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Abstract—The emerging wireless relay networks (WRNs) are
expected to provide significant improvement on throughput and
extension of coverage area for next-generation wireless systems.
We study an optimization problem for multi-hop link scheduling
with bandwidth and delay guarantee over WRNs. Our optimization
problem is investigated under a general interference model with
a generic objective. The objective can be based on various kinds
of performance indexes (e.g., throughput, fairness and capacity)
determined by service providers. Through the theoretical analysis, the
intractability and in-approximability of the optimization problem are
shown. Due to the intractable computational complexity, we present
efficient algorithms to practically provide a small approximation
factor against any optimal solution even for a worst-case input.
Furthermore, the experimental results indicate that our presented
algorithms yield near-optimal performance in the average case.

I. Introduction

With the advance of broadband wireless access technologies,
the emerging wireless relay networks (WRNs) are expected to
provide significant improvement on throughput and extension of
coverage area for next-generation wireless systems. As real-time
applications (e.g., voice over IP and video streaming) rapidly grow,
provisioning quality-of-service (QoS) to these applications is one
of the most important issues for WRNs. In WRNs, contention-
based medium access control (MAC) protocols, such as IEEE
802.11, are hard to quantitatively guarantee QoS due to its un-
predictable and uncontrollable packet collisions. Compared to the
contention-based MAC protocols, polling-based channel access
(e.g., IEEE 802.16) can provide fine-granularity resource control
and management. Moreover, the centralized control provided by
base stations (BSs) facilitates the feasibility of QoS provisioning
to the real-time applications.

Recently, IEEE 802.16j task group has been devoted to develop
a multi-hop relay mode for IEEE 802.16 point-to-multi-point
networks. The increasing system throughput and coverage area
through low-cost IEEE 802.16j relay stations (RSs) accelerate the
deployment of the real-time applications over broadband wireless
networks. Although the communication protocols of resource
allocation for IEEE 802.16 networks have been specified in [1], the
design of resource allocation policies is still an open issue. With-
out an appropriate allocation policy, some critical service flows
might suffer from the lack of available bandwidth, and the service
quality of these flows cannot be guaranteed due to the increase of
delay, jitter and packet loss. The issue is further complicated by
IEEE 802.16j-based multihop relay transmission because of spatial
reuse, and has been referred to as link scheduling problem in
wireless multihop networks. The interference-aware link schedul-
ing algorithms have been extensively developed in mobile ad hoc
networks (MANETs) and wireless mesh networks (WMNs). In [2],
the link scheduling problem that deals with the maximization of
system throughput has been proven to be NP-hard for a multi-

hop wireless network. Based on [2], several heuristic algorithms
were presented to handle multi-hop link scheduling for throughput
improvement [3], [4], [5], [6]. Furthermore, some approximation
algorithms with worst-case performance bounds were developed
for multi-hop link scheduling [7], [8], [9].

In addition to the consideration of the best-effort traffic for
multi-hop link scheduling, the QoS issue was also studied in
MANETs and WMNs for resource allocation. Specifically, Harish
and Vinod studied the QoS routing and link scheduling with a
fixed route scenario for IEEE 802.16-based WMNs [10]. In [11],
a link scheduler was presented to minimize the maximal delay of
requests for a TDMA-based multi-hop network by adopting the
spatial reuse. Unfortunately, both of the studies can not provide
explicit QoS guarantee to real-time applications. To solve the
problem, Tang et al. [12] proposed a mechanism of interference-
aware topology control and QoS routing for multi-channel WMNs.
This mechanism ensures that all data deliveries are satisfied with
their allocated bandwidth. In [13], an approximation algorithm
with a worst-case bound was proposed to provide a hard guarantee
for bandwidth allocation for MANET users. In addition to the
ensuring of bandwidth allocation, Lee et al. [14] proposed a tree-
based routing algorithm with a delay guarantee for multi-hop
wireless backhaul networks. However, the design of link scheduler
was not addressed in this work.

In this paper, we study an optimization problem for
interference-aware link scheduling with QoS guarantee over
WRNs. To the best of our knowledge, for any multihop wireless
networks, our work presents the first attempt at studying the link
scheduling problem based on explicit delay requirements. The
contributions of this work are described as follows.
• Explicit QoS guarantee: We present efficient link schedul-

ing algorithms to provide delay guarantee for WRNs over
arbitrary routing.

• Flexible performance metric: The performance metrics
(e.g., throughput, capacity) can be specified by service
providers.

• Appropriate system model: We assume that a link scheduler
has the information of service flows (such as traffic demand,
delay constraint, routing path) instead of the information of
links. Although the link information could be measured, it
requires substantial efforts and extra overheads, and may be
highly inaccurate. The flow information is relatively easy
to obtain in 802.16-based WRNs because SSs shall request
resources for their requesting flows to the link scheduler in
the BS [1].

• Provable problem hardness: We show the computational
complexity of the optimization problem. Specifically, the
analysis on intractability and in-approximability is presented.

• Worst-case Performance bound: The worst-case perfor-
mance of the presented polynomial-time algorithms is proven
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to be within a practically small factor of the optimal algo-
rithm. The approximation factor is independent of the number
of requesting flows and of the number of subscribers.

The remainder of the paper is organized as follows. Section II
formally presents our system model and problem formulation. The
proof of problem intractability and in-approximability is given in
Section II. In Section III, we present our link scheduling algo-
rithms and the worst-case performance analysis of the algorithms.
Section IV conducts the simulation study. Finally, the paper is
concluded in Section V.

II. SystemModel and Problem Formulation
This section elaborates on our system model based on IEEE

802.16j WRNs. By adopting the model, the optimization problem
for link scheduling with explicit QoS guarantee is formally
defined, and the interference model used by the optimization
problem is described. Also, the proof of problem intractability
and in-approximability is presented in this section.

A. System Model
The model we study is based on a static WRN, which is

centrally controlled by a BS equipped with wired interfaces to
connect the IP-based backbone networks. The BS supervises one
or more RSs through wireless links, and each SS communicates
with the BS directly or through RSs. In our model, we assume that
each station is equipped with one radio interface and there is only
a single channel in the network. Our work can be easily extended
to accommodate the case of multiple subchannels as in [9]. To
comply the IEEE 802.16 specification, data transmissions among
stations are assumed to be synchronized on frame basis. A frame
consists of several timeslots, and a timeslot is the basic time unit
for transmissions.

In this study, we focus on the designing of a QoS scheduler
to support real-time services on a frame-by-frame transmission
manner. In IEEE 802.16-based networks [1], [15], there are
three service types for real-time traffic, namely unsolicited grant
service (UGS), real-time polling service (rtPS) and enhanced real-
time polling service (ertPS). The mandatory QoS service flow
parameters of those service types include the minimum reserved
traffic rate (i.e., the required bandwidth) and the maximum latency
(i.e., the deadline). Without loss of generality, we consider uplink
service flows (from SSs to their BS) in this paper. Our model can
be easily extended to accommodate the case for downlink service
flows, since the uplink data and downlink data are scheduled
separately in IEEE 802.16 networks [1], [16]. For uplink real-time
service flows, the BS periodically allocates the timeslots to SSs for
resource requests. When any real-time service flow is initiated, the
corresponding SS uses the allocated slot to request the resource
with their required QoS such as bandwidth and deadline. The link
scheduler in the BS accepts the request of a service flow only when
the bandwidth requirement and the delay requirement of the flow
can be guaranteed in the following frames. Thus a admitted real-
time service flow can be exclusively transmitted in its allocated
bursts of the following frames until the flow is terminated. To
assure the availability of resource allocation during transmission,
our scheduler is assumed to be aware of interference [12], [8],
[11], and the interference model adopted for our problem will be
described in the following subsection.

