IP Telephony (Voice over IP)

- Instructor
 - Ai-Chun Pang, <u>acpang@csie.ntu.edu.tw</u>
 - Office Number: 417, New building
- Textbook
 - "Carrier Grade Voice over IP," D. Collins, McGraw-Hill, Second Edition, 2003.
- Requirements

•	Homework x 3	30%
•	Mid-term exam	25%
•	Final exam	25%
•	Term project	20%

- TAs (office number: 305, Old building)
 - 王舜茂 (oncemore@voip.csie.ntu.edu.tw)
 - 許睿斌 (binbin@voip.csie.ntu.edu.tw)

Course Outline

- Introduction
- Transporting Voice by Using IP
- Speech-Coding Techniques (Optional)
- H.323
- Session Initiation Protocol (SIP) and ENUM
- SIP over Network Address Translation (NAT)
- Media Gateway Control and the Softswitch Architecture
- VoIP and SS7
- Quality of Service
- Designing a Voice over IP Network
- From IPv4 to IPv6 Networks
- Mobile All IP Network
 - IP Multimedia Subsystem (IMS)
- VoIP over Wireless LAN (WLAN)

Chapter 1

Carrier Grade VoIP

Carrier grade and VoIP

- Mutually exclusive
- A serious alternative for voice communications with enhanced features
- Carrier grade
 - The last time when it fails
 - 99.999% reliability (high reliability)
 - Fully redundant, Self-healing
 - AT&T carries about 300 million voice calls a day (high capacity).
 - Highly scalable
 - Short call setup time, high speech quality
 - No perceptible echo, noticeable delay and annoying noises on the line
 - Interoperability

- Transport voice traffic using the Internet Protocol (IP)
- One of the greatest challenges to VoIP is voice quality.
- One of the keys to acceptable voice quality is bandwidth.
- Control and prioritize the access
- Internet: best-effort transfer
 - VoIP != Internet telephony
 - Next generation Telcos
 - Access and bandwidth are better managed.

A packet-based protocol

- Routing on a packet-by-packet base
- Packet transfer with no guarantees
 - May not be received in order
 - May be lost or severely delayed
- TCP/IP

IP

- Retransmission
- Assemble the packets in order
- Congestion control
- Useful for file-transfers and e-mail

Data and Voice

Data traffic

- Asynchronous can be delayed
- Extremely error sensitive
- Voice traffic
 - Synchronous the stringent delay requirements
 - More tolerant for errors
- IP is not for voice delivery.
- VoIP must
 - Meet all the requirements for traditional telephony
 - Offer new and attractive capabilities at a lower cost

Why VoIP?

- Why carry voice?
 - Internet supports instant access to anything
 - However, voice services provide more revenues.
 - Voice is still the killer application.
- Why use IP for voice?
 - Traditional telephony carriers use circuit switching for carrying voice traffic.
 - Circuit-switching is not suitable for multimedia communications.
 - IP: lower equipment cost, lower operating expense, integration of voice and data applications, potentially lower bandwidth requirements, the widespread availability of IP

Lower Equipment Cost

- PSTN switch
 - Proprietary hardware, OS, applications
 - New software application development for third parties
 - High operation and management cost
 - Training, support, and feature development
 - Mainframe computer
- The IP world
 - Standard mass-produced computer equipment
 - Application software is quite separate
 - A horizontal business model
 - More open and competition-friendly
- Intelligent Network (IN)
 - does not match the openness and flexibility of IP solutions.
 - A few highly successful services
 - VoIP networks can interwork with Signaling System 7 (SS7) and take advantage of IN services build on SS7.

