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1 Abstract 
The Navlab group at Carnegie Mellon University has a long history of development of 
automated vehicles and intelligent systems for driver assistance. The earlier work of the 
group concentrated on road following, cross-country driving, and obstacle detection. The 
new focus is on short-range sensing, to look all around the vehicle for safe driving. The 
current system uses video sensing, laser rangefinders, a novel light-stripe rangefinder, 
software to process each sensor individually, a map-based fusion system, and a probability 
based predictive model. The complete system has been demonstrated on the Navlab 11 
vehicle for monitoring the environment of a vehicle driving through a cluttered urban 
environment, detecting and tracking fixed objects, moving objects, pedestrians, curbs, and 
roads. 
 
2 Robotics Technology and Intelligent Vehicles 
During the decade of the 1990�s, researchers from automotive engineering, from robotics, 
and from allied fields came together to start building intelligent vehicles [1,2,3,4]. These 
vehicles use sensors, actuators, processors, and communications systems to either drive 
automatically, or to monitor a human driver and assist in navigation or warn in case of a 
developing dangerous situation. 
 
The field was driven by several market demand factors. First is an increasing interest in 
safety. While the accident rate has decreased steadily for 40 years, the total miles traveled 
have increased, with the net result that the number of road fatalities in the US has stayed 
approximately constant, averaging 40,000 / year [5]. Furthermore, there is an increasing 
sense that vehicles have become safer (air bags, anti-lock brakes, crumple zones); roadways 
have become safer (the Interstate highway system); societal pressures have become 
stronger (mandatory child safety seats, serious enforcement of drunk driving laws) but the 
drivers themselves have not necessarily improved. Currently, in the US, 70% of all crashes 
are primarily caused by the drivers, and in another 20% driver error is a major contributing 
factor [5,6]. 
 
Beyond safety, the next major driving factors have to do with congestion and pollution. In 
the US, traffic continues to grow at 4% / year, while with the completion of the Interstate 
highway system, major new road construction greatly lags traffic growth. Computer-
controlled vehicles promise to smooth out traffic flow, permitting more vehicles to travel in 
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a given lane. With conventional vehicles, the best traffic flows are in the vicinity of 2,000 
vehicles / lane / hour; at 100 kph this works out to 50 m / vehicle. Of course, real traffic 
does not flow with even separations between vehicles; instead, traffic bunches and gaps. 
Smoothing out the traffic flow, with an even spacing of 25 meters, would of course double 
the throughput, without having to pave more lanes. 
 
Finally, the push for intelligent vehicles is driven by the pressures of an aging society. 
Older people may, for instance, lose flexibility in their neck, making it harder to check 
before changing lanes; intelligent sensors that monitor the blind spot may allow seniors to 
drive safely for more years. 
 
In addition, the military has increasing interest in intelligent vehicles. Scout vehicles 
typically operate in front of the main force, and are the first target of the opposition. The 
US Army, in particular, has long desired to have automated scouts that can investigate 
hazardous areas without putting soldiers in harm�s way. 
 
At the same time as the demands for intelligent vehicles were increasing, the technologies 
to build them were becoming available. Advances have been driven by the military, 
aerospace, and electronics; even the entertainment industry has helped, such as the 
proliferation of camcorders driving down the cost of CCD video sensors. 
 
From an organizational standpoint, the field rapidly became organized with all the usual 
trappings: 

• In 1990 the first Intelligent Vehicles workshop was held, sponsored in part by IEEE. 
This has now become an ongoing series of workshops [7,8,9,10,11]. 

• In March 1991 the trade organization ITS America was chartered by the 
government of the US as an official Utilized Federal Advisory Committee; it now 
has more than 600 member companies and organizations. 

 
The biggest public event of the field was the Automated Highway Demonstration, held in 
1997 [4]. The National Automated Highway Systems Consortium (NAHSC) was composed 
of representatives from the automotive industry (General Motors, with associates Honda 
and Toyota); construction (Bechtel and Parsons Brinkerhoff), state and federal agencies 
(CALTRANS and US DOT Federal Highways Administration), electronics (Delco), 
systems engineering (Hughes, Lockheed Martin), and academia (Carnegie Mellon, 
Berkeley). The AHS Demonstration showed 22 vehicles, carrying passengers, driving 
autonomously over a section of I-15 north of San Diego[12,13,14,15,16]. 
 
