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ABSTRACT
Click-through rate (CTR) prediction is the core problem of build-

ing advertising systems. Most existing state-of-the-art approaches

model CTR prediction as binary classification problems, where dis-

played events with and without click feedbacks are respectively

considered as positive and negative instances for training and of-

fline validation. However, due to the selection mechanism applied

in most advertising systems, a selection bias exists between distri-

butions of displayed and non-displayed events. Conventional CTR

models ignoring the bias may have inaccurate predictions and cause

a loss of the revenue. To alleviate the bias, we need to conduct coun-

terfactual learning by considering not only displayed events but also

non-displayed events. In this paper, through a review of existing ap-

proaches of counterfactual learning, we point out some difficulties

for applying these approaches for CTR prediction in a real-world ad-

vertising system. To overcome these difficulties, we propose a novel

framework for counterfactual CTR prediction. In experiments, we

compare our proposed framework against state-of-the-art conven-

tional CTR models and existing counterfactual learning approaches.

Experimental results show significant improvements.
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1 INTRODUCTION
Online advertising is a major profit model for most Internet com-

panies where advertisers pay publishers for promoting ads on their

services. Advertising systems perform in the role of a dispatcher

that decides which and where ads are displayed. Though there are

many compensation methods in advertising systems, in this work,

we focus on cost-per-click (CPC) systems, where advertisers are

only charged if their ads are clicked by users. We give a simplified

example of CPC systems in Figure 1.

Because the number of positions from publishers is limited, the

system must select the most valuable ads to display. Therefore,

when the system receives a request, all ads must be ranked accord-

ing to the following expected revenue

ECPM = 𝑃 × 𝑅, (1)

where

𝑃 = Pr(click | event) (2)

is the probability of an event associated with a (request, ad) pair
being clicked, and 𝑅 is the price paid by advertisers if the event is

clicked. Then the system selects and displays the top events on the

publishers. In Figure 1, the example shows that five events bid for

three advertising positions, so the system ranks them by (1). Event

‘1’,‘2’ and ‘3’ are the top three, and get the chance to be displayed.

Once the event is displayed, the system will receive signals if

a customer clicks it, which can be considered as the feedback of

this event. Then the system gains revenue from the advertiser. As

the example shown in Figure 1, among the three displayed events,

event ‘2’ is clicked, while the other two are not clicked.

To maximize the revenue, the estimation of (2), also referred as

click-through rate (CTR) prediction, is the core problem of build-

ing advertising systems. To estimate CTR, the most widely used
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Figure 1: A simplified example to illustrate the procedure
of selecting events and collecting feedbacks in CPC systems.
The symbols ‘✓’, ‘✗’, and ‘?’ indicate the event is clicked, not
clicked, and not displayed, respectively.

approach is to learn from historically displayed events via machine

learning techniques. Specifically, assume that we have the following

𝐿 events

(𝑦1, 𝒙
1), · · · , (𝑦𝐿, 𝒙𝐿), (3)

where𝑦𝑙 and 𝒙
𝑙
are the label and the feature vector of the 𝑙th events,

respectively. To model CTR prediction as binary classification prob-

lems, we assume that the label 𝑦 satisfies

𝑦 =

{
1 the event was displayed and clicked,

−1 the event was displayed but not clicked.

Then we need to find a decision function 𝑦 (𝒙) ∈ [−∞,∞] so that
it can be used to predict the label. For example, in a typical classifi-

cation setting the predicted label is{
1 if 𝑦 (𝒙) ≥ 0,

−1 otherwise.

For CTR prediction, a probability output may be needed, so we can

transform 𝑦 (𝒙) to a value in [0, 1] by a sigmoid function. To obtain

a good decision function, many state-of-the-art models for CTR

prediction problems have been proposed (e.g., logistic regression

[4, 24, 28], factorization machines [27], field-aware factorization

machines [15, 16], and deep learning approaches [8, 26, 38]). A

review of some of these models will be given in Section 2.1.

Recall the example in Figure 1. Two events are not displayed

so their feedbacks are not available. Most works mentioned above

ignore non-displayed events. We think the reason supporting this

decision is that some pioneering works (e.g., [28, Section 3]) thought

causality exists between a display and a click, where the click is

understood as a consequence of the display. Then, they give the

following basic but far-reaching assumption:

Assumption 1.1. The probability of an event being clicked but
not displayed is zero.

With the assumption, no click information is included for non-

displayed events. Therefore, the probability of an event being clicked

can be measured by CTR defined as

CTR =
number of clicks

number of displayed events

× 100%.