Voice/Data Integration

- Click-to-talk application
 - Personal communication
 - E-commerce
- Web collaboration
 - Shop on-line with a friend at another location
- Video conferencing
 - Shared whiteboard session
 - With IP multicasting
- IP-based PBX
- IP-based call centers
- IP-based voice mail
- Far more feature-rich than the standard 12button keypad

Lower Bandwidth Requirements

- PSTN
 - G.711 64 kbps
 - Human speech frequency < 4K Hz</p>
 - The Nyquist Theorem: 8000 samples per second to fully capture the signal
 - 8K * 8 bits
- Sophisticated coders
 - 32kbps, 16kbps, 8kbps, 6.3kbps, 5.3kbps
 - GSM 13kbps
 - Save more bandwidth by silence suppression
- Traditional telephony networks can use coders, too.
 - But it is more difficult.
- VoIP two ends of the call to negotiate the coding scheme
- The fundamental architecture of VoIP systems lends itself to more transmission-efficient network designs.
 - Distributed (Bearer traffic can be routed more directly from source to destination.)

The Widespread Availability of IP

IP

- LANs and WANs
- Dial-up Internet access
- IP applications even reside within hand-held computers and various wireless devices.
- The ubiquitous presence
- VoFR or VoATM
 - Only for the backbone of the carriers

VoIP Challenges

- VoIP must offer the same reliability and voice quality as traditional circuit-switched telephony.
- Mean Opinion Score (MOS)
 - 5 (Excellent), 4 (Good), 3 (Fair), 2 (Poor), 1 (Bad)
 - International Telecommunication Union Telecommunications Standardization Sector (ITU-T) P.800
 - Toll quality means a MOS of 4.0 or better.

Speech Quality [1/2]

- Must be as good as PSTN
- Delay
 - The round-trip delay
 - Coding/Decoding + Buffering Time + Tx. Time
 - G.114 < 300 ms
- Jitter
 - Delay variation
 - Different routes or queuing times
 - Adjusting to the jitter is difficult.
 - Jitter buffers add delay.

Speech Quality [2/2]

Echo

- High Delay ===> Echo is Critical
- Packet Loss
 - Traditional retransmission cannot meet the real-time requirements
- Call Set-up Time
 - Address Translation
 - Directory Access

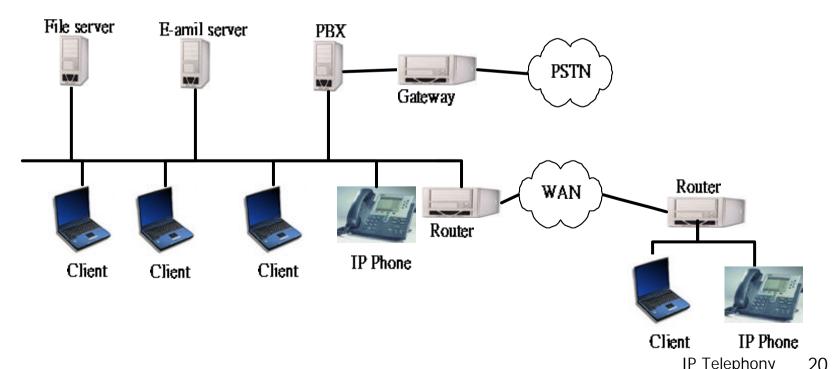
Managing Access and Prioritizing Traffic

- A single network for a wide range of applications, including data, voice, and video
- Call is admitted if sufficient resources are available
- Different types of traffic are handled in different ways
 - If a network becomes heavily loaded, e-mail traffic should feel the effects before synchronous traffic (such as voice).
- QoS has required a huge effort.

Speech-coding Techniques

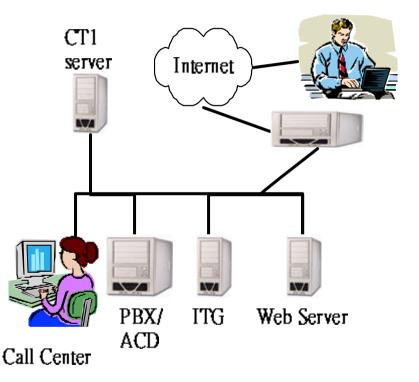
- In general, coding techniques are such that speech quality degrades as bandwidth reduces.
 - The relationship is not linear.

