
Assembly Language for IntelAssembly Language for Intel--Based Based
Computers, 4Computers, 4thth Edition Edition

Chapter 12: High-Level Language
Interface

(c) Pearson Education, 2002. All rights reserved.

Kip R. Irvine

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 2

Chapter OverviewChapter Overview

• Why Link ASM and HLL Programs?
• General and Calling Conventions
• External Identifiers

• Inline Assembly Code
• _asm Directive
• File Encryption Example

• Linking to C++ Programs
• Linking to Borland C++
• ReadSector Example

• Special Section: Optimizing Your Code
• Loop Optimization Example
• FindArray Example
• Creating the FindArray Project

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 3

Why Link ASM and HLL Programs?Why Link ASM and HLL Programs?

• Use high-level language for overall project
development
• Relieves programmer from low-level details

• Use assembly language code
• Speed up critical sections of code
• Access nonstandard hardware devices
• Write platform-specific code
• Extend the HLL's capabilities

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 4

General ConventionsGeneral Conventions

• Considerations when calling assembly language
procedures from high-level languages:
• Both must use the same naming convention (rules

regarding the naming of variables and procedures)
• Both must use the same memory model, with

compatible segment names
• Both must use the same calling convention

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 5

Calling ConventionCalling Convention

• Identifies specific registers that must be preserved by
procedures

• Determines how arguments are passed to
procedures: in registers, on the stack, in shared
memory, etc.

• Determines the order in which arguments are passed
by calling programs to procedures

• Determines whether arguments are passed by value
or by reference

• Determines how the stack pointer is restored after a
procedure call

• Determines how functions return values

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 6

External IdentifiersExternal Identifiers

• An external identifier is a name that has been placed
in a module’s object file in such a way that the linker
can make the name available to other program
modules.

• The linker resolves references to external identifiers,
but can only do so if the same naming convention is
used in all program modules.

LinkerMain.cpp ArraySum.asm
.model flat,Pascal

Calls:
_ArraySum

exports:
ARRAYSUM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 7

Inline Assembly CodeInline Assembly Code

• Assembly language source code that is inserted directly
into a HLL program.

• Compilers such as Microsoft Visual C++ and Borland
C++ have compiler-specific directives that identify inline
ASM code.

• Efficient inline code executes quickly because CALL
and RET instructions are not required.

• Simple to code because there are no external names,
memory models, or naming conventions involved.

• Decidedly not portable because it is written for a single
platform.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 8

__asmasm Directive in Microsoft Visual C++Directive in Microsoft Visual C++

• Can be placed at the beginning of a single statement
• Or, It can mark the beginning of a block of assembly

language statements
• Syntax:

__asm statement

__asm {
statement-1
statement-2
...
statement-n

}

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 9

Commenting StylesCommenting Styles

mov esi,buf ; initialize index register
mov esi,buf // initialize index register
mov esi,buf /* initialize index register */

All of the following comment styles are acceptable, but
the latter two are preferred:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 10

You Can Do the Following . . .You Can Do the Following . . .

• Use any instruction from the Intel instruction set
• Use register names as operands
• Reference function parameters by name
• Reference code labels and variables that were

declared outside the asm block
• Use numeric literals that incorporate either

assembler-style or C-style radix notation
• Use the PTR operator in statements such as inc

BYTE PTR [esi]
• Use the EVEN and ALIGN directives
• Use LENGTH, TYPE, and SIZE directives

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 11

You Cannot Do the Following . . .You Cannot Do the Following . . .

• Use data definition directives such as DB, DW, or
BYTE

• Use assembler operators other than PTR
• Use STRUCT, RECORD, WIDTH, and MASK
• Use macro directives such as MACRO, REPT, IRC,

IRP
• Reference segments by name.

• (You can, however, use segment register names as
operands.)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 12

Register UsageRegister Usage

• In general, you can modify EAX, EBX, ECX, and EDX
in your inline code because the compiler does not
expect these values to be preserved between
statements

• Conversely, always save and restore ESI, EDI, and
EBP.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 13

File Encryption ExampleFile Encryption Example

• Reads a file, encrypts it, and writes the output to
another file.

• The TranslateBuffer function uses an __asm block to
define statements that loop through a character array
and XOR each character with a predefined value.

View the Encode2.cpp program listing

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 14

Linking Assembly Language to C++Linking Assembly Language to C++

• Basic Structure - Two Modules
• The first module, written in assembly language,

contains the external procedure
• The second module contains the C/C++ code that

starts and ends the program
• The C++ module adds the extern qualifier to the

external assembly language function prototype.
• The "C" specifier must be included to prevent name

decoration by the C++ compiler:

extern "C" functionName(parameterList);

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 15

Name DecorationName Decoration

HLL compilers do this to uniquely identify overloaded
functions. A function such as:

int ArraySum(int * p, int count)

would be exported as a decorated name that encodes
the return type, function name, and parameter types.
For example:

int_ArraySum_pInt_int

The problem with name decoration is that the C++
compiler assumes that your assembly language
function's name is decorated. The C++ compiler tells
the linker to look for a decorated name.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 16