Parts of this technology are now coming on the market. Adaptive Cruise Control is now 
available on a few high-end passenger cars; this uses a radar or laser sensor to detect other 
moving vehicles in the lane ahead, and automatically adjusts the cruise control set speed to 
maintain a safe distance. ACC is sold as a convenience feature, rather than a safety feature, 
because it is currently not capable of distinguishing stopped vehicles in its own lane on a 



curving road. Other sensors available on vehicles include side-looking sensors on large 
trucks to cover their blind spot; and prototype sensors based on forward-looking vision to 
detect drowsy drivers who are starting to drift out of their lane. 
 
A common feature of all of the above systems is that they are designed for the open 
highway. This is an appropriate first step, but only addresses part of the problem. A 
controlled-access roadway is designed for easy perception and control, and should only 
have motor vehicles on it under normal circumstances. 
 
In contrast, urban environments (where a large portion of driving actually takes place) are 
characterized by clutter, both fixed objects (lamp posts and stop signs and fire hydrants and 
newspaper vending machines and �) and by moving objects (cars and bicycles and 
pedestrians and dogs and �). As the problems of highway driving begin to be solved, there 
is a new push just starting in the research community on the particular needs of urban 
driving [17,18,19,20]. 
 
3 The need for 360 degree safeguarding 
Robot driving has concentrated on forward-looking sensing, for road following and 
obstacle detection [21,22,23,24,25,26,27]. This is an appropriate first step, but real 
deployment of mobile robots will require additional sensing and reasoning to surround the 
robot with safeguard sensors and systems. Our group is currently building short-range 
sensing to surround vehicles to improve the safety of robotic and human-controlled 
vehicles. 
 
In the civilian context, our focus is driver assistance for transit buses [28,29,30]. Buses 
drive at relatively slow speeds, in crowded urban environments. One of the most frequent 
types of accidents in transit buses is side collision, where the driver does not have adequate 
awareness of objects near the bus, then turns too sharply and sideswipes a fixed object or 
(less often) hits a pedestrian. Preventing these accidents requires short-range sensing along 
the side and front of the bus, detecting fixed objects, detecting and tracking moving objects, 
predicting the motion of the bus itself, and alerting the driver through a suitable driver 
interface. Moreover, the assistance system has to discriminate between safe and unsafe 
situations, which is especially difficult in the cluttered environments the bus is driving in. 
For example, pedestrians standing on the curb can be considered safe, but pedestrians in the 
road cannot.  
 
In the military context, our focus is short-range sensing for full automation of scout 
vehicles [31]. An autonomous vehicle moving through a cluttered environment, such as a 
forest, may need to move between objects (e.g. trees) with very little clearance on either 
side of the vehicle. The conventional approach is to sense trees with forward-looking 
sensors, enter those trees into a map, and estimate the clearance as the vehicle moves 
forward and the trees move out of the field of view of the forward-looking sensor. If sensor 
data is noisy, or if the vehicle slips and slides in mud, the estimated clearance may be 



incorrect. It is better to directly and continuously sense nearby objects all along the side of 
the vehicle as it moves through the forest. 
 
Both civilian and military vehicles, and both driver assistance and full automation, need to 
pay special attention to moving objects, and particularly to humans. People move in 
unpredictable ways. Seeing a person with a forward-looking sensor, or having the driver 
note the position of a person in front of a bus, is no guarantee that the person will remain 
safely out of the vehicle�s way. Thus, we pay special attention to detecting moving objects, 
classifying them if possible as people, continuously tracking their motion, and attempting to 
predict their future actions. 
 
4 Testbed Vehicle 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Navlab 11 testbed showing cameras, GPS, Laser Scanners, and a Laser Line Striper (one 
arrow points to the laser, the other to the camera). On the left side of the vehicle is another camera and 
Laser Scanner, positioned symmetrically to the ones on the right side.    

Our testbed vehicle for this work is the Navlab 11 (Figure 1). It is equipped with: 
• motion sensors (IMU, GPS, differential odometry,  compass, inclinometer, and 

angular gyro);  
• video sensors (6 video cameras, 3 in front, one on top, and two looking along the 

sides);  
• ladars (3 Sick single-axis scanning laser rangefinders mounted in various positions, 

typically one looking forward and two along the sides);  



• a light-stripe rangefinder typically mounted looking for the curb on the right;  
• 5 500-MHz Pentium computers;  
• high-accuracy time synchronization;  
• various other sensors and actuators.  