B. Problem Formulation
Based on the system model, our optimization problem for link

scheduling (also called the OPT-LS problem) with explicit QoS
guarantee is formulated as follows, and the notations used in
the problem formulation are summarized in Table I. A WRN is
modeled as a simple directed graph G = (V, E), where V represents
all stations (including a BS, r RSs and (|V | − 1 − r) SSs) and E

is a set of wireless links in the WRN. A wireless link (α, β) is an
element of E if and only if station β is within the maximum
transmission range of station α. Let the frame period ranges
between [0, c). In each frame, the set of requesting real-time flows
and previously admitted flows is denoted as F = {F1, . . . , Fn}.
Suppose that the transmission paths of the flows have been
determined by a routing algorithm/protocol. Then each flow i can
be associated with a quintuple (bi, di,wi, ai,Ti), where bi, di, and
wi are, respectively, the required bandwidth (Mbits), the maximum
latency (ms) (i.e., deadline), and a positive integer weight specified
by its service provider. ai indicates the status of a flow, i.e.,

ai =

{
1, flow i is an admitted flow
0, flow i is a requesting flow (1)

Ti is the routing path of flow i, and is denoted as an ordered
set {Ti,1, . . . ,Ti,κi } of transmissions, where κi denotes the number
of wireless links in the path, i.e., the hop count of flow i. Then
the maximum hop count is denoted by ϕ = maxi∈F(κi). The jth
transmission of the routing path for flow i (i.e., Ti, j) can be
characterized by a quadruple (T Xi, j,RXi, j, τi, j, Ii, j). T Xi, j and RXi, j
are, respectively, the transmitting station and the receiving station
of Ti, j, where T Xi, j ∈ V , RXi, j ∈ V , and (T Xi, j,RXi, j) ∈ E. τi, j is
the transmission latency of Ti, j. The value of τi, j can be calculated
by taking bi divided by the transmission rate of link (T Xi, j,RXi, j)1.

For brevity, we introduce the following abbreviations to be used
in the remainder of this paper. “for i ∈ F” represents “for each
flow Fi ∈ F”. “for (i, j) ∈ T” signifies “for each flow Fi ∈ F
and its transmission Ti, j ∈ Ti”. “for (i, j , j′) ∈ T” indicates “for
each flow Fi ∈ F and for two different transmissions Ti, j ∈ Ti and
Ti, j′ ∈ Ti”. “for (i , i′, j , j′) ∈ T” expresses “for two different
flows Fi ∈ F and Fi′ ∈ F and for two different transmissions
Ti, j ∈ Ti and Ti′, j′ ∈ Ti′”.

TABLE I
Summary ofMain Notations

Symbol Semantics
n and r The number of service flows and of relay stations

p The number of requesting service flows
F The set of all real-time service flows
Fi The ith service flow of F

bi, di, and wi The required bandwidth, deadline, and weight of flow i
W The total weight of all requesting flows
κi The number of transmissions of flow i
ϕ The maximum hop count
Ti The set of transmissions of flow i
Ti, j The jth transmissions of flow i

T Xi, j The transmitting station of the jth transmission of flow i
RXi, j The receiving station of the jth transmission of flow i
τi, j The transmission latency of the jth transmission of flow i
Ii, j The interference list of the jth transmission of flow i
F̂ The set of scheduled flows
ˆ̀i, j The schedule instance of the jth transmission of scheduled flow i

Γ(F̂) The profit of a scheduled flow set F̂ for F
Γ(F̃) The profit of an optimal scheduled flow set F̃ for F

For (i, j) ∈ T, the interference list Ii, j is a set of the wireless links
that suffer from the interference of link (T Xi, j,RXi, j). In MANETs
and WMNs, a considerable number of interference models, e.g.,
fixed-radius interference model [12], protocol interference model,
fixed power protocol interference model, and RTS/CTS model [8],
are considered. However, these models are not suitable for WRNs
due to the following reason. Stations in MANETs and WMNs
are generally assumed to be identical and equipped with an
omnidirectional antenna. On the other hand, there are different
physical capabilities for different types of stations in WRNs. For
example, a BS could support multi-user adaptive antenna system
(AAS) technique to provide multi-beam adaptive beamforming

1We assume that the BS is aware of the transmission rate of each link. The
link rate can be determined by the transmission power, modulation and coding
scheme [17].
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and null-steering [18]. Also, an RS could use directional antenna
or sectorized antenna to strengthen signal strength [19]. In the
above cases, the interference zone can be significantly reduced.
Moreover, an omni-directional antenna is possibly applied for low-
cost RSs [19] and SSs. Due to the variety of antenna technologies
adopted by WRN stations, our interference model Ii, j = Ui, j ∪ S i, j
consists of two types of interference, primary interference Ui, j and
secondary interference S i, j. The primary interference occurs when
a transceiver transmits and receives packets at the same time [20],
i.e.,

Ui, j = {(α, β) | (α, β) ∈ E;α = T Xi, j or α = RXi, j

or β = T Xi, j or β = RXi, j } . (2)

The secondary interference occurs when a receiving station is
interfered by other transmissions which are not intended for this
station. We assume that S i, j can be an arbitrary set of wireless
links depending on its own communication characteristic. Notice
that with a general assumption for secondary interference, our
interference model can be applicable to any other models.

A schedule is defined as F̂, where F̂ ⊆ F, and the service flows
in F̂ can be scheduled and be satisfied with their required QoS.
For i ∈ F̂, the set of transmissions of the flow i is expressed as T̂i.
Let ˆ̀i, j ≥ 0 be the schedule instance for (i, j) ∈ T̂. Then the jth
transmission of flow i is scheduled at the time interval [ ˆ̀i, j, ˆ̀i, j +
τi, j). A feasible schedule of the service flow set F is referred to
as a schedule F̂ that includes all admitted flows in F and meets
both the transmission constraints and interference-free constraints.
The transmission constraints indicate that the transmissions of
any service flow in the schedule 1) follow a strict order and 2)
meet their deadline and the frame boundary. Thus F̂ satisfies the
transmission constraints if and only if each schedule instance ˆ̀i, j
is bounded by

ˆ̀i, j ≤

{ ˆ̀i, j+1 − τi, j, 1 ≤ j ≤ κi − 1
min{di, c} − τi, j, j = κi

(3)

For the purpose of spatial reuse as well as collision avoid-
ance, the interference-free constraints are defined as follows. Let
T̂i, j ⇔ T̂i′, j′ and T̂i, j < T̂i′, j′ respectively represent T̂i, j and T̂i′, j′

are and are not overlapped with each other. The transmissions
T̂i, j and T̂i′, j′ are not overlapped if and only if the time intervals
[ ˆ̀i, j, ˆ̀i, j + τi, j) and [ ˆ̀i′, j′ , ˆ̀i′, j′ + τi′, j′ ) are disjoint. Let T̂i, j � T̂i′, j′

denote the transmission link of T̂i, j interfere with that of T̂i′, j′ ,
i.e., (T Xi′, j′ ,RXi′, j′ ) ∈ Ii, j. Then F̂ satisfies the interference-free
constraints if and only if T̂i, j < T̂i′, j′ for (i , i′, j , j′) ∈ T̂,
T̂i, j � T̂i′, j′ .

In this paper, we are interested in the derivation of a feasible
schedule for OPT-LS such that the schedule profit in a frame
is maximized. The profit Γ(F̂) of a feasible schedule F̂ is de-
fined by the summation of the weights of scheduled flows, i.e.,
Γ(F̂) =

∑
i∈F̂ wi. An optimal schedule S̃ (F) = F̃ is defined as a

feasible schedule such that Γ(F̃) is maximized for a given flow
set F. Note that the weight in our problem can be a general
performance measure depending on the practical requirements
from WRN service providers. For example, if the weight is set
as the bandwidth requirement, the problem is to maximize the
system throughput.

Now, we formally formulate our OPT-LS problem as follows:

Maximize Γ(F̂) =
∑

i∈F̂ wi

Subject to: Fi ∈ F̂, for Fi ∈ F and ai = 1

ˆ̀i, j ≤

{ ˆ̀i, j+1 − τi, j, 1 ≤ j ≤ κi − 1
di − τi, j, j = κi

, for (i, j) ∈ T̂i, j

T̂i, j < T̂i′, j′ , for (i , i′, j , j′) ∈ T̂ and T̂i, j � T̂i′, j′

Figure 1 depicts an example to illustrate our problem OPT-LS.
Specifically, the network topology including one BS (Station 1),

two RSs (Stations 2 and 3) and three SSs (Stations 4, 5, and
6) is shown in Figure 1(a). A interference graph is shown in
Figure 1(b), where the vertices represent the wireless links in E
and the edges indicate the interference between the wireless links.
Figure 1(c) illustrates the data rates for relay (BS-to-RS or RS-
to-RS) and access links (BS-to-SS or RS-to-SS) in the example,
and the service flows F1, F2 and F3 are shown in Figure 1(d).