Table 1: Main notation.
𝐿 numbers of displayed events

�̂� numbers of displayed and non-displayed events

𝒙, 𝑦 feature vector and label

𝐷 numbers of features

𝑆𝑡 set of events logged by the uniform policy

𝑆𝑐 set of events logged by non-uniform policies

𝑦 (·), 𝜎 (·) CTR model and imputation model

𝑚,𝑛 numbers of requests and ads

Ω set of displayed (request, ad) pairs

𝑌,𝑌,𝐴 label matrix, output matrix,

and the matrix of imputed labels

However, in Section 2.2, by following some past works (e.g.,

[18, 31]), we argue the importance of handling non-displayed events.

That is, through considering non-displayed events as unlabeled in-

stances, CTR prediction should be modeled as a learning problem

with labeled and unlabeled instances. Further, through an A/B test

conducted in our online system, we show that due to the incon-

sistency between distributions of labeled and unlabeled samples,

the ignorance of non-displayed events may cause a strong bias and

inaccurate predictions. To eliminate the bias in CTR prediction,

not only displayed events but also non-displayed events should be

considered. However, because of lacking labels for non-displayed

events, we need to solve a learning problem with partial labels,

which is also referred to as “batch learning from logged bandit

feedbacks” or “counterfactual learning” [31].

In Section 3, through a review on existing approaches of counter-

factual learning, we point out some difficulties of applying them in

a real-world CPC system. For example, many existing approaches

required that events are sampled to be displayed through the impor-

tance sampling technique. However, as illustrated in Figure 1, most

real-world CPC systems deterministically select the top events with

the highest expected revenues. Therefore, these approaches are in-

applicable to practical CTR prediction. Additionally, some existing

approaches need to solve a difficult optimization problem, a situa-

tion not impractical for industrial-scale CTR prediction. Our main

contribution in Section 4 is to propose a novel framework for coun-

terfactual CTR prediction to overcome these difficulties. To address

the issue of the training efficiency, we link the proposed framework

to recommender systems with implicit feedbacks and develop effi-

cient algorithms. In Section 5, experiments are conducted on a semi-

synthetic small data set and a real-world data set collected from

our online system. Results show our framework is superior to both

conventional and counterfactual learning approaches. Table 1 gives

main notation in this paper. Supplementary materials and code for

experiments are at https://www.csie.ntu.edu.tw/~cjlin/papers/occtr.

2 HANDLING UNOBSERVED DATA IN CTR
PREDICTION

In this section, we first give a brief review on the widely-used

settings for CTR prediction. Next we show that under this setting, a

bias may exist and cause inconsistency between offline and online

evaluations.

https://www.csie.ntu.edu.tw/~cjlin/papers/occtr


2.1 A Review on CTR Prediction by Binary
Classification

As mentioned in Section 1, the task of CTR prediction is to find a

model, which inputs 𝒙 , outputs 𝑦 (𝒙) and generates a probability

value as the prediction of (2). If we have 𝐿 displayed events as

training samples shown in (3), most CTR works solve the following

optimization problem.

min

W
𝜆𝑅(W) +

𝐿∑
𝑙=1

ℓ (𝑦𝑙 , 𝑦𝑙 ), (4)

where 𝑦𝑙 ≡ 𝑦 (𝒙𝑙 ),W is a set of model parameters, ℓ (𝑎, 𝑏) is a
loss function convex in 𝑏, and 𝑅(W) is the regularization term

with the parameter 𝜆 decided by users. Logistic regression (LR) is a

commonly used model for CTR prediction. Assume𝐷 is the number

of features in each vector 𝒙𝑙 , and a vector𝒘 ∈ R𝐷 is considered as

the setW of model parameters. LR then sets

𝑦 (𝒙) = 𝒘𝑇 𝒙

and considers the following logistic loss

ℓ (𝑎, 𝑏) = log(1 + 𝑒−𝑎𝑏 ) . (5)

Past studies (e.g., [4, 16]) have shown that learning the effect of

feature conjunctions is crucial for CTR prediction. However, due to

the high dimensionality and the high sparsity of 𝒙 , LR may have

difficulty to learn from all feature conjunctions of 𝒙 . To overcome

the difficulty, factorization machine (FM) [27] and its variants such

as field-aware factorization machine (FFM) [16] are proposed. They

consider a low-rank approximation to the coefficient matrix of all

feature conjunctions. The output of FM is

𝑦FM (𝒙) =
𝐷∑
𝑗1=1

𝐷∑
𝑗2≥ 𝑗1+1

(𝒘𝑇𝑗1𝒘 𝑗2 )𝑥 𝑗1𝑥 𝑗2 , (6)

where 𝒘 𝑗 ∈ R𝑘 ,∀𝑗 are the latent vectors and 𝑘 is a pre-specified

value. FFM extends FM to assume that features are grouped to

several “fields.”

