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I Introduction
This document presents some materials that are not included in the paper. In Section
II, we show experiments of using a subset of data for calculating the gradient. In Sec-
tion III, we discuss some variants of the proposed method. Section IV gives details of
applying our method to maximum entropy.

II Using a Subset of Data for Calculating the Gradient
We mentioned in Section 1 that Byrd et al. [2011] consider using a subset R so that

∇f(w) ≈ 1

|R|
∑
i∈R

∇ξ(w;xi, yi).

Byrd et al. [2011] conducted experiments by using R = {1, . . . , l}, so only the Hessian
is approximated by a subset of data. We follow the same setting in the paper. One reason
of not subsampling points for gradient evaluation is that in the line search procedure we
still need to access the whole set for computing the function value.

Here we compare the following two settings:

1. Method 2: the proposed method in the paper; see Section 6.1.

2. Method 2-sg: the method is the same as Method 2 except that data are subsampled
for calculating the gradient. For example, Method 2-sg-1/2-CG10 is that we only
use a subset R with |R| = 50%l to derive the gradient.

Note that a subset Sk of Rk is further selected for the Hessian Calculation. The com-
parison results on logistic regression are in Figure II.1. Clearly, Method 2-sg is much
slower. Our results indicate that because one pass of data can yield both function and
gradient values, there may be no need to subsample points for the gradient calculation.
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Figure II.1: Experiments on approaches with/without using a subset for gradient calcu-
lation. Logistic regression is considered. We present running time (in seconds) versus
the relative difference to the optimal function value. Both x-axis and y-axis are log-
scaled. Left: |Sk|/l = 5%. Right: |Sk|/l = 1%.
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III Some Variants of the Proposed Method
In Section III.1, we discuss the selection of d̄k. In Section III.2, we investigate the use
of non-negative β1 and β2 for calculating the direction β1dk + β2d̄k in our proposed
method. Experimental comparisons are in Section III.3.

III.1 Selection of d̄k
An important issue for Method 2 is how to select an appropriate d̄k. The choice of d̄k
affects the convergence speed. In the paper, we use d̄k = dk−1, k ≥ 1. Here we try
another setting

d̄k = −∇f(wk).

III.2 Using Non-Negative β1 and β2
The coefficients β1 and β2 of solving (13) may be negative. It is interesting to check if
imposing non-negativity can lead to a better direction. Therefore, we replace (13) with
the following optimization problem.

min
β1,β2

1

2
(β1dk + β2d̄k)

THk(β1dk + β2d̄k) +∇f(wk)
T (β1dk + β2d̄k)

subject to β1 ≥ 0, β2 ≥ 0. (III.1)

Although (13) has a closed-form solution, (III.1) does not. We derive a solution proce-
dure by checking its optimality condition. Let

a = dTkHkdk, b = d̄
T
kHkdk, c = d̄

T
kHkd̄k,

e = −∇f(wk)
Tdk, f = −∇f(wk)

T d̄k.

Problem (III.1) can be rewritten as

min
β1,β2

1

2

[
β1 β2

] [a b
b c

] [
β1
β2

]
−
[
e f

] [β1
β2

]
subject to β1 ≥ 0, β2 ≥ 0. (III.2)

We show that if
dk 6= 0, d̄k 6= 0, and dk 6= d̄k, (III.3)

then
a > 0, c > 0, and ac− b2 > 0. (III.4)

The first two inequalities hold because Hk is positive definite. For the third inequality,
we have Cholesky factorization of Hk

Hk = LLT ,

where L is lower triangular and invertible. Then

ac− b2 = ||Ldk||2||Ld̄k||2 − ((Ldk)
T (Ld̄k))

2 > 0
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by Cauchy inequality and the assumption dk 6= d̄k. We check if the three conditions in
(III.3) can be easily fulfilled. Because wk is not an optimal solution yet, ∇f(wk) 6= 0
and so is dk from the CG procedure of using∇f(wk) at the first step. The direction d̄k
can be easily chosen so that the other two conditions hold.

The KKT optimality condition of (III.2) is that there are λ1 and λ2 such that[
a b
b c

] [
β1
β2

]
−
[
e
f

]
=

[
λ1
λ2

]
,

λ1β1 = 0, λ2β2 = 0,

β1 ≥ 0, β2 ≥ 0, λ1 ≥ 0, λ2 ≥ 0.

