Scan Segmentation 
  

(a) The robot pose, a moving object 
(in green) and the stochastic 
map at time 1−k . 

(b) The robot and the moving 
object move. 

(c) The robot senses objects and 
associates them. 

(d) The robot pose and the 
map update. 

(e)  The moving object’s pose and 
motion model update 
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     Scan segmentation is the first step of the DATMO 
algorithm. Because the laser scans in our applications are 
not dense and the targets we want to detect and track do 
not have specific sizes and shapes, we use a simple 
distance criterion, namely that the distance between points 
in two groups must be longer than 1 meter, to segment 
measurement points into several groups. Figure 5 shows 
one example of scan segmentation. 
 

 
Figure 5: Scan Segmentation 

 
3.2  Moving Object Detection  
 
     Intuitively, any inconsistent part from SLAM should 
belong to moving objects. But the idea isn’t totally correct. 
There are two cases for detecting moving objects:  
Case 1:  
     From previous scans or the map, we know some space 
is not occupied. If we find any object in this space, this 
object must be moving. In Figure 6, object A must be a 
moving object. 
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current laser scanner, and then convert the map from a 
rectangular coordinate system to a polar coordinate 
system. Now it is easy to detect moving points by 
comparing values along the range axis of the polar 
coordinate system. A group is identified as a potential 
moving object if the ratio of the number of moving points 
to the number of total points is greater than 0.5. Figure 8 
shows the results of moving object detection and a red 
box indicates a moving car recognized by our motion-
based detector. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Detection Case 2. 
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Figure 8: Moving object detection 

 
3.3  Slow Moving Object Detection 
 
     Detection of pedestrians at very low speeds is difficult 
but possible by including information from the map. From 
our experimental data, we found that the data associated 
with a pedestrian is very small, generally 2-4 points. Also, 
the motion of a pedestrian can be too slow to be detected 
by the motion-based detector. Because the map contains 
information from previous moving objects, we can say 
that if a blob is in an area that was previously occupied by 
moving objects, this object can be recognized as a moving 
object.  
 
3.4  The Interacting Multiple Model (IMM) algorithm   
 
     In SLAM, we can use odometry and the robot motion 
model to predict the future location of the robot. However, 
in DATMO neither a priori knowledge of moving 
objects’ motion models nor odometry measurements 
about moving objects is available. Therefore we applied 
the IMM algorithm with the constant velocity (CV) model 
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and the constant acceleration (CA) model to model the 
motion of a moving object and to predict its future 
location. Here we use the Piecewise Constant White 
Acceleration Model fro the CV model and the Piecewise 
Constant Wiener Process Acceleration Model for the CA 
model [2, 3]. The prediction and estimation of a moving 
object is from the mixing (combination) of these two 
motion models.  
 
3.5  Multiple Hypothesis Tracking 
 
     Moving object detection is often erroneous because of 
measurement errors and pitch/roll motions of the test 
vehicle. We apply the multiple-hypothesis-tracking (MHT) 
method to filter out wrong detections and refine data 
association. Local SLAM is not run for every new scan 
because of computational power limitations and because 
odometry is good enough locally. Moving object 
detection initializes the new tracks and then track 
association is accomplished using spatial and shape 
information. The motion patterns of the hypothesis tree’s 
branches are used to prune the hypothesis tree. At the next 
time of moving object detection the hypothesis tree will 
be confirmed and new moving objects will be detected. 

 
4  Experimental Results 

 
     One SICK LMS221 and two SICK LMS291 laser 
scanners are mounted in various positions on Navlab11 
(Figure 10), doing horizontal profiling. The range data 
were collected at 37.5 Hz with 0.5 degree resolution. The 
maximum measurement range of the scanners is 80 m. 
The images from our three-camera system are for 
visualization. Figure 11 shows the raw range images from 
the ladar mounting on the front of the test vehicle. 
     The results of local SLAM with DATMO are shown in 
Figure 12, Figure 13 and Figure 14. Instead of discarding 
information from moving objects, a stationary object map 
(SO-map) and a moving object map (MO-map) are 
created to store information from stationary objects and 
moving objects which are shown in black and red 
respectively. The solid blue rectangle indicates the 
location of the test vehicle. The blue boxes represent the 
tracked objects. In Figure 12, one car (Object A) and one 
trailer (Object B) are detected and tracked, but a 
pedestrian (Object C) is missed because the motion of the 
pedestrian is too small to detect at the beginning. After 
accumulating information in the MO-map, this pedestrian 
is successfully detected and tracked, which is shown in 
Figure 13. Figure 14 shows that our algorithm segments a 
trailer (Object A) into three groups and tracks these 
groups individually. An algorithm to analyze the 
relationships of groups for merging multiple tracks as a 
single object or splitting a track into multiple objects is 
ongoing. 

 
Figure 10: The Navlab11 testbed 

 

 
(a) Frame 31                         (b) Frame 51                            

 
 (c) Frame 91                               

 
Figure 11: Raw range images from SICK LMS221. 

       
  

 
(a) The result of SLAM with DATMO 

 
(b) The image from the three-camera system 

 
Figure 12: Ground Vehicle Detection and Tracking 
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Figure 13: Pedestrian Detection and Tracking  

 

 
Figure 14 

 
5  Conclusion 

     We have presented a method to accomplish detection 
and tracking of moving objects from a moving platform 
based on the Bayesian formula of SLAM with DATMO.  
Experimental results have shown that DATMO in 
crowded urban area from a ground vehicle at high speeds 
is feasible using odometry and laser scanners. 
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