𝑦FFM (𝒙) =
𝐷∑
𝑗1=1

𝐷∑
𝑗2≥ 𝑗1+1

(𝒘𝑇
𝑗1,𝑓𝑗

2

𝒘 𝑗2,𝑓𝑗
1

)𝑥 𝑗1𝑥 𝑗2 , (7)

where 𝑓𝑗1 and 𝑓𝑗2 are the corresponding fields of features 𝑗1 and 𝑗2,

respectively, and𝒘 𝑗1,𝑓𝑗
2

∈ R𝑘 is a latent vector which learns the la-

tent effect between feature 𝑗1 and the interacted features belonging

to the field 𝑓𝑗2 . It has been shown in some past competitions (e.g.,

[14, 16]) and industry scenarios [15] that FFM gives state-of-the-art

results on CTR prediction.

For evaluation, two metrics are commonly used [4, 9, 16]. Sup-

pose 𝐿 is the number of events being evaluated. The first criterion

is the negative logarithmic loss (NLL):

NLL ≡ − 1

𝐿

𝐿∑
𝑙=1

log(1 + 𝑒−𝑦𝑙 𝑦𝑙 ). (8)

Another one is the area under the ROC curve (AUC):

AUC ≡

∑𝐿𝑝

𝑙=1
Rank𝑙 −

(
𝐿𝑝

2

)
(𝐿𝑝 (𝐿 − 𝐿𝑝 ))

, (9)

Given an event 𝑙 , a logging policy 𝜋

decides if it can be displayed

Displayed

Clicked

𝑦𝑙 = 1

Non-clicked

𝑦𝑙 = −1

Non-displayed

Non-observable

𝑦𝑙 =?

Logged bandit feedbacks

Figure 2: A diagram of CTR prediction being formulized as
a selective labels problem

where 𝐿𝑝 is the number of positive instances, and Rank𝑙 is the

rank of a positive event 𝑙 in all 𝐿 events, which are ranked in a

descending order according to their predicted values.

2.2 The Importance of Handling
Non-displayed Events1

Let Pr(C,XXX) be the distribution to generate events 𝒙 and the cor-

responding clicks or not-clicks 𝑦. The probability value from CTR

model 𝑦 (𝒙) obtained by solving the following expected risk mini-

mization should be an optimal estimation of (2).

min

�̂�
𝑅(𝑦), where 𝑅(𝑦) =

∫
ℓ (𝑦,𝑦 (𝒙))𝑑 Pr(𝑦, 𝒙) . (10)

In practice, because Pr(C,XXX) is unknown, we conduct empirical

risk minimization byminimizing the average loss of sampled results.

Most CTR models conducted training and validation on the dis-

played events. Let Pr(C,XXX,O = 1) be the joint distribution of clicks,

events being displayed. Models obtained by solving (4) implicitly

assume that

Pr(C,XXX) ∝ Pr(C,XXX,O = 1),
such that

min

�̂�
𝑅(𝑦), where 𝑅(𝑦) =

∫
ℓ (𝑦,𝑦 (𝒙))𝑑 Pr(𝑦, 𝒙,O = 1) . (11)

is equivalent to (10). However, in the subsequent discussion, we

show that this assumption is not precise. We start by following

[18] to formalize CTR prediction as a selective labels problem. As

illustrated in Figure 2, we can view our system as a labeling platform,

where customers help to label 𝐿+𝐿U instances. However, due to the

limitation of capacity, an algorithm 𝜋 (also called logging policy)

selects 𝐿 instances and asks customers to label them. From this view,

the displayed events are labeled instances (also called logged bandit

feedbacks), while non-displayed events are unlabeled instances.

Because of lacking labels, the click information of non-displayed

events, is unknown rather than zero in Assumption 1.1.