Figures 1 (e)-(g) illustrate three infeasible schedules, where
the charcoal areas represent the transmissions and the gray areas
signifies the interfered area. Figure 1(e) shows the case that the
transmission T2,2 precedes T2,1, which violates the transmission
constraints. Moreover, since the admitted flow F1 have not been
scheduled, the schedule in Figure 1 cannot be feasible. Figure 1(f)
shows that the schedule does not satisfy the transmission con-
straints because the completion time of F3, 85 ms, exceeds d3 = 80
ms. Although Figure 1(g) meets the transmission constraints,
the interference-free constraints cannot be fulfilled due to the
interference between T2,2 and T3,2.

Clearly, the exhausted method for OPT-LS is not realistic
since there are an exponential number of possible subsets of F.
Now, we present a theoretical analysis of intractability and in-
approximability for our OPT-LS. Consider a case of OPT-LS that
all service flows are requesting flows and have the same weight,
deadline, and total transmission time. Even in such a special
case, OPT-LS is proven to be NP-hard, and no polynomial-time
algorithm can approximate OPT-LS within a factor of n1−ε for any
ε > 0.

Theorem 1: OPT-LS is NP-hard, and no polynomial-time al-
gorithm can approximate OPT-LS within a factor of n1−ε for any
ε > 0 unless NP * ZPP.

Proof: We will reduce MAX CLIQUE [21] to our OPT-LS as
follows. In MAX CLIQUE, we are given a simple graph Gc =
(Vc, Ec) with |Vc| vertices v1, v2, . . . , v|Vc |. Based on Gc, we con-
struct a complement graph Gc = (Vc, Ec) such that Vc = Vc
and Ec = {(vi, v j) | vi ∈ Vc, v j ∈ Vc, (vi, v j) < Ec}. To conduct
the reduction, a set of |Vc| service flows F = {F1, F2, . . . , F|Vc |}

is constructed. For i ∈ F, the number of transmissions κi is
assigned by |Ec| + 1. For jth transmission (1 ≤ j ≤ κi − 1), the
transmission latency τi, j = ~ is an arbitrary positive constant. τi,κi

is assigned by an arbitrary value = where 0 < = < ~
|Vc |

. Then∑
(i, j)∈T τi, j = (κi − 1)~ + =. di = (κi − 1)~ + |Vc|=, and wi = 1. The

interference list Ii, j is equivalent to S i, j shown in (2). Furthermore,
the routing path of each transmission Ti, j is assigned based on
Algorithm 1, and an example of route assignment is shown in
Figure 2. Figure 2(a) and Figure 2(b) illustrate an example of Gc
and Gc, respectively. Based on Gc and Gc, Figure 2(c) shows the
route assignment for F (as refers to lines 5-12 in Algorithm 1),
and Figure 2(d) shows the results after the RS merging process
(as refers to lines 13-16 in Algorithm 1).

Then we will show that there is a maximal clique of u vertices
in Gc if and only if there is an optimal schedule F̃ such that Γ(F̃) =∑

i∈F̃ wi = |F̃| = u is maximized. In “only if” part, suppose that
such a maximal clique V∗c exists and |V∗c | = u. By our reduction,
V∗c is mapped to a subset F∗ ∈ F of u service flows. It is obvious
that a feasible schedule with u service flows can be obtained by
assigning each schedule instance as follows.

1) For the case of first κi − 1 transmissions T ∗i, j (1 ≤ i ≤ u, 1 ≤
j ≤ κi − 1), we have ˆ̀∗

i, j = ( j − 1) × ~.
2) For the case of the last transmission T ∗i,κi

(1 ≤ i ≤ u), we
have ˆ̀∗

i,κi
= (κi − 1) × ~ + (i − 1) × =.

Now suppose by contradiction, a feasible schedule F̂ with u′ > u
flows exists. F̂ satisfies the transmission constraints since τi,κi =

= < ~
|Vc |

< ~ = τi, j for any F̂i ∈ F̂, 1 ≤ j ≤ κi − 1. Hence,
for any two different service flows F̂i ∈ F̂ and F̂i′ ∈ F̂, we have
F̂i, j ⇔ T̂i′, j for any 1 ≤ j ≤ κi − 1. Then ri, j , ri′, j implies that
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ξ(i + 1,m) =

{
min {ξ(i,m − wi+1) + Pi+1, ξ(i,m)} if ξ(i,m − wi+1) + Pi+1 ≤ min{di+1, c}
ξ(i,m) otherwise (4)
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Fig. 1. An example to illustrate the problem OPT-LS.

Algorithm 1 ROUTE ASSIGNMENT
1: construct |Vc||Ec| relay stations ri, j (1 ≤ i ≤ |Vc|, 1 ≤ j ≤
κi − 1 = |Ec|)

2: construct |Vc| subscriber stations si (1 ≤ i ≤ |Vc|)
3: construct a base station
4: E] ← Ec

5: for all service flow Fi ∈ F do
6: T Xi,1 ← si

7: RXi,κi ← the base station
8: for j = 1 to κi − 1 do
9: RXi, j ← ri, j

10: T Xi, j+1 ← ri, j

11: end for
12: end for
13: for z = 1 to |Ec| do
14: remove an arbitrary edge (α, β) from E]

15: rα,z = rβ,z
16: end for

(T Xi, j,RXi, j) < Ii′, j and (T Xi′, j,RXi′, j) < Ii, j. Thus, an independent
set of Gc with u′ vertices exists, and we have a clique of size
u′ > u. The “if” part can be derived in the same way, and the
details are omitted.

To show the in-approximability of our OPT-LS, a kind of
reduction, L-reduction, is used. L-reduction preserves a relative
error of approximation within a constant factor [22]. Suppose that
both Π and Π′ are the maximization problems. Π can be L-reduced
to Π′ if there exist two constants ϑ1, ϑ2 > 0 and a polynomial-time
transformation f satisfies the following conditions:

1) For each instance x of Π, f (x) is an instance of Π′.
2) The optimum solutions of x and f (x), OPT (x) and

OPT ( f (x)), satisfy OPT ( f (x)) ≤ ϑ1 × OPT (x).

3) For any solution of f (x), c( f (x)), we can find in polynomial
time a solution of x, c(x), satisfying c(x) ≥ OPT (x) +
ϑ2[c( f (x)) − OPT ( f (x))].

In our reduction, the optimum value in the two instances is
the same. Let ϑ1 = ϑ2 = 1, we have an L-reduction from
MAX CLIQUE to the special case of OPT-LS. Then by the known
result of in-approximability of MAX CLIQUE [23], OPT-LS cannot
be approximated within n1−ε in polynomial time for any ε > 0.

Notice that in WRNs, frame resources are not dedicated to real-
time service flows, and shall be shared with other types of data
transmission such as best-effort traffic and signaling control mes-
sage. In this case, a frame would have some unavailable intervals
that can not be used for scheduling the real-time service flows. To
consider this situation for our OPT-LS, a modification of deadlines
of real-time service flows is needed. The deadlines are shifted
backward such that the unavailable intervals are virtually removed
for real-time service flows. Figure 3 illustrates an example of
deadline shift for real-time service flows originally with deadlines
d1 and d2. In Figure 3(a), there are two unavailable intervals, i.e.,
U1 and U2. U1 and U2 are virtually removed when d1 and d2 are
respectively changed to d1 and d2 (see Figure 3(b)).

III. Scheduling Algorithms
Since OPT-LS problem is NP-hard, we can only need to find

viable heuristic to solve it. This section presents two heuristic
scheduling algorithms to support QoS guarantee over WRNs. First,
we develop a Dynamic-Programming-based Scheduling (DPS) al-
gorithm for OPT-LS. Then, we present a DPS-based algorithm with
Spatial Reuse (DPS-SR). The worst-case performance analysis of
Algorithms DPS and DPS-SR is also given in this section.

A. Algorithm DPS
The algorithm DPS consists of the following three phases: 1)

Flow Sequencing, 2) Flow Selection, and 3) Assignment of Sched-
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s1

s3

s4

s2

r1,1

r2,1

r3,1

r4,1

r1,2

r2,2

r3,2

r4,2

r1,3

r2,3

r3,3

r4,3

r1,4

r2,4

r3,4

r4,4

F1 F2 F3 F4

(c) The route assignment, where each service flow Fi is as-
signed a transmission path si  ri,1  ri,2  . . . ri,|Ēc |  
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Fig. 2. An example of route assignment.

