IP Telephony

Instructor

- Ai-Chun Pang, <u>acpang@csie.ntu.edu.tw</u>
- Office Number: 417
- Textbook
 - "Carrier Grade Voice over IP," D. Collins, McGraw-Hill, Second Edition, 2003.
- Requirements
 - Homework x 330%
 - One mid-term exam (5/14)
 40%
 - One term project (proposal: 5/7)
 30%
 - Presentation ([5/28], 6/11 and 6/18), Demo (6/18)
- TAs (office number: 213)
 - 黃宇傑, yjhuang.ntu91@msa.hinet.net
 - 劉志孝, <u>r91103@ms.csie.ntu.edu.tw</u>

Course Outline

- Introduction
- Transporting Voice by Using IP (Real-time Transport Protocol - RTP)
- Speech-Coding Techniques
- H.323
- Session Initiation Protocol (SIP) and ENUM
- Media Gateway Control and the Softswitch Architecture
- VoIP and SS7
- Quality of Service
- Designing a Voice over IP Network
- Mobile IPv4, IPv6 and Micro-mobility
- Wireless All IP Network
- Mobile Number Portability

Introduction

Chapter 1

Carrier Grade VoIP

Carrier grade and VoIP

- mutually exclusive
- A serious alternative for voice communications with enhanced features
- Carrier grade
 - The last time when it fails
 - 99.999% reliability (high reliability)
 - Fully redundant, Self-healing
 - AT&T carries about 300 million voice calls a day (high capacity).
 - Highly scalable
 - Short call setup time, high speech quality
 - No perceptible echo, noticeable delay and annoying noises on the line

Transport voice traffic using the Internet Protocol (IP)

- One of the greatest challenges to VoIP is voice quality.
- One of the keys to acceptable voice quality is bandwidth.
- Control and prioritize the access
- Internet: best-effort transfer

VoIP

- VoIP != Internet telephony
- The next generation Telcos
 - Access and bandwidth are better managed.

IP

- A packet-based protocol
 - Routing on a packet-by-packet base
- Packet transfer with no guarantees
 - May not receive in order
 - May be lost or severely delayed
- TCP/IP
 - Retransmission
 - Assemble the packets in order
 - Congestion control
 - Useful for file-transfers and e-mail

Data and Voice

Data traffic

- Asynchronous can be delayed
- Extremely error sensitive
- Voice traffic
 - Synchronous the stringent delay requirements
 - More tolerant for errors
- IP is not for voice delivery.
- VoIP must
 - Meet all the requirements for traditional telephony
 - Offer new and attractive capabilities at a lower cost

Why VoIP?

Why carry voice?

- Internet supports instant access to anything
- However, voice services provide more revenues.
 - Voice is still the killer application.
- Why use IP for voice?
 - Traditional telephony carriers use circuit switching for carrying voice traffic.
 - Circuit-switching is not suitable for multimedia communications.
 - IP: lower equipment cost, integration of voice and data applications, potentially lower bandwidth requirements, the widespread availability of IP

Lower Equipment Cost

PSTN switch

- Proprietary hardware, OS, applications
- High operation and management cost
 - Training, support and feature development cost
- Mainframe computer
- The IP world
 - Standard hardware and mass-produced
 - Application software is quite separate
 - A horizontal business model
 - More open and competition-friendly
- IN
 - does not match the openness and flexibility of IP.
 - A few highly successful services

Voice/Data Integration

- Click-to-talk application
 - Personal communication
 - E-commerce
- Web collaboration
 - Shop on-line with a fried at another location
- Video conferencing
- IP-based PBX
- IP-based call centers
- IP-based voice mail

Lower Bandwidth Requirements

- PSTN
 - G.711 64 kbps
 - Human speech frequency < 4K Hz</p>
 - The Nyquist Theorem: 8000 samples per second
 - 8K * 8 bits
- Sophisticated coders
 - 32kbps, 16kbps, 8kbps, 6.3kbps, 5.3kbps
 - GSM 13kbps
 - Save more bandwidth by silence-detection
- Traditional telephony networks can use coders, too.
 - But it is more difficult.
- VoIP two ends of the call negotiate the coding scheme

The Widespread Availability of IP

IP

- LANs and WANs
- Dial-up Internet access
- The ubiquitous presence
- VoFR or VoATM
 - Only for the backbone of the carriers

VoIP Challenges

- VoIP must offer the same reliability and voice quality as PSTN.
- Mean Opinion Score (MOS)
 - 5 (Excellent), 4 (Good), 3 (Fair), 2 (Poor), 1 (Bad)
 - International Telecommunication Union Telecommunications Standardization Sector (ITU-T) P.800
 - Toll quality means a MOS of 4.0 or better.

Speech Quality

- Must be as good as PSTN
- Delay
 - The round-trip delay
 - Coding/Decoding + Buffering Time + Tx. Time
 - G.114 < 300 ms
- Jitter
 - Delay variation
 - Different routes or queuing times
 - Adjusting to the jitter is difficult
 - Jitter buffers add delay

Speech Quality

Echo

- High Delay ===> Echo is Critical
- Packet Loss
 - Traditional retransmission cannot meet the real-time requirements
- Call Set-up Time
 - Address Translation
 - Directory Access

Managing Access and Prioritizing Traffic

- A single network for a wide range of applications
- Call is admitted if sufficient resources are available
- Different types of traffic are handled in different ways
 - If a network becomes heavily loaded, e-mail traffic should feel the effects before synchronous traffic (such as voice).
- QoS has required huge efforts

Speech-coding Techniques

- In general, coding techniques are such that speech quality degrades as bandwidth reduces.
 - The relationship is not linear.

G .711	64kbps	4.3
G.726	32kbps	4.0
G.723 (celp)	6.3kbps	3.8
G.728	16kbps	3.9
G.729	8kbps	4.0
GSM	13kbps	3.7

Network Reliability and Scalability

- PSTN system fails
 - 99.999% reliability
- Today's VoIP solutions
 - Redundancy and load sharing
 - Scalable easy to start on a small scale and then expand as traffic demand increases

VoIP Implementations

IP-based PBX solutions

- A single network
- Enhanced services

VoIP Implementations

IP voice mail

- One of the easiest applications
- IP call centers
 - Use the caller ID
 - Automatic call distribution
 - Load the customer's information on the agent's desktop
 - Click to talk

VoIP Evolution

1: PC to PC

3: Phone to Phone over IP

2: Phone to PC over IP

4: PC to PC over PSTN