Transporting Voice by Using IP

Internet Overview

A collection of networks

- The private networks
 - LANS, WANS
 - Institutions, corporations, business and government
 - May use various communication protocols
- The public networks
 - ISP: Internet Service Provider
 - Using Internet Protocol (IP)
- To connect to the Internet
 - Using IP
 - Routers provide the connectivity between various networks and form the backbone of the Internet.

Interconnecting Networks

Overview of the IP Protocol Suite

- IP
 - A routing protocol for the passing of data packets
 - Must work in cooperation with higher layer protocols (application or service) and lower-layer transmission systems
- The OSI (Open System Interconnection) sevenlayer model
 - The top layer: useable information to be passed to the other side
 - The information must be
 - Packaged appropriately
 - Routed correctly
 - Traverse some physical medium

OSI Model [1/3]

- Physical layer
 - The physical media
 - Coding and modulation schemes for 1's and 0's
- Data link layer
 - Transport the information over a single link
 - Frame packaging, error detection/correction and retransmission
- Network layer
 - Routing traffic from the source to the destination
 - Passing through intermediate points

OSI Model [2/3]

Transport layer

- Ensure error-free, omission-free and in-sequence delivery
- Support multiple streams from the source to the destination for applications
 - To identify each individual stream and ensure that each stream is passed upward to the correct application
- Session layer
 - The commencement (e.g., login) and completion (e.g., logout) of a session between applications
 - Establish the dialogue
 - One way at a time or both ways at the same time

OSI Model [3/3]

Presentation layer

- Specify the language to be used between applications
 - Encoding
- Application layer
 - Provide an interface to the user
 - File transfer programs and web browsers

The IP suite and the OSI stack

- Transmission Control Protocol (TCP)
 - Reliable, error-free, in-sequence delivery
- User Datagram Protocol (UDP)
 - No sequencing, no retransmission

Layer 7 - Application	
Layer 6 - Presentation	Applications and Services
Layer 5 - Session	
Layer 4 - Transport	TCP or UDP
Layer 3 - Network	IP
Layer 2 - Data Link	Data Link
Layer 1 - Physical	Layer 1 - Physical

Internet Society [1/3]

- A non-profit organization
- Keep the Internet alive and growing
- "To assure the open development, evolution, and the use of Internet for the benefit of all people throughout the world"
- The tasks include
 - Supporting the development and dissemination of Internet standards
 - Supporting the RD related to the Internet and internetworking
 - Assisting developing countries in implementing Internet Infrastructure
 - Forming liaisons with other organizations for education, collaboration, and coordination related to Internet development

Internet Society [2/3]

- Internet Architecture Board (IAB)
 - The technical advisory group
 - Providing technical guidance to Internet Society
 - Overseeing the Internet standards process
- Internet Engineering Task Force (IETF)
 - Comprising a huge number of volunteers
 - Equipment vendors, network operators, research institutions etc.
 - Developing Internet standards
 - Detailed technical work
 - Working groups (addressing specific areas or topics)
 - Most of the work is done by individuals, and shares with others through the use of mailing lists.
 - The IETF as a whole meets three times a year.
 - megaco, iptel, sip, sigtran

Internet Society [3/3]

Internet Engineering Steering Group (IESG)

- Managing the IETF's activities
- Approving an official standard
- Internet Assigned Numbers Authority (IANA)
 - Administration of unique numbers and parameters used in Internet standards
 - Be registered with the IANA

Internet Standards Process

- The process is documented in RFC 2026.
- First, Internet Draft
 - The early version of spec.
 - Can be updated, replaced, or made obsolete by another document at any time
 - IETF's Internet Drafts directory
 - Six-month life-time
 - Any reference made to an Internet draft must be done with great care and with emphasis that the draft is a work in progress.

Internet Standards Process [1/2]

- RFC
 - An Internet draft is considered sufficiently complete
 - Request for Comments
 - An RFC number
- Proposed standard
 - A stable, complete, and well-understood spec.
 - Has garnered significant interest
- Draft standard
 - Two independently successful implementations
 - Interoperability must have been be demonstrated.

