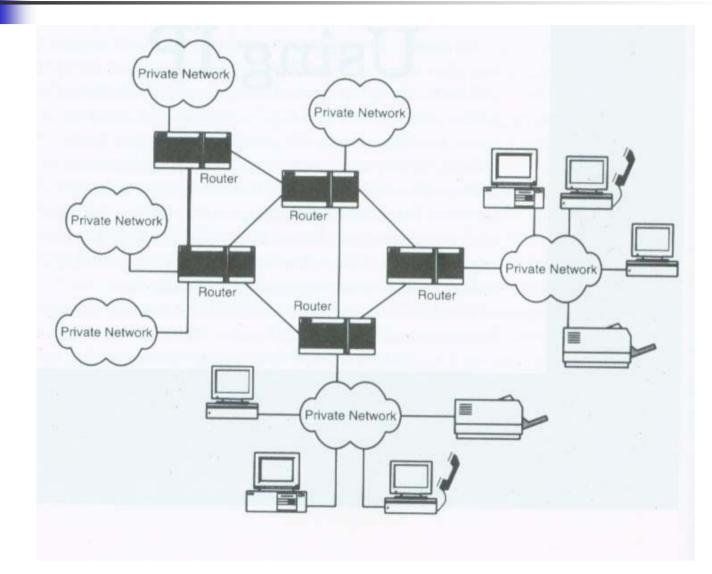
Transporting Voice by Using IP


Chapter 2

Internet Overview

A collection of networks

- The private networks
 - LANs, WANs
 - Institutions, corporations, business and government
 - May use various communication protocols
- The public networks
 - ISP: Internet Service Providers
 - Using Internet Protocol
- To connect to the Internet
 - Using IP

Interconnecting Networks

Overview of the IP Protocol Suite

IP

- A routing protocol for the passing of data packets
- Must work in cooperation with higher layer protocols and lower-layer transmission systems
- The OSI seven-layer model
 - The top layer: useable information to be passed to the other side
 - The information must be
 - Packaged appropriately
 - Routed correctly
 - And it must traverse some physical medium

OSI Model [1/3]

Physical layer

- The physical media
- Coding and modulation schemes for 1's and 0's
- Data link layer
 - Transport the information over a single link
 - Frame packaging, error detection/correction and retransmission
- Network layer
 - Routing traffic through a network
 - Passing through intermediate points

OSI Model [2/3]

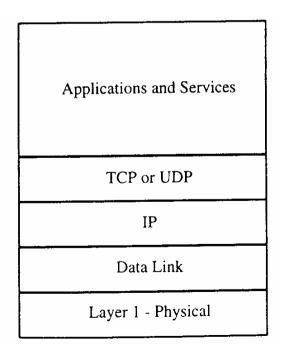
Transport layer

- Ensure error-free, omission-free and in-sequence delivery
- Support multiple streams from the source to destination for applications
- Session layer
 - The commencement (e.g., login) and completion (e.g., logout) of a session between applications
 - Establish the dialogue
 - One way at a time or both ways at the same time

OSI Model [3/3]

- Presentation layer
 - Specify the language, the encoding and so on
- Application layer
 - Provide an interface to the user
 - File transfer programs and web browsers

The IP suite and the OSI stack


TCP

Reliable, error-free, in-sequence delivery

UDP

No sequencing, no retransmission

Layer 7 - Application Layer 6 - Presentation Layer 5 - Session Layer 4 - Transport Layer 3 - Network Layer 2 - Data Link Layer 1 - Physical

Internet Standards and the Process

The Internet Society

- A non-profit organization
- Keep the Internet alive and growing
- "To assure the open development, evolution, and the use of Internet for the benefit of all people throughout the world"
- The tasks include
 - Supporting the development and dissemination of Internet standards
 - Supporting the RD related to the Internet and internetworking
 - Assisting developing countries

Internet Standards and the Process

IAB

- The Internet Architecture Board
- The technical advisory group
- Providing technical guidance to Internet Society
- Overseeing the Internet standards process
- IETF
 - The Internet Engineering Task Force
 - Comprising a huge number of volunteers
 - Equipment vendors, network operators, research institutions etc.
 - Developing Internet standards
 - Detailed technical work
 - Working groups
 - megaco, iptel, sip, sigtran