We consider the following three situations

ec− bf ≥ 0, af − be ≥ 0 (III.5)
bf − ce ≥ 0, f ≥ 0 (III.6)
be− af ≥ 0, e ≥ 0 (III.7)

• If (III.5) holds,

β1 =
ec− bf
ac− b2

, β2 =
af − be
ac− b2

, λ1 = 0, λ2 = 0

satisfy the KKT condition.

• If (III.6) holds,

β1 = 0, β2 =
f

c
, λ1 =

bf

c
− e, λ2 = 0

satisfy the KKT condition.

• If (III.7) holds,

β1 =
e

a
, β2 = 0, λ1 = 0, λ2 =

be

a
− f

satisfy the KKT condition.

The following theorem shows that for all remaining situations, (β1, β2) = (0, 0) is
an optimal solution.

Theorem 1. If none of (III.5), (III.6), (III.7) holds, then

β1 = β2 = 0

is optimal for (III.1).

Proof. We show that if none of (III.5), (III.6), (III.7) holds, then

f ≤ 0 and e ≤ 0. (III.8)

Then
β1 = 0, β2 = 0, λ1 = −e, λ2 = −f

4



satisfy the KKT condition.
If none of (III.5), (III.6), (III.7) holds, then we have

(ec− bf < 0 or af − be < 0), and
(bf − ce < 0 or f < 0), and (III.9)
(be− af < 0 or e < 0).

We argue that the above condition implies (III.8). Otherwise, if (III.8) does not hold,
we have

f > 0 or e > 0. (III.10)

Consider the first situation where
f > 0.

Then (III.9) implies

bf − ce < 0,

af − be < 0,

e < 0.

From (III.4),

b <
ce

f
< 0 and b <

af

e
< 0

lead to
b2 > ac,

which is a contradiction to (III.4). The situation for

e > 0

is similar. Therefore, (III.8) holds and the proof is complete.

III.3 Experiments
We compare the following three methods in Figures III.2 and III.3 respectively for lo-
gistic regression and l2-loss SVM.

1. Method 2: the method proposed in the paper.

2. Method 2-g: the same as Method 2 except using d̄k = −∇f(wk).

3. Method 2-con: the same as Method 2 except using non-negative β1 and β2.

We have the following observations.

1. Method 2-g is slower than Method 2. We have mentioned in the paper that the
superiority of d̄k = dk−1 may be because it comes from solving a sub-problem of
using some second-order information. Further, −∇f(wk), like dk, uses information
of the current iteration while additional information from another subset of data is
employed to find dk−1.
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2. Method 2-con is slightly slower than Method 2. Although β1 or β2 by Method 2 may
be negative and cause some difficulties to interpret what the direction β1dk+β2d̄k is,
they lead to the smallest second-order approximation of the function-value reduction.
This property may explain Method 2’s faster convergence.

IV Details of Applying the Proposed Method to Maxi-
mum Entropy

For maximum entropy, the optimization problem is

min
w

f(w), where f(w) ≡ 1

2
wTw +

C

l

l∑
i=1

(
log(

k∑
c=1

exp(wT
c xi))−wT

yi
xi
)
.

Let

Pi,s =
exp(wT

s xi)∑k
c=1 exp(wT

c xi)
.

The gradient of f(w) is

∇f(w) =

∇f
1(w)
...

∇fk(w)

 ,
where

∇f t(w) = wt +
C

l
(

l∑
i=1

Pi,txi −
∑
i:yi=t

xi) ∈ Rn×1.

Because f(w) is twice continuously differentiable, the Hessian matrix of f(w) can be
derived.

• Case 1: When t = s,

∇2f(w)t,s = In×n +
C

l

l∑
i=1

(
exp(wT

t xi)xix
T
i∑k

c=1 exp(wT
c xi)

− (exp(wT
t xi)xi)(exp(wT

s xi)xi)
T

(
∑k

c=1 exp(wT
c xi))

2

)

= In×n +
C

l

l∑
i=1

(
(Pi,txi)x

T
i − (Pi,txi)(Pi,sxi)

T
)
∈ Rn×n,

where In×n is an identity matrix.

• Case 2: When t 6= s,

∇2f(w)t,s =
C

l

l∑
i=1

−(exp(wT
t xi)xi)(exp(wT

s xi)xi)
T

(
∑k

c=1 exp(wT
c xi))

2

=
C

l

l∑
i=1

(Pi,txi)(Pi,sxi)
T ∈ Rn×n.
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Therefore, the Hessian-vector product is

Hv =

(Hv)1

...
(Hv)k

 , where v =

v1...
vk


and

(Hv)t = vt +
C

l

l∑
i=1

(
Pi,t(v

T
t xi −

k∑
c=1

Pi,cv
T
c xi)

)
xi.