Internet Standards Process [2/2]

A standard

- The IESG is satisfied that the spec. is stable and mature and can be readily and successfully implemented on a large scale.
- Significant operational experience
- A standard (STD) number
- Not all RFCs are standards, nor do all RFCs document technical specifications
 - Some document best current practices (BCPs)
 - To outline processes, policies, or operational considerations related to the Internet
 - Others are known as applicability statements
 - How a spec. be used to achieve a particular goal, or different specs work together

Internet Protocol (IP)

- RFC 791
 - Amendments: RFCs 950, 919, and 920
 - Requirements for Internet hosts: RFCs 1122, 1123
 - Requirements for IP routers: RFC 1812
- IP datagram
 - Data packet with an IP header that contains information about the originator and destination addresses.
 - The header information is used by routers to route the packet to its destination.
- Best-effort protocol
 - No guarantee that a given packet will be delivered
 - A packet may be lost due to transmission errors, congestion in buffers or transmission facilities, link failures, and so on.

IP Header [1/2]

- Version 4
- Header Length
- Type of Service
- Total Length
- Identification, Flags, and Fragment Offset
 - A datagram can be split into fragments in the case where the size of the datagrams is greater than the maximum that can be handled by a given link
 - Identify data fragments that belong together
 - Flags
 - a datagram can be fragmented or not
 - Indicate the last fragment
 - The fragment offset is a number describing where the fragment belongs in the overall datagram.
 - Enabling the destination to put the different pieces together correctly

IP Header [2/2]

- TTL
 - A number of hops (not a number of seconds)
- Protocol
 - The higher-layer protocol
 - TCP (6); UDP (17)
- Source and Destination IP Addresses

00000000000 01234567 Version Header Length Identif	0 0 1 1 1 1 1 1 8 9 0 1 2 3 4 5 Type of Service	1 1 1 6 7 8 Flags	1 2 2 2 2 2 2 2 2 2 2 2 3 3 9 0 1 2 3 4 5 6 7 8 9 0 1 Total Length Fragment Offset
Time to Live	Protocol		Header Checksum
Source IP Address			
Destination IP Address			
Options			
Data			

IP Routing

- Based on the destination address in the IP header
- Routers
 - Can contain a range of different interfaces
 - Determine the best outgoing interface for a given IP datagram
 - Routing table
 - Destination
 - IP route mask
 - For example, any address starting with 182.16.16 should be routed on interface A. (IP route mask 255.255.255.0)
 - Longest match

Populating Routing Tables

Issues

- The correct information in the first place
- Keep the information current in a dynamic environment
- The best path?
- Protocols
 - OSPF (Open Short Path First)
 - An AS (Autonomous System) is a group of routers that share routing information between them.
 - The AS is further divided into areas.
 - Area 0: backbone area
 - Border router
 - BGP (Border Gateway Protocol)

Transmission Control Protocol (TCP)

- In sequence, without omissions and errors
- End-to-end confirmation, packet retransmission flow control, congestion control
- RFC 793
- Break up a data stream in segments
- Attach a TCP header
- Sent down the stack to IP
- At the destination, checks the header for errors
 - Send back an ack
- The source retransmits if no ack is received within a given period.

The TCP Header [1/5]

0000 0123	0 0 0 0 0 0 1 1 1 1 1 1 4 5 6 7 8 9 0 1 2 3 4 5	1 1 1 1 2 6 7 8 9 0	2 2 2 2 2 2 2 2 2 2 3 3 1 2 3 4 5 6 7 8 9 0 1
Source Port		Destination Port	
Sequence Number			
Acknowledge Number			
Data Offset	UAPRSF Reserved RCSSYI GKHTNN	Window	
	Cbecksum		Urgent Point
Options		Padding	
Data			

The TCP Header [2/5]

TCP Port Numbers

- Identifying a specific instance of a given application
- A unique port number for a particular session
- Well-known port numbers
 - IANA, 0-1023
 - 23, telnet; 25, SMTP
- Many clients and a server
 - TCP/IP
 - Source address and port number + Destination address and port number
 - A socket address (or a transport address)

The TCP Header [3/5]

Sequence and acknowledge numbers

- Identify individual segments
- Actually count data octets transmitted
- A given segment with a SN of 100 and contains 150 octets of data
 - The ack number will be 250
 - The SN of the next segment is 250
- Other header fields
 - Data offset: header length (in 32-bit words)
 - URG: 1 if urgent data is included, use urgent pointer field

The TCP Header [4/5]

- ACK: 1, an ACK
- PSH: for the push function
- RST: reset; an error and abort a session
- SYN: Synchronize; the initial messages
- FIN: Finish; close a session
- Window
 - The amount of buffer space available for receiving data
- Checksum