 
5 Perception Modules 
We have built, tested, and integrated a number of perception modules, designed specifically 
for short-range sensing.  
 
Optical Flow: Our work with optical flow uses an Omnicam and optical flow tracking to 
detect nearby objects from a moving vehicle [32,33]. The Omnicam is a video sensor with a 
hemispherical mirror, so a single image captures a 360-degree view of the world (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Raw image of the Omnicam. 

 
In software, we unwarp the image, detect vertical edges, and then track those edges from 
frame to frame as the vehicle moves (Figure 3).  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Processed Omnicam image: a) unwarpped image, b) vertical edges detected in the image, c) 
tracked edges. 

 
We use a Kalman filter to track each of the detected objects, to update the position estimate 
of the objects with time. The result is a map of all the detected objects, suitable for obstacle 
avoidance and map building (Figure 4). This subsystem has not yet been integrated into the 
full data fusion path. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Map of tracking result. The solid black line is the path of the vehicle, the gray dots are 
tracked features. 

 
Light-stripe scanner: We have designed, built, and integrated a light-stripe sensor as a 
proof-of-principle of a no-moving-parts range sensor, designed for use outdoors at modest 

a) 

b) 

c) 

 



ranges [34]. We tested the sensor on board a transit bus operating in the city of Pittsburgh 
under a full range of weather conditions. The idea of light-stripe sensing is well-known 
(Figure 5): 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Geometric configuration of the laser and camera of the laser line striper. 

A laser shines a plane of light on the scene while a camera located at a distance from the 
laser observes the scene (Figure 5). The camera sees the intersection of the laser light with 
objects at an angle α. The distance between the laser and the object can then be calculated 
by triangulation:   

)cot(α⋅=sd  
The novel additions we have made to the process enable range sensing in full sunlight 
outdoors. First, we use a lens filter on the camera, so that it only sees light in the same 
wavelength as the laser illumination. Second, we synchronies the camera shutter with a 
pulsed laser. That allows much higher instantaneous power output, while still having a total 
integrated emitted energy low enough to keep the laser eye safe. For most outdoor 
conditions these two methods are sufficient to eliminate the background of daylight. But on 
a bright day, sunlight still causes erroneous measurements. They can be eliminated either 
through noise filtering algorithms or by taking a second background image without the 
laser on and subtracting it from the first.   
 
Curb detection and tracking: In use, our side-looking light stripe range sensor measures 
the vertical profile of the road to the right of the vehicle. In our test vehicle the sensor is 
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mounted on the front (Figure 1), on a transit bus, it can be mounted inside the front bumper 
(Figure 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Schematic of the curb detector mounted inside the bumper of a transit bus. 

 
When there is a curb present, the light stripe sensor can find the curb out to a range of 
approximately one lane width. We have tuned the software to detect the kinds of curbs 
commonly encountered in urban environments. We also built a Kalman filter to integrate 
curb measurements and vehicle motion models over time, to create a track of where the 
curb has been and an estimate of its current heading (Figure 7). 
 
Curb detection in front of the vehicle: Once the curb has been detected and tracked, we 
project its location into the video image (Figure 7) acquired by the camera mounted on the 
rear right of the testbed looking along the vehicle (Figure 1). Given the location and 
direction of the curb in this image, an edge detector is used to search for the edge of the 
curb further in front of the vehicle. Figure 7 shows the result of the curb detection with the 
line striper, tracking of the curb alongside the vehicle, and detecting the curb in front of the 
vehicle using the image itself.  
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Figure 7 Image taken by the right forward-looking camera. Overlaid is the current curb position 
detected by the line striper (black dot), the curb position tracked 1 m alongside the vehicle, and the 
curb detected in front of the vehicle using this image. 

The curb detection from the image gets complicated when an object is occluding the curb, 
e.g. if a person stands in front of it. Then the edge detector finds the edge of the pedestrian 
instead of the edge of the curb. This problem can be overcome if one takes the information 
of the laser scanner into account. The laser scanner can detect the objects in the scene. The 
areas in the image corresponding to the detected objects are excluded from the search of the 
edge of the curb. The result is, that the search will stop in front of the object (Figure 8). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Obstacle in front of the curb. The laser scanner detects the obstacle (white circles) and the 
search of the curb in front of the vehicle stops when it reaches the object. 