Internet Standards and the Process

IESG

- The Internet Engineering Steering Group
- Managing the IETF's activities
- Approving an official standard
- IANA
 - The Internet Assigned Numbers Authority
 - Unique numbers and parameters used in Internet standards
 - Be registered with the IANA

The Internet Standards Process

The process

- RFC 2026
- First, Internet Draft
 - The early version of spec.
 - Can be updated, replaced, or made obsolete by another document at any time
 - IETF's Internet Drafts directory
 - Six-month life-time

The Internet Standards Process

RFC

- Request for Comments
- An RFC number
- Proposed standard
 - A stable, complete, and well-understood spec.
 - Has garnered significant interest
- Draft standard
 - Two independently successful implementations
 - Interoperability be demonstrated

The Internet Standards Process

A standard

- The IESG is satisfied
- The spec. is stable and mature
- Significant operational experience
- A standard (STD) number
- Not all RFCs are standards
 - Some document Best Current Practices (BCPs)
 - Processes, policies, or operational considerations
 - Others applicability statements
 - How a spec be used, or different specs work together

RFC 791

- Amendments: RFCs 950, 919, and 920
- Requirements for Internet hosts: RFCs 1122, 1123
- Requirements for IP routers: RFC 1812
- IP datagram
 - Data packet with an IP header
- Best-effort protocol
 - No guarantee that a given packet will be delivered

IP Header [1/2]

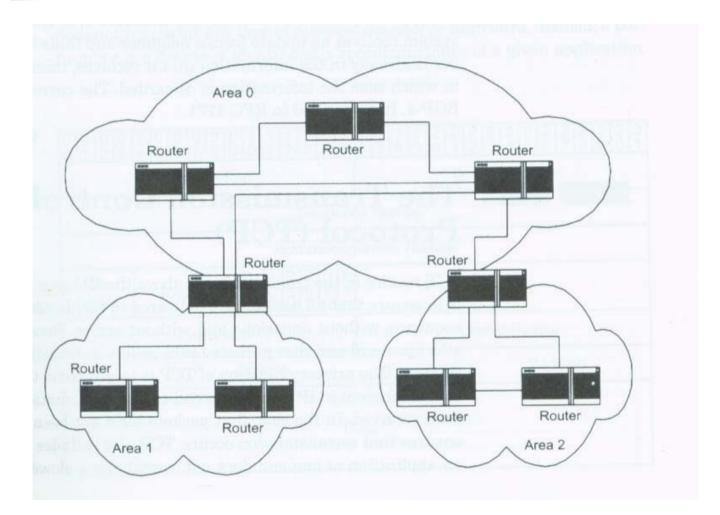
- Version 4
- Header Length
- Type of Service
- Total Length
- Identification, Flags, and Fragment Offset
 - A datagram can be split into fragments
 - Identify data fragments
 - Flags
 - a datagram can be fragmented or not
 - Indicate the last fragment
- TTL
 - A number of hops (not a number of seconds)

IP Header [2/2]

- Protocol
 - The higher-layer protocol
 - TCP (6); UDP (17)
- Source and Destination IP Addresses

0 0 0 0 0 1 2 3 Version	1 5	1 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												3								
Version Length Type of Service Identification										Flags Fragment Offset													
Time to		Header Checksum																					
Source IP Address																							
				D	esti	nat	ion	IP	Ac	ldr	ess				_		-						
	Options																						
	Data																						

IP Routing


- Based on the destination address in the IP header
- Routers
 - Can contain a range of different interfaces
 - Determine the best outgoing interface for a given IP datagram
 - Routing table
 - Destination
 - IP route mask
 - For example, any address starting with 182.16.16 should be routed on interface A. (IP route mask 255.255.255.0)

Populating Routing Tables

Issues

- The correct information in the first place
- Keep the information current in a dynamic environment
- The best path?
- Protocols
 - OSPF (Open Short Path First)
 - An AS (Autonomous System) is a group of routers that share routing information between them.
 - Area 0: backbone area
 - Border router
 - BGP (Border Gateway Protocol)