G .711	64kbps	4.3
G .726	32kbps	4.0
 G.723 (celp) 	6.3kbps	3.8
G .728	16kbps	3.9
G .729	8kbps	4.0
GSM	13kbps	3.7

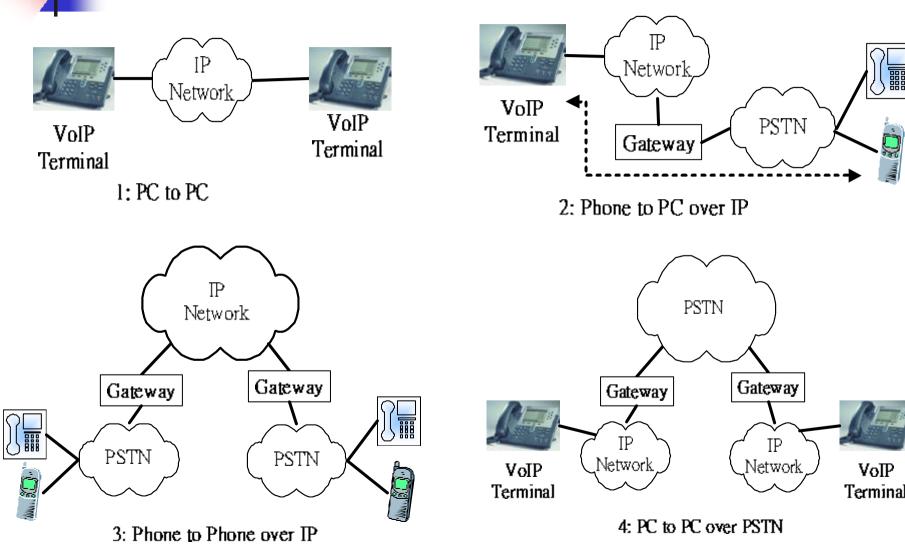

Network Reliability and Scalability

- PSTN system fails
 - 99.999% reliability
- Today's VoIP solutions
 - Redundancy and load sharing
 - A balance must be struck between network cost and network quality.
 - Finding the right balance is the responsibility of the network architect.
 - Scalable easy to start on a small scale and then expand as traffic demand increases

VoIP Implementations


IP-based PBX solutions

- A single network
- Enhanced services



VoIP Implementations

- IP voice mail
 - One of the easiest applications
- IP call centers
 - Use the caller ID
 - Automatic call distribution
 - Load the customer's information on the agent's desktop
 - Click to talk

VoIP Evolution

Overview of the Following Chapters [1/2]

- Chapter 2, "Transporting Voice by Using IP"
 - A review of IP networking in general to understand what IP offers, why it is a best-effort protocol, and why carrying real-time traffic over IP has significant challenges
 - RTP (Real-Time Transport Protocol)
- Chapter 3, "Voice-coding Techniques"
 - Choosing the right coding scheme for a particular network or application is not necessarily a simple matter.
- Chapter 4, "H.323"
 - H.323 has been the standard for VoIP for several years.
 - It is the most widely deployed VoIP technology.
- Chapter 5, "The Session Initiation Protocol"
 - The rising star of VoIP technology
 - The simplicity of SIP is one of the greatest advantages
 - Also extremely flexible (a range of advanced feature supported)

Overview of the Following Chapters [2/2]

- Chapter 6, "Media Gateway Control and the Softswitch Architecture"
 - Interworking with PSTN is a major concern in the deployment of VoIP networks
 - The use of gateways
 - They enables a widely distributed VoIP network architecture, whereby call control can be centralized.
- Chapter 7, "VoIP and SS7"
 - H.323, SIP, MGCP and MEGACO are all signaling systems.
 - The state of the art in PSTN signaling is SS7.
 - Numerous services are provided by SS7.
- Chapter 8, "QoS"
 - A VoIP network must face to meet the stringent performance requirements that define a carrier-grade network.
- Chapter 9, "Designing a Voice over IP Network"
 - How to build redundancy and diversity into a VoIP network without losing sight of the trade-off between network quality and network cost (network dimensioning, traffic engineering and traffic routing)?