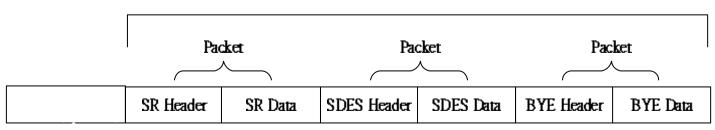
Transporting Voice by Using IP

The RTP Control Protocol [1/3]

RTCP

- A companion control protocol of RTP
- Periodic exchange of control information
 - For quality-related feedback
- A third party can also monitor session quality and detect network problems.
 - Using RTCP and IP multicast
- Five types of RTCP packets
 - Sender Report: used by active session participants to relay transmission and reception statistics
 - Receiver Report: used to send reception statistics from those participants that receive but do not send them


The RTP Control Protocol [2/3]

Source Description (SDES)

- One or more descriptions related to a particular session participant
- Must contain a canonical name (CNAME)
 - Separate from SSRC which might change
 - When both audio and video streams were being transmitted, the two streams would have
 - different SSRCs
 - the same CNAME for synchronized play-out
- BYE
 - The end of a participation in a session
- APP
 - For application-specific functions

The RTP Control Protocol [3/3]

- Two or more RTCP packets will be combined
 - SRs and RRs should be sent as often as possible to allow better statistical resolution.
 - New receivers in a session must receive CNAME very quickly to allow a correlation between media sources and the received media.
 - Every RTCP packet must contain a report packet (SR/RR) and an SDES packet
 - Even if no data to report
- An example of RTP compound packet

Compound Packet

RTCP Sender Report

SR

- Header Info
- Sender Info
- Receiver Report Blocks
- Option
 - Profile-specific extension

0000000000000001234567	0 0 1 1 1 1 1 1 8 9 0 1 2 3 4 5	11111222222222233 6789012345678901		
V=2PX RC	PT=SR=200	Length		
	SSRC o	f sender		
NT	P Timestamp (m	ost significant word)		
NT	P Timestamp (les	ist significant word)		
	RTP Timestamp			
	sender's packet count			
	sender's octet count			
	SSRC_1(SSRC of first source)			
fraction lost	fraction lost			
exte	nded highest sequ	ence number received		
	interarri	val jitter		
	last SR	(LSR)		
Delay since last SR (DLSR)				
	SSRC_2(SSRC of	of second source)		
	profile-speci	ic extensions		

Header Info

Resemble to an RTP packet

- Version
 - 2
- Padding bit
 - Padding octets?
- RC, report count
 - The number of reception report blocks
 - 5-bit
 - If more than 31 reports, an RR is added
- PT, payload type (200)

Sender Info

- SSRC of sender
- NTP Timestamp
 - Network Time Protocol Timestamp
 - The time elapsed in seconds since 00:00, 1/1/1900 (GMT)
 - 64-bit
 - 32 MSB: the number of seconds
 - 32 LSB: the fraction of a seconds (200 ps)
- RTP Timestamp
 - The same as used for RTP timestamps in RTP packets
 - For better synchronization
- Sender's packet count
 - Cumulative within a session
- Sender's octet count
 - Cumulative within a session

RR blocks [1/2]

SSRC_n

- The source identifier of the session participant to which the data in this RR block pertains.
- Fraction lost
 - Fraction of packets lost since the last report issued by this participant
 - By examining the sequence numbers in the RTP header
- Cumulative number of packets lost
 - Since the beginning of the RTP session
- Extended highest sequence number received
 - The sequence number of the last RTP packet received
 - 16 lsb, the last sequence number
 - 16 msb, the number of sequence number cycles

RR blocks [2/2]

- Interarrival jitter
 - An estimate of the variance in RTP packet arrival
- Last SR Timestamp (LSR)
 - Used to check if the last SR has been received
- Delay Since Last SR (DLSR)
 - The duration in units of 1/65,536 seconds

RTCP Receiver Report

RR

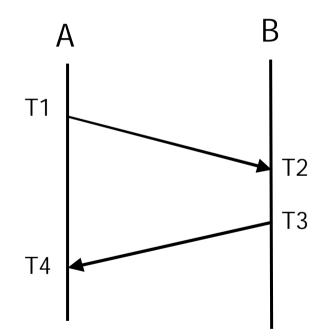
- Issued by a participant who receives RTP packets but does not send, or has not yet sent
- Is almost identical to an SR
 - PT = 201
 - No sender information

RTCP Source Description Packet

 Provides identification and information regarding session participants

Must exist in every RTCP compound packet

Header


- V, P, RC, PT=202, Length
- Zero or more chunks of information
 - An SSRC or CSRC value
 - One or more identifiers and pieces of information
 - A unique CNAME (user@host)
 - Email address, phone number, name

RTCP BYE Packet (PT=203)