OSPF Areas

Transmission Control Protocol

- In sequence, without omissions and errors
- End-to-end confirmation, packet retransmission, Flow control
- RFC 793

TCP

- Break up a data stream in segments
- Attach a TCP header
- Sent down the stack to IP
- At the destination, checks the header for errors
 - Send back an ack
- The source retransmits if no ack within a given period

The TCP Header [1/5]

$\begin{array}{c cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{array}$	$\begin{array}{c c}0&0&0\\4&5&6\end{array}$	$\begin{array}{c c} 0 & 0 \\ 7 & 8 \end{array}$	$\begin{array}{c c} 0 & 1 \\ 9 & 0 \end{array}$	1 1	$\begin{array}{c c}1&1\\2&3\end{array}$	1 4	1 5	1 6	1 7	$\frac{1}{8}$	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1
Source Port										Destination Port													
Sequenc										ce Number													
	edge	lgement Number																					
DataU A P R S FOffsetR C S S Y IG K H T N N									Window														
	Checksum									Urgent Pointer													
	Options									Padding										_			
	Data																						

The TCP Header [2/5]

TCP Port Numbers

- Identifying a specific instance of a given application
- A unique port number for a particular session
- Well-known port numbers
 - IANA, 0-1023
 - 23, telnet; 25, SMTP
- Many clients and a server
 - TCP/IP
 - Source address and port number + Destination address and port number
 - A socket address (or a transport address)

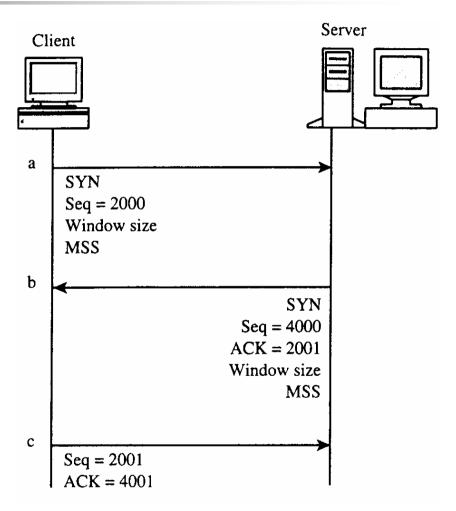
The TCP Header [3/5]

- Sequence and acknowledge numbers
 - Identify individual segments
 - Actually count data octets transmitted
 - A given segment with a SN of 100 and contains 150 octets of data
 - The ack number will be 250
 - The SN of the next segment is 250
- Other header fields
 - Data offset: header length (in 32-bit words)
 - URG: 1 if urgent data is included, use urgent pointer field
 - ACK: 1, an ACK
 - PSH: a push function, be delivered promptly

The TCP Header [4/5]

- RST: reset; an error and abort a session
- SYN: Synchronize; the initial messages
- FIN: Finish; close a session
- Window
 - The amount of buffer space available for receiving data
- Checksum

$\begin{array}{c cc} 0 & 0 & 0 \\ 0 & 1 & 2 \end{array}$	$\begin{array}{c c}0&0\\3&4\end{array}$	$\begin{array}{c c} 0 & 0 \\ 5 & 6 \end{array}$	0 C 7 8	0 9	$\begin{array}{c} 1\\ 0 \end{array}$	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3
							5	Sou	гсе	IP	Ac	ldr	ess													
	Destination IP Address																									
	0		F	roto	col	(6	foi	r T(CP)						T	СР	Le	ngi	h						


The TCP Header [5/5]

Urgent Pointer

- An offset to the first segment after the urgent data
- Indicates the length of the urgent data
- Critical information to be sent to the user application ASAP

TCP Connections

An example After receiving **100, 200, 300** ACK 400 Closing a connection \rightarrow FIN • \leftarrow ACK, FIN \rightarrow ACK

UDP

User Datagram Protocol

- Pass individual pieces of data from an application to IP
- No ACK, inherently unreliable
- Applications
 - A quick, on-shot transmission of data, request/response
 - DNS
 - If no response, the AP retransmits the request
 - The AP includes a request identifier
- The source port number is optional
- Checksum