The TCP Header [5/5]

Urgent Pointer

- An offset to the first segment after the urgent data
- Indicates the length of the urgent data
- Critical information to be sent to the user application ASAP

TCP Connections

- User Datagram Protocol
 - Pass individual pieces of data from an application to IP
 - No ACK, inherently unreliable
 - Applications
 - A quick, on-shot transmission of data, request/response
 - DNS
 - If no response, the AP retransmits the request
 - The AP includes a request identifier
 - The source port number is optional
 - Checksum

Voice over UDP, not TCP

Speech

- Small packets, 10 40 ms
- Occasional packet loss is not a catastrophe
- Delay-sensitive
 - TCP: connection set-up, ack, retransmit delays
- 5 % packet loss is acceptable if evenly spaced
 - Resource management and reservation techniques
 - A managed IP network
- In-sequence delivery
 - Mostly yes
- UDP was not designed for voice traffic

Real-Time Transport Protocol

- RTP: A Transport Protocol for Real-Time Applications
 - RFC 1889
 - RTP Real-Time Transport Protocol
 - RTCP RTP Control Protocol
- UDP
 - Packets may be lost or out-of-sequence
- RTP over UDP
 - A sequence number
 - A time stamp for synchronized play-out
 - Does not solve the problems; simply provides additional information

RTCP

- A companion protocol
- Exchange messages between session users
- # of lost packets, delay and inter-arrival jitter
- Quality feedback
- RTCP is implicitly open when an RTP session is open
- E.g., RTP/RTCP uses UDP port 5004/5005

RTP Payload Formats [1/2]

RTP carries the actual digitally encoded voice

- RTP header + a payload of voice/video samples
- UDP and IP headers are attached
- Many voice- and video-coding standards
 - A payload type identifier in the RTP header
 - Specified in RFC 1890
 - New coding schemes have become available
 - See Table 2-1 and Table 2-2
 - A sender has no idea what coding schemes a receiver could handle.

RTP Payload Formats [2/2]

- Separate signaling systems
 - Capability negotiation during the call setup
 - SIP and SDP
 - A dynamic payload type may be used
 - Support new coding scheme in the future
 - The encoding name is also significant.
 - Unambiguously refer to a particular payload specification
 - Should be registered with the IANA
- RED, Redundant payload type
 - Voice samples + previous samples
 - May use different encoding schemes
 - Cope with packet loss

RTP Header Format

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Profile-specific information	Lengtb
Header extension	

The RTP Header [1/4]

- Version (V)
 - **2**
- Padding (P)
 - The padding octets at the end of the payload
 - The payload needs to align with 32-bit boundary
 - The last octet of the payload contains a count of the padding octets.
- Extension (X)
 - 1, contains a header extension

The RTP Header [2/4]

- CSRC Count (CC)
 - The number of contributing source identifiers
- Marker (M)
 - Support silence suppression
 - The first packet of a talkspurt, after a silence period
- Payload Type (PT)
 - In general, a single RTP packet will contain media coded according to only one payload format.
 - RED is an exception.
- Sequence number
 - A random number generated by the sender at the beginning of a session
 - Incremented by one for each RTP packet

The RTP Header [3/4]

Timestamp

- 32-bit
- The instant at which the first sample in the payload was generated
- The receiver
 - Synchronized play-out
 - Calculate the jitter
 - The clock freq depends on the encoding
 - E.g., 8000Hz
 - Support silence suppression
 - The initial timestamp is a random number chosen by the sending application.

The RTP Header [4/4]

- Synchronization Source (SSRC)
 - 32-bit identifier
 - The entity setting the sequence number and timestamp
 - Normally the sender of the RTP packet
 - Chosen randomly, independent of the network address
 - Meant to be globally unique within a session
 - May be a sender or a mixer
- Contributing Source (CSRC)
 - An SSRC value for a contributor
 - Used to identify the original sources of media behind the mixer
 - 0-15 CSRC entries
- RTP Header Extensions

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1	
Profile-specific information	Length	
Header extension		

Mixers and Translators

Mixers

- Enable multiple media streams from different sources to be combined into a single stream
 - If the capacity or bandwidth of a participant is limited
- An audio conference
- The SSRC is the mixer
 - More than one CSRC values
- Translators
 - Manage communications between entities that does not support the same coding scheme
 - The SSRC is the participant, not the translator.

Translator

64 Kbps G.711

32 Kbps ADPCM