For the convergence analysis, we represent ∇2f(w) in a form similar to (29) for
logistic regression.

∇2f(w) = Ikn×kn +
C

l
X̄T (D − E)X̄, (IV.11)

where

X̄ =


X 0 · · · 0
0 X · · · 0
...

...
...

...
0 0 0 X

 ∈ Rkl×kn,

D =


D1 0 · · · 0
0 D2 0 0
...

...
...

...
0 0 0 Dk

 ∈ Rkl×kl, and E =


E11 · · · · · · E1k

E21 E22 · · · E2k

...
...

...
...

Ek1 Ek2 · · · Ekk

 ∈ Rkl×kl.

(IV.12)
In (IV.12), Ds is a diagonal matrix with

Ds
ii = Pi,s,

and Ets is also a diagonal matrix with

Ets
ii = Pi,tPi,s.

Using (IV.11) we will prove Theorem 1 for the convergence. The only difference
from that for logistic regression is on the boundedness of ||HSk

|| and ||∇2f(w)||. From
(IV.11) and the fact that |Dt

ii| ≤ 1 and |Ets
ii | ≤ 1, ∀i = 1, . . . , l, ||∇2f(w)|| is bounded

by

||∇2f(w)|| ≤ 1 +
C

l
||X̄T ||||D − E||||X̄||

≤ 1 +
C

l
||(X̄T ||(||D||+ || − E||)||X̄||

≤ 1 +
C

l
(1 +

√
kl)||X̄T ||||X̄||.

For ||HSk
||, it is easy to have that

1 ≤ ||HSk
|| ≤ ||∇2f(wk)||.
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V Details of Hessian-free Approaches for Neural Net-
works

The idea of calculating the Hessian-vector product is to define the followingR-operator
for any function of θ and then repeatedly apply the chain rule as follows:

Rv{f} = lim
ε→0

f(θ + εv)− f(θ)

ε
.

Then

Hkv = lim
ε→0

∇f(θ + εv)−∇f(θ)

ε
= Rv{∇f}. (V.13)

For convenience, we replace Rv with R. To use (V.13), we first obtain ∇f by the
following operations. Let x and z denote the xm and zm vectors of the mth layer,
respectively. Further, we denote wij , i = 1, . . . , nm, j = 1, . . . , nm−1 as elements of
the weight matrix Wm and let z̄ be the vector zm−1. Assume ∂f/∂zi, i = 1, . . . , nm
are available. From (35), we have

∂f

∂xi
=
∂f

∂zi
σ′(xi),

∂f

∂wij
=
∂f

∂xi
z̄j,

∂f

∂z̄j
=

nm∑
i=1

wij
∂f

∂xi
.

This backward process can be computed from the last to the first layer. In the end the
collection of∇W 1f, . . . ,∇WLf is ∇f(θ).

To obtain Hkv, we apply theR-operator to the above terms and obtain

R{ ∂f
∂xi
} = σ′(xi)R{

∂f

∂zi
}+

∂f

∂zi
σ′′(xi)R{xi},

R{ ∂f
∂wij
} = z̄jR{

∂f

∂xi
}+R{z̄j}

∂f

∂xi
,

R{ ∂f
∂z̄j
} =

nm∑
i=1

(wijR{
∂f

∂xi
}+ vij

∂f

∂xi
),

where vij is an element of the vector v in (V.13). It corresponds to wij , soR(wij) = vij .
We see thatR{xi} andR{z̄j} are also needed. They are not computed in the backward
process. Instead, we can pre-calculate them in the following forward process.

R{xi} = R{
nm−1∑
j=1

wjiz̄j} =

nm−1∑
j=1

(wjiR{z̄j}+ vjiz̄j)

R{zi} = R{σ(xi)} = R{xi}σ′(xi).
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Figure III.2: Experiments on logistic regression using the three settings listed in Section
III.3. We present running time (in seconds) versus the relative difference to the optimal
function value. Both x-axis and y-axis are log-scaled. Left: |Sk|/l = 5%. Right:
|Sk|/l = 1%.
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(b) yahoo-korea
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(c) kdd2010-a
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(d) kdd2010-b
Figure III.3: Experiments on l2-loss linear SVM using the three settings listed in Sec-
tion III.3. We present running time (in seconds) versus the relative difference to the
optimal function value. Both x-axis and y-axis are log-scaled. Left: |Sk|/l = 5%.
Right: |Sk|/l = 1%.
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