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	1 1 1 2 2 2 2 2 2 2 2 2 3 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1											
Source Port	Destination Port											
Length	Checksum											

Voice over UDP, not TCP

Speech

- Small packets, 10 40 ms
- Occasional packet loss is not a catastrophe
- Delay-sensitive
 - TCP: connection set-up, ack, retransmit \rightarrow delays
- 5 % packet loss is acceptable if evenly spaced
 - Resource management and reservation techniques
 - A managed IP network
- In-sequence delivery
 - Mostly yes

UDP was not designed for voice traffic

The Real-Time Transport Protocol

- RTP: A Transport Protocol for Real-Time Applications
 - RFC 1889
 - RTP Real-Time Transport Protocol
 - RTCP RTP Control Protocol
- UDP
 - Packets may be lost or out-of-sequence
- RTP over UDP
 - A sequence number
 - A time stamp for synchronized play-out
 - Does not solve the problems; simply provides additional information

RTCP

- A companion protocol
- Exchange messages between session users
- # of lost packets, delay and inter-arrival jitter
- Quality feedback
- RTCP is implicitly open when an RTP session is open
- E.g., RTP/RTCP uses UDP port 5004/5005

RTP Payload Formats [1/2]

RTP carries the actual digitally encoded voice

- RTP header + a payload of voice/video samples
- UDP and IP headers are attached
- Many voice- and video-coding standards
 - A payload type identifier in the RTP header
 - Specified in RFC 1890
 - New coding schemes have become available
 - See table 2-1
 - A sender has no idea what coding schemes a receiver could handle

RTP Payload Formats [2/2]

Separate signaling systems

- Capability negotiation during the call setup
- SIP and SDP
- A dynamic payload type may be used
 - Support new coding scheme in the future
 - The encoding name is also significant.
 - Unambiguously refer to a particular payload specification
 - Should be registered with the IANA
- RED, Redundant payload type
 - Voice samples + previous samples
 - May use different encoding schemes
 - Cope with packet loss

RTP Header Format

$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	0 0 0 0 0 0 1												3) 1
V=2	V=2 P X CC M PT Sequence Number												
	Timestamp												
	Synchronization Source (SSRC) Identifier												
	Contributing Source (CSRC) Identifiers (0 to 15 entries)												

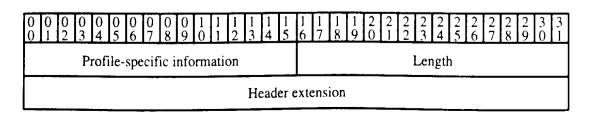
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
Profile-specific information	Length											
Header extension												

The RTP Header [1/4]

- Version (V)
 2
- Padding (P)
 - The padding octets at the end of the payload
 - The payload needs to align with 32-bit boundary
 - The last octet of the payload contains a count of the padding octets.
- Extension (X)
 - 1, contains a header extension

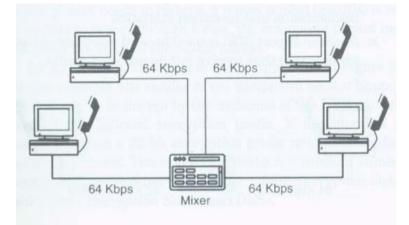
The RTP Header [2/4]

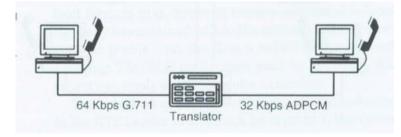
- CSRC Count (CC)
 - The number of contributing source identifiers
- Marker (M)
 - Support silence suppression
 - The first packet of a talkspurt, after a silence period
- Payload Type (PT)
 - In general, a single RTP packet will contain media coded according to only one payload format.
 - RED is an exception.
- Sequence number
 - A random number generated by the sender at the beginning of a session
 - Incremented by one for each RTP packet


The RTP Header [3/4]

Timestamp

- 32-bit
- The instant at which the first sample
- The receiver
 - Synchronized play-out
 - Calculate the jitter
 - The clock freq depends on the encoding
 - E.g., 8000Hz
 - Support silence suppression
 - The initial timestamp is a random number chosen by the sending application.