BS (1) RS (2)

(2,1)

(4,1) (6,3)

SS (4)

RS (3)

SS (5) SS (6)

(3,2)

(5,2)

T1,1  

20

T3,1

30

T3,2

T2,1  

d2 d1,d3

T2,2

45

40

edge

65

T3,3

85

T1,1  

time (ms)
20

T3,1

30

T3,2

T2,1  

d2 d1,d3

T2,2

45

40

edge

60

T3,3

80

(3,2)

(2,1)

(4,1)

15

(5,2)

(6,3)

T2,1  

d2

T2,2

45

edge

60

8060

(3,2)

(2,1)

(4,1)

(5,2)

(6,3)

(3,2)

(2,1)

(4,1)

(5,2)

(6,3)

time (ms)

time (ms)

d2

U1

0 c

U2

frame period

d1 d2α1 β1 α2 β2

c-(β1-α1)-(β2-α2)

d1=d1-(β1-α1) d2=d2-(d2-α2)-(β1-α1)

0 frame period

(a) Frame with unavailable intervals

BS (1) RS (2)

(2,1)

(4,1) (6,3)

SS (4)

RS (3)

SS (5) SS (6)

(3,2)

(5,2)

T1,1  

20

T3,1

30

T3,2

T2,1  

d2 d1,d3

T2,2

45

40

edge

65

T3,3

85

T1,1  

time (ms)
20

T3,1

30

T3,2

T2,1  

d2 d1,d3

T2,2

45

40

edge

60

T3,3

80

(3,2)

(2,1)

(4,1)

15

(5,2)

(6,3)

T2,1  

d2

T2,2

45

edge

60

8060

(3,2)

(2,1)

(4,1)

(5,2)

(6,3)

(3,2)

(2,1)

(4,1)

(5,2)

(6,3)

time (ms)

time (ms)

d2

U1

0 c

U2

frame period

d1 d2α1 β1 α2 β2

c-(β1-α1)-(β2-α2)

d1=d1-(β1-α1) d2=d2-(d2-α2)-(β1-α1)

0 frame period

(b) Frame after removing unavail-
able intervals

Fig. 3. An illustration of the removing of unavailable intervals.

ule Instance. In the first phase, all flows will be re-sequenced.
Based on the sequence of the flows, a subset of the flows will be
selected in the second phase, and the schedule instances of the
selected flows will be assigned in the last phase.

1) Flow Sequencing: In the first phase, the flows in F are
renumbered in non-decreasing order of their deadlines.
The Earliest-Due-Date (EDD) rule is used because it has
been proven to be optimal for the minimization of the
maximum tardiness (i.e., the time difference between job
completion time and its deadline) for single-machine job
scheduling [24]. This feature facilitates the selection of the
flows in the second phase.

2) Flow Selection: Since the completion time of each service

Algorithm 2 Assignment of Schedule Instances
Require: a schedule sequence for requesting flows

F̂ = {F1, F2, . . . , F%}

Ensure: a set of schedule instances L̂
1: t ← 0
2: for i = 1 to % do
3: for j = 1 to κq do
4: ˆ̀i, j ← t
5: t ← t + τi, j

6: end for
7: end for
8: return L̂

flow is close to its deadline by using EDD, a feasible
schedule could be obtained by rejecting only a small number
of requesting service flows with small weights. To ensure
that the previously admitted service flows are selected, the
flow weights are modified to wi, and wi will be

wi =

{
wi + WA, if ai = 1
wi, otherwise (6)

where WA = (
∑

i∈F,ai=0 wi) + 1.
In this phase, the dynamic programming technique is
adopted to achieve a better schedule profit. For each i,m
(i = 0, 1, . . . , n and m = 0, 1, . . . ,

∑
i∈F wi), let the state

variable ξ(i,m) be the minimal completion time among the
m-profit subsets (i.e., the total value of the subsets equals
to m) of the set of the first i flows {F1, F2, . . . , Fi} in F.
For i ∈ F, let Pi be the total transmission time of Fi, i.e.,
Pi =

∑
Ti, j∈Ti

τi, j. Initially, ξ(i, 0) is set to 0, and ξ(i,m) = ∞
for m > 0. Then each ξ(i + 1,m) can be computed in a
constant time by (4). Let m∗ be the maximum value of m
such that ξ(i,m) < ∞. The corresponding selected flows
with the profit m∗ is determined by the backtracking of the
above computation process. The concept of the design of
the selection process comes from the single-machine job
scheduling, and the correctness of our recurrence (4) can be
easily shown [25].

3) Schedule Instance Assignment: Suppose that from the
second phase, we select a set of % flows, say F̄, such that∑

i∈F̄ wi = m∗ and di ≤ di′ if i < i′. Let F̂ = F̄. Then the
schedule instances L̂ of F̂ can be obtained by Algorithm 2.
Specifically, the time is initialized to 0, and the schedule
instances of the service flows in F̂ are set based on the
schedule sequence and ξ determined in the second phase.

Theorem 2: The schedule produced by Algorithm DPS is a
feasible solution for OPT-LS.

Proof: The resulting schedule satisfies the transmission con-
straints because Algorithm 2 assigns the instances of scheduled
flows by following its strict transmission order. Also, the deadlines
of the flows are definitely met based on (4). In addition to
the transmission constraints, the resulting schedule satisfies the
interference-free constraints because only one of the flows is
assigned to transmit at any time instance. Furthermore, we will
prove by contradiction that all previously admitted flows will be
chosen by Algorithm DPS. Notice that the admitted flows are
feasibly scheduled by Algorthm DPS in last frame. Suppose that
there exists an admitted service flow Fi < F̂. Since Algorithm
DPS selects a subset of F with a maximum total weight, there
must exist a set of requesting flows whose sum of weights is no
less than wi. We reach the contradiction because wi >

∑
i∈F,ai=0 wi

by (6).
Theorem 3: With the constant weight wi, the time com-

plexity of DPS, dominated by the second-phase operation, is
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ξ(i + 1,m) =

{
min

{
ξ(i,m − wi+1) + Qi+1,m, ξ(i,m)

}
if ξ(i,m − wi+1) + Qi+1,m ≤ min{di+1, c}

ξ(i,m) otherwise (5)

O(n
∑

i∈F wi) = O(n2 p).

B. Algorithm DPS-SR
Based on our DPS algorithm, we further pursue a feasible sched-

ule with a higher degree of spatial reuse, The heuristic, named
DPS-SR, is an amendment of DPS. Recall that in DPS, the schedule
sequence is determined by (4), and the exclusive transmission of
the selected flows is provided in Algorithm 2. However, allowing
multiple transmissions to proceed simultaneously would enhance
the schedule profit. To achieve a higher degree of spatial reuse,
each transmission could be scheduled “as early as possible” while
maintaining the transmission constraints and the interference-free
constraints.

For any i,m (1 ≤ i ≤ n, 1 ≤ m ≤
∑

i∈F wi), let ξ(i,m)
be associated with a corresponding schedule F̂(i,m). Instead of
adopting (4), our DPS-SR computes each ξ(i,m) by using the
recurrence shown in (5). Specifically, Qi,m is defined as the
increase of the completion time for inserting the κi transmissions
of Fi into F̂(i−1,m−wi+1) while the transmission constraints and
the interference-free constraints are satisfied. Then the resulting
schedule can be obtained by F̂(i,m∗), where m∗ is the maximum
value of all possible m such that ξ(i,m∗) < ∞.

Theorem 4: The schedule produced by Algorithm DPS-SR is a
feasible solution for OPT-LS.

Proof: The proof is similar to that of Theorem 2 and omitted
here.

Theorem 5: The schedule profit of DPS-SR is not less than DPS.
Proof: Since Qi,m ≤ Pi for each possible i,m, any ξ(i,m) of

Algorithm DPS-SR is less than or equal to ξ(i,m) of Algorithm
DPS. It implies that any schedule sequence produced by Algorithm
DPS is also a candidate sequence of Algorithm DPS-SR.

Theorem 6: The time complexity of DPS-SR is O(n3 p × ϕ2).