Sick processing: We have been using a Sick single-axis ladar for map building, moving 
object detection, and ego-motion detection [35]. Since the Sick scans a single line across 
the scene, a horizontally-mounted Sick sensor maps a single plane of the scene. As long as 
the vehicle does not pitch or roll violently, and as long as the objects in the scene have 
adequate vertical extent, we can track those objects from frame to frame as the vehicle 



moves. In Figure 9, the left-hand side shows the data from a single rangefinder mounted on 
the right of the Navlab11. The solid rectangle represents the vehicle itself; the points show 
range returns. The right-hand side shows the result of data matching. The long vertical line 
is the wall of a building that has been seen in multiple frames. The partial rectangle near the 
bottom is a parked car, that has been observed from the rear, side, and front, so a more 
complete representation has been built. The circles in the top of the frame show small 
objects that have been observed multiple times, but with changing locations; these are 
tentatively classified as pedestrians. The faint chain of circles trailing from the vehicle is 
the list of positions from which the vehicle made its observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Sick scanner range data processing, showing a single scan (left) and multi-scan matching 
(right) 

Fusion: The individual perception and interpretation modules all generate output that is 
fused into a consistent map representation. The data flow is shown in Figure 10. The 
�vehicle motion model�, which keeps track of vehicle pose, is distributed to all modules. 
The other modules each process a variety of data, culminating in labeled objects flowing 
into the map. 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Data Fusion paths 

6 Collision Prediction 
Given the location of moving and fixed objects as collected in the map, and the heading of 
the vehicle, it is possible to calculate the time of collision for each object. However, since 
objects may change their motion, and the vehicle may not continue along its current arc, 
those calculations cannot be exact, they must take into account the probability distribution 
of likely future states of the testbed vehicle and other objects. This calculation is further 
complicated by different motion patterns for different kinds of objects: pedestrians on a 
sidewalk are less likely to step off the curb in front of a moving vehicle, and more likely to 
continue along the sidewalk. We have developed a probabilistic model of object motion 
that takes this kind of factor into account and generates a probability of collision as a 
function of time for each object in the environment. Rather than picking a fixed trajectory, 
we sample from the trajectories that the object could follow: faster or slower, turning more 
or less, and (for pedestrians) more or less likely to step off a curb and into the roadway. 
Each of these sampled trajectories is then examined to see if it causes a collision with the 
vehicle, and at what time. The fraction of trajectories that causes collisions is used as the 
probability of collision, as a cumulative function of time. High-probability imminent 
collisions are triggers for either an urgent driver warning (for driver assistance systems) or 
an immediate cue for the vehicle to take evasive action (for automated vehicles). 
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7 Demonstration System 
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Figure 11 Integrated demonstration system: left camera view with overlaid range data; right camera 
view with overlaid range data and curb location; and fused map. 

All of these modules have been integrated into a demonstration system. The system does 
the following: 

• Processes data in real time from two cameras looking along the sides of the vehicle, 
two laser scanners looking along the sides of the vehicle, the motion estimation 
sensors, and the side-looking curb tracker. 

• Optionally, logs all the data with time tags (sub-millisecond accuracy) for later 
replay and analysis 

• Finds objects in the environment 
• Tracks the curb over time 
• Overlays the detected objects and the curb on the video data 
• Uses video processing to project the curb and road ahead of the vehicle, taking into 

account occlusions (as noted by 3-D objects projected onto the video image) to 
terminate tracking where the road edge is not visible 



• Determines whether each object is in the roadway or safely on the side 
• Estimates the potential of collision for each object 

Figure 11 shows the complete system in operation. The displays on the bottom right show 
vehicle state. The left camera view, on the top left, shows the range data from the left Sick 
rangefinder and object detection system overlaid on the left camera. The top right shows 
the right camera view, with the right-hand Sick system data; plus the laser striper�s current 
data, the detected curb, the track of the curb, and its future predicted position. The bottom 
right shows the combined map information. 
 
8 Status and Ongoing Development 
The systems as developed to date are good for demonstrations and proof of concept. The 
next steps are to mature the systems and deploy them on test vehicles for long-duration 
tests in real weather and real traffic conditions. Over the next year, the Navlab group will 
harden the electronics and improve the algorithms for full automation on robot vehicles, 
and for extended tests on transit buses. 
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