The RTP Header [4/4]

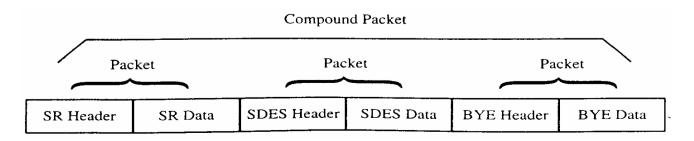

- Synchronization Source (SSRC)
 - 32-bit identifier
 - The entity setting the sequence number and timestamp
 - Chosen randomly, independent of the network address
 - Meant to be globally unique within a session
 - May be a sender or a mixer
- Contributing Source (CSRC)
 - An SSRC value for a contributor
 - 0-15 CSRC entries
- RTP Header Extensions

Mixers and Translators

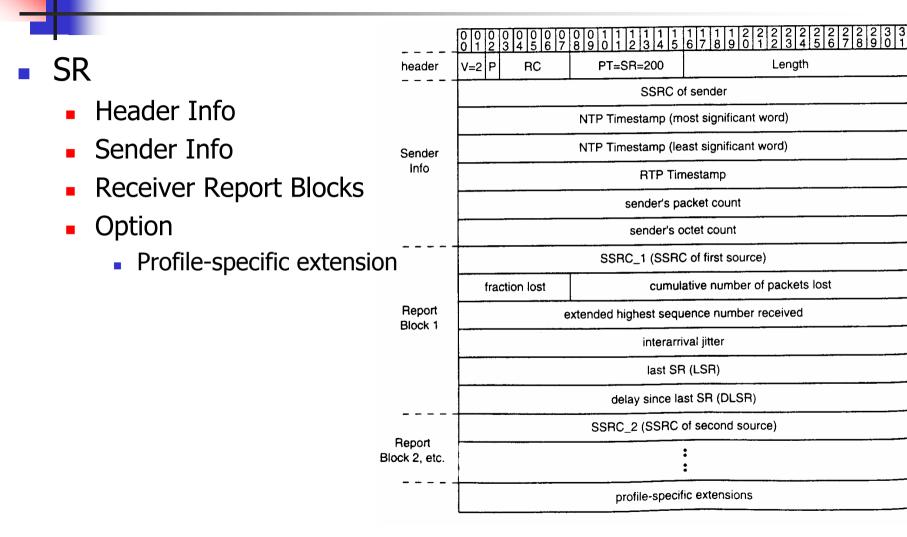
- Mixers
 - Enable multiple media streams from different sources to be combined into a single stream
 - If the capacity or bandwidth of a participant is limited
 - An audio conference
 - The SSRC is the mixer
 - More than one CSRC values
- Translators
 - Manage communications between entities that does not support the same coding scheme
 - The SSRC is the participant, not the translator.

The RTP Control Protocol [1/3]

RTCP


- A companion control protocol of RTP
- Periodic exchange of control information
 - For quality-related feedback
- A third party can also monitor session quality and detect network problems.
 - Using RTCP and IP multicast
- Five types of RTCP packets
 - Sender Report: transmission and reception statistics
 - Receiver Report: reception statistics

The RTP Control Protocol [2/3]


- Source Description (SDES)
 - One or more descriptions related to a particular session participant
 - Must contain a canonical name (CNAME)
 - Separate from SSRC which might change
 - When both audio and video streams were being transmitted, the two streams would have
 - different SSRCs
 - the same CNAME for synchronized play-out
- BYE
 - The end of a participation in a session
- APP
 - For application-specific functions

The RTP Control Protocol [3/3]

- Two or more RTCP packets will be combined
 - SRs and RRs should be sent as often as possible to allow better statistical resolution.
 - New receivers in a session must receive CNAME very quickly to allow a correlation between media sources and the received media.
 - Every RTCP packet must contain a report packet (SR/RR) and an SDES packet
 - Even if no data to report
- An example RTP compound packet