C. Worst Case Analysis of Algorithms
This section studies the worst-case performance of Algorithm
DPS and DPS-SR. Due to the analysis of in-approximability of
OPT-LS shown in Section 1, it is hard to design an algorithm with a
“theoretically” small approximation factor. Here, we are interested
in finding out whether a “practically” small approximation factor
is supported for Algorithms DPS/DPS-SR. We focus on the deriving
of a “practically” small approximation factor for DPS. The factor
can be also applied to DPS-SR since for any input instance, the
schedule profit of DPS-SR is at least equal to that of DPS.

Recall that r represents the number of relay stations within
a WRN, while ϕ are the maximum hop count of requesting
service flows, respectively. We will show that the approximation
factors of DPS are respectively (1 + r) and (rd ϕ2 e) for the case
of ϕ ≤ 2 (via one RS) and ϕ > 2 (through more than one
RS). In WRNs, the values of r and ϕ are mostly dominated
by network topology/configuration, not by system load. Thus
the worst-case performance of our scheduling algorithms can be
determined in the network planning stage and is stable in runtime.
Furthermore, in the common implementation of QoS-supported
WRN, the values of r and ϕ are pretty small due to the following
reasons.

1) With large r or ϕ, service flows would pass through many
RSs, and the considerably large transmission delay of the
flows is unacceptable for QoS guarantee.

2) The operational complexity of a WRN will be signifi-
cantly increased when the hop count is larger than 2 [26].
Consequently, the deployment of ϕ ≤ 2 is mandatory

for IEEE 802.16j, while the multi-hop relay is optionally
implemented [27].

3) The effective system capacity is about inversely proportional
to the number of RSs associated with a BS [28]. If a BS is
required to support a large number of RSs, the demands of
SSs could not be fully satisfied. The existing usage scenarios
of RS deployment in IEEE 802.16j are based on small values
of r and ϕ (r ≤ 16 and ϕ ≤ 3) [29], [30], [31].

The following theorem provides inspiration for our worst-case
analysis.

Theorem 7: Algorithm DPS produces an optimal profit for a
special case of input where the concurrent transmissions for
different service flows are not allowed, i.e., Ii, j is equal to E for
(i, j) ∈ T.

Proof: If Ii, j is equal to E for (i, j) ∈ T, the service flows are
referred to as single-machine jobs. Then the problem OPT-LS can
be reduced to minimize the weighted number of tardy jobs on a
single machine, and the proof has been presented by [25].
For any input instance F, we can construct a corresponding set
of flows, say F(3), such that I(3)

i, j is equal to E for (i, j) ∈ T(3). By
Theorem 7, we have Γ(F̃(3)) = Γ(F̂). If different service flows are
allowed to be simultaneously transmitted, we would like to extend
the above idea to obtain a practically small h such that

Γ(F̃)
h
≤ Γ(F̃(3)) (7)

Before the analysis is presented in detail, the intuition behind
our following proofs is summarized as follows. In WRNs, the
receiver of any uplink transmission can be the BS or RS, not
the SS. For any time, an optimal algorithm can schedule at most
(1 + r) transmissions concurrently. In order to find a proper h,
we try to divide the service flows into (1 + r) regions such that
any two links within different regions will not interfere with
each other. However, due to our general interference model, each
link could potentially interfere with any other links. Moreover, a
service flow could consist of more than one transmission, and the
transmissions of a service flow might belong to different regions.
Also, the transmissions of a flow should follow a strict order under
the delay constraints. The characteristics of delay constraints and
general interference model lead to the difficulty of analyzing the
approximation bound for Algorithm DPS. To conquer this, we start
the analysis with the subproblem of OPT-LS: each flow has at most
two transmissions, i.e., ϕ ≤ 2. A flow set F(1) will be constructed
by merging multiple transmissions of each flow in F into one.
Then we intend to show that

Γ(F̃)
1 + r

≤
Γ(F̃(1))
1 + r

≤ Γ(F̃(3)) (8)

In our analysis, there is one base station and r relay stations.
Let station 1 be the base station, and stations α (2 ≤ α ≤ r + 1) be
the relay stations. For any input instance F, we construct F(1) =

{F(1)
1 , F(1)

2 , . . . , F(1)
n } such that for i ∈ F(1), b(1)

i = bi; d(1)
i = di; κ

(1)
i =

dκi/2e; w(1)
i = wi. Also, for (i, j) ∈ T(1), we have T X(1)

i, j = T Xi,2 j−1

and RX(1)
i, j = RXi,2 j−1. The interference set I(1)

i, j is constructed as
I(1)
i, j = {(α, β) | (α, β) ∈ E; β = RX(1)

i, j } ⊆ Ii,2 j−1. τ(1)
i, j is set as τi,2 j−1 +

τi,2 j if 2 j ≤ κi. Otherwise, τ(1)
i, j = τi,2 j−1.

Theorem 8: Let F̃ and F̃(1) be the optimal schedules for an input
instance F and the constructed F(1), respectively. Then Γ(F̃) ≤
Γ(F̃(1)).

Proof:
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For any input instance F, we try to construct a transformation
f : F̃ → F̂(1) where F̂(1) is a feasible schedule for F(1) such that
Γ(F̃) = Γ(F̂(1)). If the transformation can be done, then the theorem
holds since Γ(F̂(1)) ≤ Γ(F̃(1)). For (i, j) ∈ T̂(1)

i, j , let ˆ̀(1)
i, j = ˆ̀i,2 j−1. Now

we prove F̂(1) is a feasible schedule. F̂(1) satisfies the transmission
constraints because for all i, j (1 ≤ i ≤ |F̂(1)|, 1 ≤ j ≤ κ(1)

i − 1)

ˆ̀(1)
i, j = ˆ̀i,2 j−1

≥ ˆ̀i,2 j−2 + τi,2 j−2

≥ ˆ̀i,2 j−3 + τi,2 j−2 + τi,2 j−3

≥ ˆ̀i,2( j−1)−1 + τi,2( j−1) + τi,2( j−1)−1

= ˆ̀(1)
i,( j−1) + τ(1)

i, j−1

and for all i (1 ≤ i ≤ |F̂(1)|),

ˆ̀(1)
i,κ(1)

i

= ˆ̀
i,2κ(1)

i −1

= ˆ̀i,2dκi/2e−1

=

{
`i,κi−1 if κi is even
`i,κi otherwise

≤

{
di − τi,κi−1 − τi,κi if κi is even
di − τi,κi otherwise

= d(1)
i − τ

(1)
i,κ(1)

i

In addition to the transmission constraints, we show that F̂(1)

satisfies the interference-free constraints. To prove this, each
transmission T̂ (1)

i, j of F̂(1)
i is separated into T̂ (1)

i, j,1 and T̂ (1)
i, j,2 such that

τ(1)
i, j,1 = τi,2 j−1, τ(1)

i, j,2 = τi,2 j, ˆ̀(1)
i, j,1 = ˆ̀i,2 j−1, and ˆ̀(1)

i, j,2 = ˆ̀i,2 j−1
2. F̂(1)

satisfies the interference-free constraints if the following statement
holds. If any two transmissions T̂ (1)

i, j,γ and T̂ (1)
i′, j′,γ′ are overlapped,

then we have (T X(1)
i, j ,RX(1)

i, j ) < I(1)
i′, j′ and (T X(1)

i′, j′ ,RX(1)
i′, j′ ) < I(1)

i, j . The
proof can be classified into the following three cases based on γ
and γ′.

1) Case 1: γ = γ′ = 1
Suppose that there exists a transmission T̂ (1)

i, j,1, and the
transmission T̂ (1)

i, j,1 is interfered by another transmission
T̂ (1)

i′, j′,1 or vice vera. That is, (T X(1)
i, j,1,RX(1)

i, j,1) ∈ I(1)
i′, j′,1 or

(T X(1)
i′, j′,1,RX(1)

i′, j′,1) ∈ I(1)
i, j,1. Then we can find the correspond-

ing transmissions in F̃ such that (T Xi,2 j−1,RXi,2 j−1) ∈ Ii′,2 j′−1

or (T Xi′,2 j′−1,RXi′,2 j′−1) ∈ Ii,2 j−1. If T̂ (1)
i, j,1 and T̂ (1)

i′, j′,1 are
overlapped, F̃ violates the interference-free constraints be-
cause T̂i,2 j−1 and T̂i′,2 j′−1 are overlapped, which makes the
contradiction.