- Indicate one or more media sources (SSRC or CSRC) are no longer active
- Application-Defined RTCP Packet (PT=204)
 - For application-specific data
 - For non-standardized application

Calculating Round-Trip Time

- Use SRs and RRs
- E.g.
 - Report A: A, T1 B, T2
 - Report B: B, T3 A, T4
 - RTT = T4 T3 + T2 T1
 - RTT = T4-(T3-T2)-T1
 - Report B
 - LSR = T1
 - DLSR = T3-T2

Calculation Jitter

- The variation in delay
- The mean deviation of the difference in packet spacing at the receiver compared to the packet spacing at the sender for a pair of packets
 - This value is equivalent to the derivation in transit time for a pair of packets.
 - $S_i =$ the RTP timestamp for packet i
 - R_i = the time of arrival
 - $D(i,j) = (R_j-R_i)-(S_j-S_i) = (R_j-S_j) (R_i-S_i)$
- The Jitter is calculated continuously
 - J(i) = J(i-1) + (| D(i-1,i) | J(i-1))/16

Timing of RTCP Packets

- RTCP provides useful feedback
 - Regarding the quality of an RTP session
 - Delay, jitter, packet loss
 - Be sent as often as possible
 - Consume the bandwidth
 - Should be fixed to a small fraction (e.g., 5%)
- An algorithm, RFC 1889
 - Senders are collectively allowed at least 25% of the control traffic bandwidth. (CNAME)
 - The interval > 5 seconds
 - 0.5 1.5 times the calculated interval
 - This helps to avoid unintended synchronization where all participants send RTCP packets at the same time instant, hence clogging the network.
 - A dynamic estimate of the avg. RTCP packet size is calculated.
 - To automatically adapt to changes in the amount of control information carried.

IP Multicast

- An IP diagram sent to multiple hosts
 - Conference
 - To a single address associated with all listeners
- Multicast groups
 - Multicast address
 - Join a multicast group
 - Inform local routers
 - Routing protocols
 - Support propagation of routing information for multicast addresses
 - Routing tables should be set up so that the minimum number of datagrams is sent.
- IP version 4 (IPv4) address space 224.0.0.0 to 239.255.255.255
- Hosts in a particular group use the Internet Group Message Protocol (IGMP) to advertise their membership in a group to routers.

IP Version 6

- The explosive growth of the Internet
 - IPv4 address space, 32-bit
 - Real-time and interactive applications
- Expanded address space, 128 bits
- Simplified header format
 - Enabling easier processing of IP datagrams
- Improved support for headers and extensions
 - Enabling greater flexibility for the introduction of new options
- Flow-labeling capability
 - Enabling the identification of traffic flows (and therefore better support at the IP level) for real-time applications
- Authentication and privacy
 - Support for authentication, data integrity and data confidentiality are included at the IP level.

IPv6 Header [1/3]

0000 0123 Version	0 0 0 0 0 0 1 1 4 5 6 7 8 9 0 1 Traffic Class	1 1 1 1 2 3 4 5	1 1 1 1 2 2 2 2 6 7 8 9 0 1 2 3 Flow Labe	2 2 2 2 2 2 3 3 4 5 6 7 8 9 0 1
Payload Length		Next Header	Hop Limit	
Source Address				
Destination Address				

IPv6 Header [2/3]

- Version
 - **6**
- Traffic Class, 8-bit
 - For the quality of service
- Flow Label, 20-bit
 - Label sequences of packets that belong to a single flow
 - A VoIP stream
 - A flow := source address, destination address, flow label

IPv6 Header [3/3]

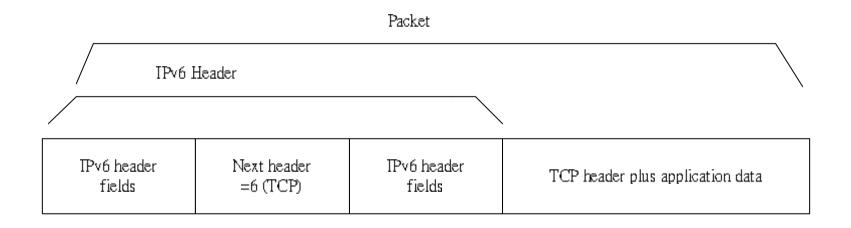
Payload Length, 16-bit unsigned integer

- The length of payload in octets
- Header extensions are part of the payload
- Next Header, 8-bit
 - The next higher-layer protocol
 - Same as the Protocol field of the IPv4 header
 - The existence of IPv6 header extensions
- Hop Limit, 8-bit unsigned integer
 - The TTL field of the IPv4 header
- Source and Destination Addresses, 128-bit