Linking to Borland C++Linking to Borland C++

• We will look at a C++ program that calls an external
assembly language procedure named ReadSector
• Reads a range of sectors from a disk drive
• Not possible with pure C++ code
• ASM code uses 16-bit MS-DOS functions

• Tools:
• 16-bit version of Borland C++ 5.01
• Borland TASM 4.0 assembler (included with Borland

C++)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 17

ReadSectorReadSector: Sample Output: Sample Output
Sector display program.
Enter drive number [1=A, 2=B, 3=C, 4=D, 5=E,...]: 1
Starting sector number to read: 0
Number of sectors to read: 20

Reading sectors 0 - 20 from Drive 1
Sector 0 --
.<.(P3j2IHC........@..................)Y...MYDISK FAT12 .3.
....{...x..v..V.U."..~..N..........|.E...F..E.8N$}"....w.r...:f..
|f;..W.u.....V....s.3..F...f..F..V..F....v.`.F..V..^...H...F
..N.a....#.r98-t.`....}..at9Nt... ;.r.....}.......t.<.t..........
..}....}.....^.f......}.}..E..N....F..V......r....p..B.-`fj.RP.Sj
.j...t...3..v...v.B...v..............V$...d.ar.@u.B.^.Iuw....'..I
nvalid system disk...Disk I/O error...Replace the disk, and then
press any key....IOSYSMSDOS SYS...A....~...@...U.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 18

ReadSectorReadSector: Source Code: Source Code

Main C++ program source code

ASM ReadSector procedure source code

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 19

Special Section: Optimizing Your CodeSpecial Section: Optimizing Your Code

• The 90/10 rule: 90% of a program's CPU time is
spent executing 10% of the program's code

• We will concentrate on optimizing ASM code for
speed of execution

• Loops are the most effective place to optimize code
• Two simple ways to optimize a loop:

• Move invariant code out of the loop
• Substitute registers for variables to reduce the number

of memory accesses

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 20

Loop Optimization ExampleLoop Optimization Example

.data
days DWORD ?
minutesInDay DWORD ?
totalMinutes DWORD ?
str1 BYTE "Daily total minutes: ",0

• We will write a short program that calculates and
displays the number of elapsed minutes, over a
period of n days.

• The following variables are used:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 21

Sample Program OutputSample Program Output
Daily total minutes: +1440
Daily total minutes: +2880
Daily total minutes: +4320
Daily total minutes: +5760
Daily total minutes: +7200
Daily total minutes: +8640
Daily total minutes: +10080
Daily total minutes: +11520
.
.
Daily total minutes: +67680
Daily total minutes: +69120
Daily total minutes: +70560
Daily total minutes: +72000

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 22

No optimization.
mov days,0
mov totalMinutes,0

L1: ; loop contains 15 instructions
mov eax,24 ; minutesInDay = 24 * 60
mov ebx,60
mul ebx
mov minutesInDay,eax
mov edx,totalMinutes ; totalMinutes += minutesInDay
add edx,minutesInDay
mov totalMinutes,edx
mov edx,OFFSET str1 ; "Daily total minutes: "
call WriteString
mov eax,totalMinutes ; display totalMinutes
call WriteInt
call Crlf
inc days ; days++
cmp days,50 ; if days < 50,
jb L1 ; repeat the loop

Version 1Version 1

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 23

Move calculation of minutesInDay outside the loop, and assign EDX before the loop.
The loop now contains 10 instructions.

mov days,0
mov totalMinutes,0
mov eax,24 ; minutesInDay = 24 * 60
mov ebx,60
mul ebx
mov minutesInDay,eax
mov edx,OFFSET str1 ; "Daily total minutes: "

L1: mov edx,totalMinutes ; totalMinutes += minutesInDay
add edx,minutesInDay
mov totalMinutes,edx
call WriteString ; display str1 (offset in EDX)
mov eax,totalMinutes ; display totalMinutes
call WriteInt
call Crlf
inc days ; days++
cmp days,50 ; if days < 50,
jb L1 ; repeat the loop

Version 2Version 2

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 24

Move totalMinutes to EAX, use EAX throughout loop. Use constant expression for
minutesInDay calculation. The loop now contains 7 instructions.

C_minutesInDay = 24 * 60 ; constant expression
mov days,0
mov totalMinutes,0
mov eax,totalMinutes
mov edx,OFFSET str1; "Daily total minutes: "

L1: add eax,C_minutesInDay ; totalMinutes += minutesInDay
call WriteString ; display str1 (offset in EDX)
call WriteInt ; display totalMinutes (EAX)
call Crlf
inc days ; days++
cmp days,50 ; if days < 50,
jb L1 ; repeat the loop

mov totalMinutes,eax ; update variable

Version 3Version 3

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 25

Substitute ECX for the days variable. Remove initial assignments to days and
totalMinutes.