Because (11) can be reformulated as

𝑅(𝑦) =
∫

ℓ (𝑦,𝑦 (𝒙))𝑑 Pr(𝑦, 𝒙,O = 1)
𝑑 Pr(𝑦, 𝒙) 𝑑 Pr(𝑦, 𝒙), (12)

1
Some descriptions in this section are improved after the publication of the paper by

following the explanation in the paper [35]
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from (11), whether 𝑅(𝑦) is an unbiased expected risk depends on if

events have the same chance to be displayed. That is, if there exists

a constant Δ > 0 such that

Pr(C,XXX) = Δ Pr(C,XXX,O = 1), (13)

then

𝑅(𝑦) =
∫

ℓ (𝑦,𝑦 (𝒙))Δ𝑑 Pr(𝑦, 𝒙) = Δ𝑅(𝑦), (14)

so (10) and (11) return the same optimal model. To investigate (13),

we first express two sides respectively as

Pr(C,XXX,O = 1) = Pr(C | XXX,O = 1) Pr(XXX,O = 1)
Pr(C,XXX) = Pr(C | XXX) Pr(XXX). (15)

Because the tendency of a customer click can not be affected by if

the event is displayed, given an event, we should have

Pr(C | XXX,O = 1) = Pr(C | XXX). (16)

By using (16) to cancel terms in the division of the two expressions

in (15) and through Pr(XXX,O = 1) = Pr(XXX) Pr(O = 1 | 𝒙), the task
of investigating (13) is reduced to checking if the distribution of an

event being displayed

Pr(O = 1 | 𝒙) (17)

is uniform. Unfortunately, this condition can not be held for CTR

prediction due to the non-uniform selection of displayed events

as introduced in Section 1. Therefore, (17) is non-uniform and (13)

does not hold, nor does (14). Then 𝑅(·) is not proportional to 𝑅(·),
so 𝑅(·) is a biased expected risk of 𝑦 (𝒙) and the model obtained by

solving (4) leads to a biased estimator of (2).

To better explain this, we deployed a uniform policy on a small

part of live traffics in our online system, while the rest was still

served by non-uniform policies. According to logging policies, the

labeled events are grouped into the following two sets:

𝑆𝑡 = {(𝑦𝑙 , 𝒙𝑙 ) | event 𝑙 was logged by the uniform policy},

𝑆𝑐 = {(𝑦𝑙 , 𝒙𝑙 ) | event 𝑙 was logged by non-uniform policies}.

In Figure 3, we check how CTR estimated from logs of non-uniform

policies differs from the true CTR. The x-axis is the displayed ratio

of an ad, where each point is calculated by

𝛼 𝑗 =
# displayed events associated with ad 𝑗

# (displayed+non-displayed) events associated with ad 𝑗
.

(18)

The y-axis is the log-scaled ratio of an ad’s observed CTR in 𝑆𝑐 to

that in 𝑆𝑡 , where each point is calculated by

𝛽 𝑗 = log( the CTR of ad 𝑗 observed in 𝑆𝑐

the CTR of ad 𝑗 observed in 𝑆𝑡
). (19)

As we mentioned earlier, for events logged by a uniform policy,

the bias can be avoided. Thus an ad’s CTR value from 𝑆𝑡 can be

considered as the true 𝑃 ’s average over all events associated with

this ad. From Figure 3, with 𝛽 𝑗 > 0, an ad’s CTR from events in 𝑆𝑐 is

higher than that from events in 𝑆𝑡 . This observation confirms a gap

between the biased CTR and the unbiased CTR when events are

logged by non-uniform policies. More importantly, the gap varies

on different ads. For example, for those ads with lower 𝛼 scores,

the gap enlarges, while for those ads with higher 𝛼 scores, the gap

narrows. It can be realized that for an ad favoured by the proceeding

policies, more associated events can be displayed and fewer events

are not labeled. Then the observed CTR is closer to the unbiased

one obtained from the fully labeled set 𝑆𝑡 . We can conclude that

if we fit CTR models on events logged by non-uniform policies,

a biased estimator is obtained. It may overestimate the expected

revenue of ads with lower 𝛼 scores and wrongly display too many

of them.

The bias caused by using a non-uniform logging policy is often

referred to as “selection bias” in the literature of econometrics [10],

and “missing not at random” in the field of statistics [21]. Ideally, a

simpleway to avoid the selection bias is to directly train CTRmodels

on 𝑆𝑡 . However, in most scenarios of CTR prediction, the feature set

is high dimensional and sparse, so a large training set is required

for learning a model with good generalization ability. The higher

CTR shown in Figure 3 by displaying events in 𝑆𝑐 indicates that if

we deploy the uniform policy on more traffics, the overall revenue

may decrease. Therefore, forming a large 𝑆𝑡 through deploying the

uniform policy on a significant amount of traffic is not practically

viable for many internet companies. In this paper, we will develop

more practical ways to eliminate the bias carried in the data logged

by non-uniform logging policies.