2) Case 2: γ = 1, γ′ = 2
Assume that T̂ (1)

i, j,1 and T̂ (1)
i′, j′,2 are overlapped. By our

construction, T̂i,2 j−1 and T̂i′,2 j′ are also overlapped. If
(T X(1)

i, j,1,RX(1)
i, j,1) ∈ I(1)

i′, j′,2, then we obtain

Ii′,2 j′ ⊇ {(α, β) | (α, β) ∈ E;
α = T Xi′,2 j′ or α = RXi′,2 j′

or β = T Xi′,2 j′ or β = RXi′,2 j′ }

⊇ {(α, β) | (α, β) ∈ E; β = T Xi′,2 j′ }

= {(α, β) | (α, β) ∈ E; β = RXi′,2 j′−1}

= {(α, β) | (α, β) ∈ E; β = RX(1)
i′, j′ }

= I(1)
i′, j′

= I(1)
i′, j′,2

2T̂ (1)
i, j,2 exists if and only if T̂i,2 j exists.

3 (T X(1)
i, j,1,RX(1)

i, j,1)
= (T Xi,2 j−1,RXi,2 j−1)

which makes the contradiction.
Similarly, if (T X(1)

i′, j′,2,RX(1)
i′, j′,2) ∈ I(1)

i, j,1, then we have

Ii,2 j−1 ⊇ {(α, β) | (α, β) ∈ E;
β = T Xi,2 j−1 or β = RXi,2 j−1

or α = T Xi,2 j−1 or α = RXi,2 j−1}

⊇ {(α, β) | (α, β) ∈ E; β = RXi′,2 j′−1}

= {(α, β) | (α, β) ∈ E; β = RX(1)
i′, j′ }

= I(1)
i′, j′

= I(1)
i′, j′,1

3 (T X(1)
i′, j′,1,RX(1)

i′, j′,1)

= (T X(1)
i′, j′,2,RX(1)

i′, j′,2)
= (T Xi′,2 j′ ,RXi,2 j′ )

which makes the contradiction.
3) Case 3: γ = γ′ = 2

The proof in this case is omitted since it is similar to that
in case 2.

For any input instance F(1), we construct a transformation g :
F(1) → F(3) such that each flow F(3)

i is equal to F(1)
i except for

I(3)
i, j = E for (i, j) ∈ T(3). Then we derive the following theorem.

Theorem 9: For ϕ ≤ 2, given the optimal schedules F̃(1) and
F̃(3) for the input instance F(1) and its transformed instance F(3),
we have Γ(F̃(1)) ≤ (1 + r)Γ(F̃(3)).

Proof: Given ϕ ≤ 2, we have ϕ(1) = κ(1)
i = 1 for i ∈ F(1). F(1)

is divided into 1 + r disjoint subsets F(1,1), F(1,2), . . . , F(1,1+r) such
that RX(1,u)

i, j is station u for any 1 ≤ u ≤ (1 + r), (i, j) ∈ T(1,u). Then

Γ(F̃(1)) ≤
∑

1≤u≤(1+r)

Γ(F̃(1,u)). (9)

The above inequality holds due to the following reason. We divide
F̂(1) into 1+ r disjoint subsets F̂[1,1], . . . , F̂[1,1+r] such that RX[1,u]

i,1 is
station u for i ∈ F̂[1,u]. Assigning ˆ̀[1,u]

i,1 to ˆ̀(1,u)
i,1 produces a feasible

schedule for each F(1,u). Thus every feasible schedule for F(1) can
be applicable to F(1,u) for any 1 ≤ u ≤ 1 + r.

Moreover, every transmission in T(1,u) has the same receiver,
and the overlapping is not allowed for any feasible schedule F̂(1,u).
Thus, I(1,u)

i,1 can be set to E for each i, u (i ∈ F(1,u), 1 ≤ u ≤ 1 + r),
and the resulting Γ(F̃(1,u)) is still maintained. However, F(1,u) is
currently a subset of (or included in) F(3). It is sufficient to show

Γ(F̃(1,u)) ≤ Γ(F̃(3)). (10)

for any 1 ≤ u ≤ 1 + r. Substituting (10) into (9),

Γ(F̃(1)) ≤
∑

1≤u≤(1+r)

Γ(F̃(3)) = (1 + r) × Γ(F̃(3)) (11)

By Theorem 8 and Theorem 9, we conclude the following result.

Theorem 10: For ϕ ≤ 2, Algorithm DPS is an (1 + r)-
approximation algorithm for F.

Considering ϕ > 2, Theorem 9 can not hold because κ(1)
i can

be greater than 1 for some i ∈ F(1). Then the separation of F(1)

described in the proof of Theorem 9 is not allowed since there
probably exist j and j′ such that RXi, j , RXi, j′ . Then for any F(1),
a flow set F(2) will be constructed, and we intend to show that

Γ(F̃(1))
(1 + r)ζ

≤
Γ(F̃(2))
(1 + r)

≤ Γ(F̃(3)) (12)



8

for some constant ζ. The main difference between F(1) and F(2) is
that the transceivers of transmissions of each flow in F(1) will be
modified such that the transceivers of any transmissions belong
to the same flow in F(2) are the same. Specifically, for any F(1),
we try to construct F(2) such that for i ∈ F(2), F(2)

i is equal to F(1)
i

except that the transceivers in F(2) are constrained to the following
properties:

Property 1) RX(2)
i, j = RX(2)

i, j′ for (i, j , j′) ∈ T(2)

Property 2) T X(2)
i, j = T X(2)

i, j′ for (i, j , j′) ∈ T(2)

Property 3) (T X(2)
i, j ,RX(2)

i, j ) ∈ E for (i, j) ∈ T(2)

With these properties, each transmission of any flow in F(2) has
the same transmitter and receiver, and then we have I(2)

i, j = I(2)
i, j′ for

(i, j , j′) ∈ T(2) due to the primary interference.
Theorem 11: Given the optimal schedules F̃(2) and F̃(3) for input

instance F(2) and its transformed instance F(3), we have Γ(F̃(2)) ≤
(1 + r)Γ(F̃(3)).

Proof: The proof is similar to that of Theorem 9 and omitted
here.

Moreover, for any F̃(1), if there exists a transformation f ′ :
F̃(1) → F̂(2) such that F̂(2) is a feasible schedule for F(2) and
Γ(F̃(1)) ≤ ζ × Γ(F̂(2)) for some constant ζ, we obtain Γ(F̃(1)) ≤ ζ ×
Γ(F̃(2)). In order to construct a legitimate F(2) such that ζ is small,

Algorithm 3 F(2) CONSTRUCTION

Require: F(1), F̃(1), G, Ǧ(1)

Ensure: F(2)

1: F(2) ← F(1)

2: for i ∈ F(1) do
3: if there exist i′ ∈ F̃(1) and β such that F(1)

i = F̃(1)
i′ and i ∈ M̌β

then
4: find any α such that (α, β) ∈ E
5: else
6: arbitrarily select an edge (α, β) ∈ E
7: end if
8: for (i, j) ∈ T(1) do
9: T X(2)

i, j ← the station β

10: RX(2)
i, j ← the station α

11: end for
12: end for
13: return F(2)

Algorithm 4 F̂(2) CONSTRUCTION

Require: F(2),F(1), F̃(1), Ǧ(1)

Ensure: F̂(2)

1: construct F̂(2) = {F̂(2)
1 , . . . , F̂(1)

|V̌ |
}

2: θ ← 1
3: for i ∈ F(1) do
4: if there exist i′ ∈ F̃(1) and β such that F(1)

i = F̃(1)
i′ , and

i ∈ M̌β then
5: F̂(2)

θ ← F(2)
i

6: ˆ̀(2)
θ, j ←

˜̀(1)
i, j for all possible j

7: θ ← θ + 1
8: end if
9: end for

10: return F̂(2); L̂(2)

we model F̃(1) as a vertex-weighted graph G(1) = (M, J). Each
vertex i in G(1) represents F̃(1)

i ∈ F̃
(1), and |F̃(1)| = |M|. Each vertex

i is assigned a weight zi = w(1)
i , while the total weight is denoted

as W =
∑

i∈M zi. Let J =
{
(i, j) | i ∈ M, j ∈ M,∃i′, j′, T̃ (1)

i,i′ ⇔ T̃ (1)
j, j′

}
.