C_minutesInDay = 24 * 60 ; constant expression
mov eax,0 ; EAX = totalMinutes
mov ecx,0 ; ECX = days
mov edx,OFFSET str1 ; "Daily total minutes: "

L1: ; loop contains 7 instructions
add eax,C_minutesInDay ; totalMinutes += minutesInDay
call WriteString ; display str1 (offset in EDX)
call WriteInt ; display totalMinutes (EAX)
call Crlf
inc ecx ; days (ECX)++
cmp ecx,50 ; if days < 50,
jb L1 ; repeat the loop

mov totalMinutes,eax ; update variable
mov days,ecx ; update variable

Version 4Version 4

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 26

Using Assembly Language to Optimize C++Using Assembly Language to Optimize C++

• Find out how to make your C++ compiler produce an
assembly language source listing
• /FAs command-line option in Visual C++, for example

• Optimize loops for speed
• Use hardware-level I/O for optimum speed
• Use BIOS-level I/O for medium speed

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 27

FindArrayFindArray ExampleExample

#include "findarr.h"

bool FindArray(long searchVal, long array[],
long count)

{
for(int i = 0; i < count; i++)
if(searchVal == array[i])
return true;

return false;
}

Let's write a C++ function that searches for the first matching
integer in an array. The function returns true if the integer is
found, and false if it is not:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 28

Code Produced by C++ CompilerCode Produced by C++ Compiler

_searchVal$ = 8
_array$ = 12
_count$ = 16
_i$ = -4

_FindArray PROC NEAR
; 29 : {

push ebp
mov ebp, esp
push ecx

; 30 : for(int i = 0; i < count; i++)
mov DWORD PTR _i$[ebp], 0
jmp SHORT $L174

$L175:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

optimization switch turned off (1 of 3)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 29

Code Produced by C++ CompilerCode Produced by C++ Compiler

$L174:
mov ecx, DWORD PTR _i$[ebp]
cmp ecx, DWORD PTR _count$[ebp]
jge SHORT $L176

; 31 : if(searchVal == array[i])
mov edx, DWORD PTR _i$[ebp]
mov eax, DWORD PTR _array$[ebp]
mov ecx, DWORD PTR _searchVal$[ebp]
cmp ecx, DWORD PTR [eax+edx*4]
jne SHORT $L177

; 32 : return true;
mov al, 1
jmp SHORT $L172

$L177:
; 33 :
; 34 : return false;

jmp SHORT $L175

(2 of 3)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 30

Code Produced by C++ CompilerCode Produced by C++ Compiler

$L176:
xor al, al ; AL = 0

$L172:
; 35 : }

mov esp, ebp ; restore stack pointer
pop ebp
ret 0

_FindArray ENDP

(3 of 3)

There are 14 assembly code statements between the labels $L175
and $L176, which constitute the main body of the loop.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 31

HandHand--Coded Assembly LanguageCoded Assembly Language (1 of 2)(1 of 2)

true = 1
false = 0

; Stack parameters:
srchVal equ [ebp+08]
arrayPtr equ [ebp+12]
count equ [ebp+16]

.code
_FindArray PROC near

push ebp
mov ebp,esp
push edi

mov eax, srchVal ; search value
mov ecx, count ; number of items
mov edi, arrayPtr ; pointer to array

• Move as much processing out of the repeated loop as possible
• Move stack parameters and local variables to registers
• Take advantage of specialized instructions (e.g., SCASD)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 32

HandHand--Coded Assembly LanguageCoded Assembly Language (2 of 2)(2 of 2)

repne scasd ; do the search
jz returnTrue ; ZF = 1 if found

returnFalse:
mov al, false
jmp short exit

returnTrue:
mov al, true

exit:
pop edi
pop ebp
ret

_FindArray ENDP

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 33

Code Optimization by the C++ CompilerCode Optimization by the C++ Compiler (1 of 2)(1 of 2)

_searchVal$ = 8
_array$ = 12
_count$ = 16

_FindArray PROC NEAR
mov edx, DWORD PTR _count$[esp-4]
xor eax,eax
push esi
test edx,edx
jle SHORT $L176
moc ecx,DWORD PTR _array$[esp]
mov esi,DWORD PTR _searchVal$[esp]

$L174:
cmp esi,DWORD PTR [ecx]
je SHORT $L182
inc eax
add ecx,4
cmp eax,edx
jl SHORT $L174
xor al,al
pop esi
ret 0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 34

Code Optimization by the C++ CompilerCode Optimization by the C++ Compiler (2 of 2)(2 of 2)

$L182:
mov al,1
pop esi
ret 0

$L176:
xor al,al
pop esi
ret 0

_FindArray ENDP

count

[array]

searchVal

ret addr

ESP+12

ESP+08

ESP+04

ESP

• C++ compiler eliminates all references to EBP

• C++ compiler adjusts the stack offsets after any PUSH
instruction have taken place

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 35

Why handWhy hand--coded assembly language?coded assembly language?

• Most high-level language compilers do a very
effective job of code optimization.

• But compiler take the general case, as they usually
have no specific knowledge about individual
application or installed hardware.

• Hand-coded assembly language can take full
advantage of specialized hardware features.
• Video cards, sound cards …