RTCP Sender Report

Header Info

Resemble to an RTP packet

- Version
 - 2
- Padding bit
 - Padding octets?
- RC, report count
 - The number of reception report blocks
 - 5-bit
 - If more than 31 reports, an RR is added
- PT, payload type

Sender Info

- SSRC of sender
- NTP Timestamp
 - Network Time Protocol Timestamp
 - The time elapsed in seconds since 00:00, 1/1/1900 (GMT)
 - 64-bit
 - 32 MSB: the number of seconds
 - 32 LSB: the fraction of a seconds (200 ps)
- RTP Timestamp
 - Corresponding to the NTP timestamp
 - The same as used for RTP timestamps
 - For better synchronization
- Sender's packet count
 - Cumulative within a session
- Sender's octet count
 - Cumulative within a session

RR blocks [1/2]

SSRC_n

- The source identifier of the session participant to which the data in this RR block pertains.
- Fraction lost
 - Fraction of packets lost since the last report issued by this participant
 - By examining the sequence numbers in the RTP header
- Cumulative number of packets lost
 - Since the beginning of the RTP session
- Extended highest sequence number received
 - The sequence number of the last RTP packet received
 - 16 lsb, the last sequence number
 - 16 msb, the number of sequence number cycles

RR blocks [2/2]

- Interarrival jitter
 - An estimate of the variance in RTP packet arrival
- Last SR Timestamp (LSR)
 - The middle 32 bits of the NTP timestamp used in the last SR received from the source in question
 - Used to check if the last SR has been received
- Delay Since Last SR (DLSR)
 - The duration in units of 1/65,536 seconds

RTCP Receiver Report

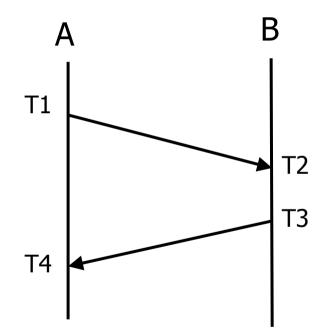
RR

- Issued by a participant who receives RTP packets but does not send, or has not yet sent
- Is almost identical to an SR
 - PT = 201
 - No sender information

RTCP Source Description Packet

- Provides identification and information regarding session participants
 - Must exist in every RTCP compound packet

Header


- V, P, SC, PT=202, Length
- Zero or more chunks of information
 - An SSRC or CSRC value
 - One or more identifiers and pieces of information
 - A unique CNAME
 - Email address, phone number, name

RTCP BYE Packet

- Indicate one or more media sources are no longer active
- Application-Defined RTCP Packet
 - For application-specific data
 - For non-standardized application

Calculating Round-Trip Time

- Use SRs and RRs
- E.g.
 - Report A: A, T1 \rightarrow B, T2
 - Report B: B, T3 → A, T4
 - RTT = T4-T3+T2-T1
 - RTT = T4-(T3-T2)-T1
 - Report B
 - LSR = T1
 - DLSR = T3-T2

Calculation Jitter

- The mean deviation of the difference in packet spacing at the receiver
 - S_i = the RTP timestamp for packet i
 - R_i = the time of arrival

•
$$D(i,j) = (R_j - S_j) - (R_i - S_i)$$

- The Jitter is calculated continuously
 - J(i) = J(i-1) + (| D(i-1,i) | J(i-1))/16

Timing of RTCP Packets

RTCP provides useful feedback

- Regarding the quality of an RTP session
- Delay, jitter, packet loss
- Be sent as often as possible
 - Consume the bandwidth
 - Should be fixed at 5%
- An algorithm, RFC 1889
 - Senders are collectively allowed at least 25% of the control traffic bandwidth.
 - The interval > 5 seconds
 - 0.5 1.5 times the calculated interval
 - A dynamic estimate the avg. RTCP packet size

IP Multicast

• An IP diagram sent to multiple hosts

- Conference
- To a single address associated with all listeners
- Multicast groups
 - Multicast address
 - Join a multicast group
 - Inform local routers
 - Routing protocols
 - Support propagation of routing information for multicast addresses
 - Minimize the number of datagrams sent