The degree of each vertex i is defined by δi, while the weighted
average degree of G(1) is δ̄ =

∑
i∈M (zi×δi)

W . Suppose that there exists
a subset M̌ ⊆ M such that the induced subgraph Ǧ(1) = (M̌, J̌) is
(1+r)-colorable and

∑
i∈M zi ≤ ζ×

∑
i∈M̌ zi. Then we have (1+r) dis-

joint independent vertex sets M̌1, . . . , M̌1+r and
⋃

1≤u≤1+r M̌u = M̌.
For any F̃(1), as shown in Algorithm 3, we modify the

transceivers of F̂(1) to make F(2) conform to the three properties
listed above. Based on the F̃(1) and the derived F(2), Algorithm 4
computes F̂(2) such that any flow is in F̂(2) if and only if there
exists a corresponding vertex in Ǧ(1), i.e.,

∑
i∈M zi = Γ(F̂(2)). By

this construction, if F̂(2) is feasible for F(2), the following equation
can be derived.

Γ(F̃(1)) =
∑
i∈M

zi ≤ ζ ×
∑
i∈M̌

zi = ζ × Γ(F̂(2)) ≤ ζ × Γ(F̃(2)) (13)

Theorem 12: F̂(2) produced by Algorithm 4 is a feasible sched-
ule for F(2).

Proof: For i ∈ F̂(2), there exists a service flow F̃(1)
πi such

that ˆ̀(2)
i, j = ˜̀(1)

πi, j
(see line 5 of Algorithm 4). F̂(2) satisfies the

transmission constraints since F̃(1) is a feasible schedule. Also,
I(2)
i, j = I(1)

πi, j
= {(β, α) | (β, α) ∈ E;α is station i}. Then, for (i ,

i′, j , j′) ∈ T̂(2),
1) When RX(2)

i, j , RX(2)
i′, j′ , we have (T X(2)

i, j ,RX(2)
i, j ) < I(2)

i′, j′ and
(T X(2)

i′, j′ ,RX(2)
i′, j′ ) < I(2)

i, j .
2) When RX(2)

i, j = RX(2)
i′, j′ , then T̃ (1)

πi, j < T̃ (1)
πi′ , j′

since MRX(2)
i, j

is an

independent set. Thus we have T̂ (2)
i, j < T̂ (2)

i′, j′ .

Since zi = w(1)
i , by (13), Theorem 11, and Theorem 12, we

conclude the following corollary.
Corollary 1: Γ(F̃(1)) ≤ ζ × (1 + r) × Γ(F̃3) if for any G(1) the

induced subgraph Ǧ(1) is (1+r)-colorable and
∑

i∈M zi ≤ ζ×
∑

i∈M̌ zi.
Now we will determine the lower bound ζ of the maximum

weighted cardinality of the family of (1 + r) disjoint independent
sets from G(1). Before determining ζ, the following theorem gives
an important property for G(1).

Theorem 13: For any F̃(1), δ̄ ≤ (1 + r)
⌈
ϕ
2

⌉
.

Proof: For any F̃(1), let T̃(1) =
⋃

(i, j)∈T̃(1) T̃ (1)
i, j . We separate T̃(1)

into (1 + r) disjoint subsets T̃(1,1), . . . , T̃(1,1+r) such that RX(1)
i, j is

station α for (i, j) ∈ T̃(1,α), i.e., T̃(1,α) = {T̃ (1)
i, j | T̃

(1)
i, j ∈ T̃

(1); RX(1)
i, j =

is station α}. Since I(1)
i, j = {(α, β) | (α, β) ∈ E; β = the station i},

we have T̃ (1,α)
i, j < T̃ (1,α)

i′, j′ for (i , i′, j , j′) ∈ T̃(1,α). We denote
σ(T̃(1,α)) as the completion time of the last finished transmission
of T̃(1,α), i.e., σ(T̃(1,α)) = max(i, j)∈T̃(1,α) { ˜̀(1)

i, j + τ(1)
i, j }. Similarly, the

starting time of the first transmission of T̃(1,α) is signified by
ς(T̃(1,α)) = min(i, j)∈T̃(1,α) { ˜̀(1)

i, j }. We denote x(T̃(1,α), σ(T̃(1,α)), ς(T̃(1,α)))
be the weight of flows that have at least a transmission in T̃(1,α)

satisfying that ˜̀(1)
i, j + τ(1)

i, j ≥ t or ˜̀(1)
i, j < t′. For any α (1 ≤ α ≤ 1 + r),

let Ω(T̃(1,α)) =
{
(i, i′)|T̃ (1)

i, j ⇔ T̃ (1)
i′, j′ , T̃

(1)
i, j ∈ T̃

(1,α), T̃ (1)
i′, j′ ∈ T̃

(1) \ T̃(1,α)
}

and let
X(T̃(1,α)) =

∑
(i,i′)∈Ω(T̃(1,α))

wi′ (14)

By induction on |T̃(1,α)|, we prove that X(T̃(1,α)) is less than or
equal to

∑
(i, j)∈T̃(1,α) wi +

∑
1≤u≤(1+r), u,α x

{
u, ς(T̃(1,u)), σ(T̃(1,u))

}
. As

|T̃(1,α)| = 1, it trivially holds because

X(T̃(1,α)) ≤
∑

1≤u≤(1+r), u,α

x
{
u, ς(T̃(1,u)), σ(T̃(1,u))

}
Suppose that the hypothesis of induction holds as |T̃(1,α)| = l. As
|T̃(1,α)| = l + 1, there exists a timepoint m such that the earliest
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transmission T̃ (1,α)
i, j ∈ T̃(1,α) ends at m. We divide T̃(1,α) into T̃(1,α,1)

and T̃(1,α,2) such that T̃(1,α,1) = {T̃ (1,α)
i, j } and T̃(1,α,2) = T̃(1,α) \ T̃(1,α,1).

Since |T̃(1,α,1)| = 1 and |T̃(1,α,2)| = |T̃(1,α)| − 1, we have

X(T̃(1,α)) = X(T̃(1,α,1)) + X(T̃(1,α,2))
≤

∑
1≤u≤(1+r), u,α

x
{
u, ς(T̃(1,u,1)), σ(T̃(1,u,1))

}
+

∑
(i, j)∈T̃(1,u,2)

wi +
∑

1≤u≤(1+r), u,α

x
{
u, ς(T̃(1,u,2)), σ(T̃(1,u,2))

}
≤

∑
(i, j)∈T̃(1,α)

wi +
∑

1≤u≤(1+r), u,α

x
{
u, ς(T̃(1,u)), σ(T̃(1,u))

}
.

Then we have

δ̄ =
1
W

∑
i∈M

(ziδi)

=
1
W

∑
(i, j)∈J

(zi + z j)

≤
1
W

r+1∑
α=1

X(T̃(1,α))

≤
1
W

r+1∑
α=1

 ∑
(i, j)∈T̃(1,α)

wi +
∑

1≤u≤(1+r), u,α

x
{
u, ς(T̃(1,u)), σ(T̃(1,u))

}
≤

1
W

r+1∑
α=1

 ∑
(i, j)∈T̃(1,α)

wi

 +
r
W

1+r∑
u=1

x
{
u, ς(T̃(1,u)), σ(T̃(1,u))

}
=

1
W

∑
i∈F̃(1)

(κ(1)
i × wi) +

r
W

∑
i∈F̃(1)

(κ(1)
i × wi)

≤
1 + r

W

∑
i∈F̃(1)

(ϕ(1) × wi)

= (1 + r)ϕ(1)

= (1 + r)
⌈
ϕ

2

⌉
Theorem 14: There exists M̌ ⊆ M such that the induced

subgraph Ǧ(1) = (M̌, J̌) is (1 + r)-colorable and
∑

i∈M zi ≤
2r×d ϕ2 e

1+r ×∑
i∈M̌ zi.

