Designing a Voice over IP Network

Introduction

The design of any network involves striking a balance between three requirements.

- Meeting the capacity needed to handle the projected demand (capacity)
- Minimizing the capital and operational cost of the network (cost)
- Ensuring high network reliability and availability (quality)
- Meeting one or more of the requirements often means making sacrifices elsewhere.
- What is the acceptable degree?

An Overall Approach

Understanding the expected traffic demand

- Where traffic will come from and go to
- What typical per-subscriber usage is expected
- Establishing network design criteria
 - Build-ahead, voice-coding schemes, network technology (such as softswitch versus H.323)
- Vendor and product selection
- Network topology, connectivity and bandwidth requirements
- Physical connectivity

Design Criteria [1/2]

Build-Ahead or Capacity Buffer

- Avoiding the necessity for constant redesigning as traffic demand increases
- Providing a buffer in case traffic demand increases faster than expected
- Fundamental Technology Assumptions
 - H.323 vs. Softswitch
 - MGCP vs. MEGACO
 - Should we use external SGs with Sigtran or deploy MGCs that support SS7 directly?
- Network-Level Redundancy
 - E.g., Failure of MGCs, Failure of network interfaces

Design Criteria [2/2]

Voice Coder/Decoder (Codec) Selection Issues

- Actual coder/decoder to use
- Packetization interval
- Silence suppression
- Blocking Probability
 - A call will be blocked due to a lack of available channels.
 - The Erlang is the standard measure of traffic on a circuitswitched network.
 - One Erlang corresponds to a channel being occupied for one hour.
 - Depending on the number of available channels and the amount of offered traffic, there is a statistical probability that a channel will be available when a user wants to make a call.
- QoS Protocol Considerations and Layer 2 Protocol Choices (e.g., Frame Relay, ATM or PPP)

Product and Vendor Selection

Generic VoIP Product Requirements

- Node-Level Redundancy
 - N+1 redundancy
- Node Availability
 - 99.999 percent availability
 - Mean Time Between Failure (MTBF) values provided by vendors for each component of a given node
- Alarms and Statistics
 - For the network operator to fully understand the performance of the network
- Element Management
 - E.g., SNMP for interfaces between the network elements and EMS

Traffic Forecasts

- Voice Usage Forecast
 - (MoUs per subscriber per month) x (fraction during work days) x (percentage in busy hour) / (work days per month)
 - E.g., 120x0.6x0.2/21=0.686 MoU/sub/busy hour
 - 0.686/60=0.0114 Erlangs/sub/busy hour
 - The driving factor for the network elements that reside in the bearer path
 - Busy-hour call attempt (BHCA)
 - Assume that the average call length is 5 minutes (300 seconds).
 - Erlangs/MHT (average call length) =0.0114x3600/300=0.137
 - The critical factor for call-control entities such as MGCs
 - A subscriber with 120 MoUs per month will make 0.137 calls each busy hour.
- Traffic Distribution Forecast

Network Topology

- How many network elements of a given type will be in each location
- The bandwidth requirements between those network elements and the outside world

MG Locations and PSTN Trunk Dimensioning

- At least 1 MG in each of the 12 cities where the service is provided
- To determine the size of the trunk groups to the PSTN
 - From Voice Usage Forecast, we know how much traffic we will send.
 - From Traffic Distribution
 Forecast, we know how much traffic we will receive.

MGC Quantities and Placement

- Assume that BHCA is the limiting factor.
- A call passes between two MGs controlled
 - By the same MGC
 - By different MGCs
- Determining the number and location of MGCs can be an iterative process.
 - 1. An initial estimate of the number of MGCs
 - 2. To allocate MGs to MGCs
 - 3. To determine the total BHCA to be supported by each MGC
 - 4. See if the initial MGC allocation fits within the MGC BHCA limit.
 - 5. If not, go to 1.

Calculating VoIP Bandwidth Requirements

- The bandwidth required between MGs for VoIP traffic
- The bandwidth required for a single call depends on the following factors.
 - Voice-coding scheme
 - Packetization interval
 - The use of silence suppression
 - Probability of excessive packet collision
 - Packet will be lost or delayed as a result of too many speakers talking at one time.

Peak in the Number of Simultaneous Speakers

- Consider n speakers. If voice activity is 40 percent, then the probability of an individual user speaking at a given instant is 40 percent.
- The probability that exactly x subscribers are speaking at a given time

• $Pa(x) = (n,x) p^{x}(1-p)^{n-x}$, where p=0.4

- The probability that there are no more than x speakers at a time
 - Pb(x) = Pa(0) + Pa(1) + ... + Pa(x)
- To determine the value of x
 - Seeking Pb(x)=0.999 or greater
- Normal distribution function instead of binomial distribution due to computation complexity

Bandwidth Requirement

VoIP Bandwidth

- Voice packet size + 40 octets (for IP, UDP and RTP) + WAN layer 2 overhead + MPLS overhead (if applicable)
- RTCP bandwidth should be limited to about 5% of the actual VoIP bandwidth.
- Signaling and OA&M Bandwidth
 - Between MGC and MG
 - Between MGC and SG
 - Between SG and STP
 - Between MGC and MGC
 - Between each network element and EMS

Physical Connectivity

- To determine how we will connect the different cities to provide the bandwidth we need
- Each city has an alternative path to every other city to ensure the network does not fail.