IPv6 addresses

- - X is a hexadecimal character
- E.g., 1511:1:0:0:FA22:45:11
 - The symbol "::" can be used to represent a number of contiguous fields with zero values.
 - = 1511:1::FA22:45:11
- 0:0:0:0:AA11:50:22:F77 = ::AA11:50:22:F77
 - "::" can appears only once

IPv6 special addresses


- The all-zeros address, ::
 - An unspecified address; a node does not yet know its address
 - The all-zeros address must not be used as a destination address.
- The loopback address, ::1
 - To send an IPv6 packet to itself
 - On a virtual internal interface
- IPv6 address with embedded IPv4 address (type 1)
 - 96-bit zeros + 32-bit IPv4 address
 - ::140.113.17.5
 - Used by IPv6 hosts and routers that tunnel IPv6 packets through an IPv4 infrastructure
- IPv6 address with embedded IPv4 address (type 2)
 - 80-bit zeros + FFFF + 32-bit IPv4 address
 - 0:0:0:0:0:FFFF:140.113.17.5
 - ::FFFF:140.113.17.5
 - Applied to nodes that do not support IPv6

IPv6 Header Extensions

- To be placed between the fixed header and the actual data payload
- Next Header
 - The type of payload carried in the IP datagram
 - The type of header extension
 - Each extension has its own next header field.

Header extension

Use the next header field

IPv6 header fields Next header=0 =hop-by-hop options	Hop-by-hop header fields Next header=60 =destination options	destination header fields Next header=43 =routing	routing header fields Next header=6 =TCP	TCP header plus application data
--	---	--	---	-------------------------------------

Hop-by-hop Extension [1/3]

- It is the only one exception.
 - Examined and processed by every intermediate node
 - If present, the hop-by-hop extension must immediately follow the IP header
 - Of variable length
- Next header
- Length of this header extension
 - in units of eight octets
- Options
 - TLV (Type-Length-Value) format
 - Type: 8-bit
 - Length: 8-bit (in units of octets)
 - Value: variable length
 - Type [0:2] are of special significance

Hop-by-hop Extension [2/3]

Hop-by-hop header extension

0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 Next header	0 0 1 1 1 1 1 1 1 8 9 0 1 2 3 4 5 Length	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	Options	

Т	L	V
Option Type	Option Length	Option Data

T=Type L=Length V=Value

Hop-by-hop Extension [3/3]

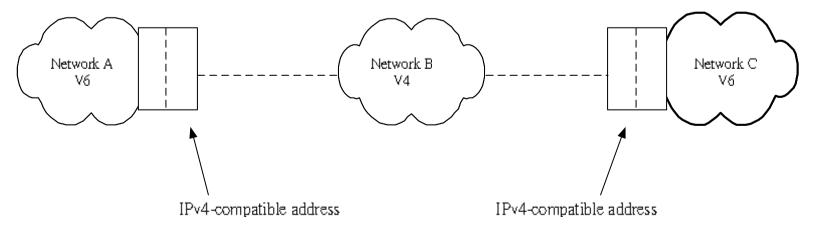
- Option Type: the first two bits (how the node react if it does not understand the option)
 - 00: skip this option and continue processing the header
 - 01: discard the packet
 - 10: discard the packet and send an ICMP Parameter Problem, Code 2 message to the originator of the packet
 - 11: do above only if the destination address in the IP header is not a multicast address
- Option Type: the third bit
 - 1, the option data can be changed
 - 0, cannot

Destination options extension

- Has the same format as the hop-by-hop extension
- Only the destination node examine the extension.
- Header type = 60
- Routing Extension
 - A routing type field to enable various routing options
 - Only routing type 0 is defined for now
 - Specify the nodes that should be visited

Routing Extension [1/2]

00000000 01234567	0 0 1 1 1 1 1 1 8 9 0 1 2 3 4 5		2 2 2 2 2 2 3 3 4 5 6 7 8 9 0 1
Next header	Length	Routing Type (0)	Segments Left
Reserved			
Address 1			
Address 2			
Address n			


Routing Extension [2/2]

- Routing type
- Segments Left
 - The number of nodes that still need to be visited
- A list of IP addresses needs to be visited
- Is this type of header analyzed by intermediate node?
 - Yes or no
 - A->B->C->D->Z
 - A->B, 3, (C,D,Z)
 - A->C, 2, (B,D,Z) by B
 - A->D, 1, (B,C,Z) by C
 - A->Z, O, (B,C,D) by D

Interoperation IPv4 and IPv6

IPv4 and IPv6 will coexist for a long time

- IPv4 nodes ⇔ IPv6 nodes
- IPv6 nodes ⇔ IPv6 nodes via IPv4 networks
- IPv4 nodes ⇔ IPv4 nodes via IPv6 networks
- IPv4-compatible nodes with IPv4-compatible addresses at the boundaries of IPv6 networks
 - IPv6 in IPv4 packets