Proof:
In [32], it had been shown that for any vertex-weighted graph

G(1) = (M,Z), there exists an independent set whose weight
is equal or greater than W/(1 + δ̄). Then the theorem can be
proven by iteratively performing MAX WEIGHTED INDEPENDENT
SET (r + 1) times as follows. In the first iteration, the input is
the graph G(1) = (M, J) with the weighted average degree δ̄
while the output is a maximum independent set MD ⊆ M. By
removing the derived independent set from G(1), we have the
remaining vertex set MR = M \ MD and the remaining edge
set JR = J \ {(α, β) | α ∈ MD or β ∈ MD}. The remaining graph
GR = (MR, JR) with the weighted average degree δ̄R will be formed
as the input of the next iteration. Note that δ̄R ≤ δ̄−1 because any
vertex in M will be deprived of at least one edge after an iteration
and zi ≥ 1. If any vertex i ∈ MR has the same weighted degree as
that in M, the vertex will be chosen as a vertex in MD. Let Ψχ be
the weight of the family of χ disjoint independent sets after the
χth iteration. Then we have

Ψχ ≥ Ψχ−1 +
W − Ψχ−1

δ̄ − χ
, for χ ≥ 1

Then we prove Ψχ ≥ (χW)/(1 + δ̄) by the induction on χ. Let

Ψ0 = 0. By the inductive hypothesis for Ψχ−1,

Ψχ ≥ Ψχ−1 +
W − Ψχ−1

δ̄ − χ

≥
(χ − 1)W

1 + δ̄
+

W − (χ−1)W
1+δ̄

δ̄ − χ

≥ χW/(1 + δ̄)

Thus, letting
∑

i∈M̌ zi = Ψr+1, we have∑
i∈M̌

zi = Ψ1+r

≥
(1 + r)W

1 + δ̄

≥
∑
i∈M

zi ×
1⌈
ϕ
2

⌉ (by Theorem 13)

The theorem is proven with ζ =
⌈
ϕ
2

⌉
.

By Theorem 13, Theorem 14 and Colloary 1, we have Γ(F̃(1)) ≤
(2rd ϕ2 e) × Γ(F̃(3)). Then we conclude the following result.

Theorem 15: For ϕ > 2, DPS is an (2rd ϕ2 e)-approximation
algorithm, where ϕ is the maximum hop count of requesting flows.

D. Tradeoff of Time Complexity and Approximation Factor

This section discusses the tradeoff of time complexity and
approximation factor for our algorithms DPS and DPS-SR with
the consideration of weight setting of service flows. If the
weight is not a constant, DPS will be a pseudo polynomial-
time algorithm where the running time is O(n2 pY), where Y =
max(w1,w2, . . . ,wn). With a large constant Y , the worst-case
running time of DPS would be accordingly large, and a link
scheduler could not afford to execute such a heavy-computation
task. To reduce the time complexity, we can limit the number of
precision bits of the weight by truncating the last b bits of wi for
all flow i in F. Then the truncated weight will be

wη
i = 2b

⌈wi

2b

⌉
(15)

Suppose that F̂ and F̂η are the feasible schedules obtained by
Algorithm DPS for any F and the corresponding Fη, respectively.
Since any feasible schedule of F is also a feasible schedule of Fη,
the schedule profit of Algorithm DPS for the requesting flow set
Fη, Γ(F̂η) =

∑
i∈F̂η wη

i , is bounded by

Γ(F̂η) ≥
∑
i∈F̂

(
wi − 2b

)
(16)

Let b =
⌊
log2[Y(1 − 1

ε
)]
⌋
. Then (16) can be rewritten as

Γ(F̂η) ≥
∑
i∈F̂

[
wi − Y(1 −

1
ε

)
]

≥
∑
i∈F̂

[
wi − wi(1 −

1
ε

)
]

=
∑
i∈F̂

wi

ε
=

Γ(F̂)
ε

(17)

Based on (17), the approximation factor of DPS is ε(1 + r) for
ϕ ≤ 2 and ε(1 + r × 2 × d ϕ2 e) for ϕ ≥ 3, while the running time
of DPS is reduced to O( n2 pY

2b ). The same technique can be applied
to Algorithm DPS-SR so that the running time of DPS-SR with
non-constant or large weight will be improved.
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IV. Performance Evaluation

This section studies the performance of DPS and
DPS-SR through our developed Monte-Carlo simulation. Since the
existing link schedulers can not guarantee the schedulability of
previously admitted service flows, the schedule profits obtained
by DPS and DPS-SR are only compared with that of the optimal
solution (OPT).

In our experiments, the IEEE 802.16 OFDM is assumed as
the underlying modulation technology. The coding rate is 3/4.
The data rates of relay links and of access links are respectively
set to 18.36 Mbps and 6 Mbps. 18.36 Mbps and 6 Mbps
are the raw data rates by adopting the modulation schemes of
64-quadrature amplitude modulation (64-QAM) and quadrature
phase-shift keying (QPSK), respectively [17]. The frame duration
is set to 10 ms [1]. We assume that each SS has four requesting
flows and four admitted flows. In order to assure that the admitted
flows can be scheduled in the frame, a schedulability test shall
be done in advance for the admitted flows. For each flow, the
Gamma distribution is adopted to generate its required bandwidth,
deadline and weight. The Gamma distribution is used since it
can approximate many other distributions as well as experimental
data [33]. The parameters of the distributions of service flows are
set as Table II.

In Figure 4(a), a network topology of the one-hop relay scenario
is shown. Based on the topology, Figure 4(b) demonstrates the
interference graph, where the vertices represent the wireless links
and the edges indicate the interference between the wireless links.
Figure 4(c) and Figure 4(d) show the experimental results under
an one-hop relay scenario (i.e., ϕ = 2) for our DPS, DPS-SR, and
optimal solution (OPT). The optimal schedule is obtained by using
the brute-force search. In Figure 4(c), we study the effect of bmean
on the schedule profit for our DPS, DPS-SR, and OPT. In this figure,
bmean ranges from 0.05 Mbps (close to the average bandwidth
requirement of a high-quality voice call with silence compression)
to 0.175 Mbps (close to mean data rate for compressed flash
video). As bmean increases, the schedule profit gradually degrades
because network resources are exhausted. Figure 4(d) indicates the
effect of dmean on the schedule profit. The decrease of dmean results
in the reduction of the schedule profit because the service flows
with urgent deadline are hard to be satisfied. From Figure 4(c)
and Figure 4(d), we observe that the schedule profits of DPS and
DPS-SR are quite close to that of OPT.

TABLE II
The Setting of the Distribution

Attribute Parameter Value

Bandwidth Mean bmean = 50 Kbps
Shape bshape = 14

Deadline Mean dmean = 7 ms
Shape dshape = 14

Weight Mean wmean = 10
Shape wshape = 14

Now the experiments are extended from one-hop relay to two-
hop relay (i.e., ϕ = 3). Figures 5(a) and 5(b) respectively show
the network topology and the interference graph of the two-hop
relay scenario. Figure 5(c) and Figure 5(d) respectively show
the schedule profits for different bmean and dmean for our DPS,
DPS-SR, and OPT. Compared with the case of one-hop relay, the
schedule profits in the two-hop relay scenario are degraded for all
algorithms under investigation. When the hop count is increased,
the time for data relaying is increased, and hence the delay require-
ments of the flows are hard to fulfill. However, the performance
of our DPS-SR is quite close to that of OPT in this case since
link resources are effectively utilized by adopting spatial reuse.
Although a larger difference of schedule profits between DPS and
OPT, the lower time complexity of DPS makes DPS preferred for
the WRNs where the BSs have low computational capability.

(a) Network topology (b) Interference graph
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Fig. 4. Performance comparison of our DPS, DPS-SR, and OPT in an one-hop
relay scenario.
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Fig. 5. Performance comparison of our DPS, DPS-SR, and OPT in a two-hop relay
scenario.

V. Conclusions
This paper studied an optimization problem for multi-hop link

scheduling with explicit QoS guarantee for real-time services
over wireless relay networks (WRNs). Our optimization problem
is not limited to a specific objective, and the objective can be
based on various kinds of performance metrics (e.g., throughput,
fairness and capacity) determined by service providers. Also, a
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general interference model was adopted. The theoretical analysis
showed that the addressed problem is NP-hard. Due to the prob-
lem intractability and in-approximability, we presented efficient
algorithms with a practically small approximation factor. The
experimental results indicated that our scheduling algorithms can
achieve near-optimal performance.

For the future research, we would focus on the designing of
a practical cross-layer scheduling algorithm that incorporates the
consideration of physical channel conditions.
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