Nowwe aim to consider both displayed and non-displayed events.

Assume we have the following �̂� events

(𝑦1, 𝒙
1), · · · , (𝑦

�̂�
, 𝒙�̂�), (20)

where �̂� with �̂� ≫ 𝐿 is the number of all possible events. To esti-

mate 𝑃 without bias, we expect to solve the following optimization

problem.

min

W
𝜆𝑅(W) +

�̂�∑
𝑙=1

ℓ (𝑦𝑙 , 𝑦𝑙 ). (21)

However, because feedbacks of non-displayed events can not be

observed for most CPC systems, the corresponding 𝑦𝑙 for 𝑙 = 𝐿 +
1, · · · , �̂� are not available. Therefore, (21) can not be solved by

conventional methods based on supervised learning. Solving (21)

with selective labels is also referred to as “batch learning from

logged bandit feedbacks” and “counterfactual learning” [31]. We



give a brief review of existing approaches on this topic in the next

section.

3 EXISTING APPROACHES FOR LEARNING
FROM SELECTIVE LABELS

Existing approaches for solving (21) with selective labels broadly

fall into the following three categories: direct method, the inverse-

propensity-scoring method, and the doubly robust method.

3.1 Direct Method
As we mentioned above, the key challenge in solving (21) is that we

lack labels of those non-displayed events. Direct methods are based

on an intuitive idea that we can find a relationship 𝜎 (·) between
labels and features of displayed events such that 𝜎 (𝒙𝑙 ) ≈ 𝑦𝑙 , for

𝑙 = 1, · · · , 𝐿. We call 𝜎 (·) as an imputation model, which can impute

labels for all events and have the following �̂� labeled samples

(𝜎1, 𝒙
1), · · · , (𝜎

�̂�
, 𝒙�̂�),

where 𝜎𝑙 ≡ 𝜎 (𝒙𝑙 ). Then we solve the following standard supervised
learning problem.

min

W
𝜆𝑅(W) +

�̂�∑
𝑙=1

ℓ (𝜎𝑙 , 𝑦𝑙 ) . (22)

Clearly, the performance of a direct method is determined by the

quality of 𝜎 (·). Many past works found 𝜎 (·) via conductingmachine

learning techniques on the labeled data set. For example, ridge linear

regression [6], and random forests [19] are considered.

3.2 Inverse-Propensity-Scoring (IPS) Method
By assuming the logging policy is stochastic, the IPS method pro-

posed in [11] weights each labeled event with the inverse of its

propensity score, which refers to the tendency or the likelihood

of an event being logged. Specifically, given the event 𝑙 , we can

observe an indicator 𝑂𝑙 ∈ {0, 1}, which indicates if the event was

displayed. Following [30, 32], we assume that 𝑂𝑙 is sampled from a

Bernoulli distribution as 𝑂𝑙 ∼ Bern(𝑧𝑙 ), where 𝑧𝑙 is the probability
of the event being displayed. Here we consider 𝑧𝑙 as the propensity

scores of event 𝑙 . The IPS method solves the following problem.

min

W
𝜆𝑅(W) +

�̂�∑
𝑙=1

ℓ (𝑦𝑙 , 𝑦𝑙 )
𝑧𝑙

𝑂𝑙 ,

which, according to the observations of 𝑂𝑙 , ∀𝑙 , is equivalent to

min

W
𝜆𝑅(W) +

𝐿∑
𝑙=1

ℓ (𝑦𝑙 , 𝑦𝑙 )
𝑧𝑙

. (23)

The following proof has been given in past works, which shows

that solving (23) can get an unbiased estimator of 𝑃 .

E𝑂 [
�̂�∑
𝑙=1

ℓ (𝑦𝑙 , 𝑦𝑙 )
𝑧𝑙

𝑂𝑙 ] =
�̂�∑
𝑙=1

ℓ (𝑦𝑙 , 𝑦𝑙 )
𝑧𝑙

· E𝑂 [𝑂𝑙 ] = (21).

Before solving (23), we need to know 𝑧𝑙 for 𝑙 = 1, · · · , 𝐿. Thework
[30] differentiates two settings for the assignment mechanism of 𝑧𝑙 .

The first is an experimental setting, where any event 𝑧𝑙 is decided

by us and𝑂𝑙 is generated according to 𝑧𝑙 . Therefore we can directly

solve (23) with known 𝑧𝑙 . Many past works and data sets (e.g.,

[20, 31]) are based on this setting. The second is an observational

setting, where𝑂𝑙 is not controlled by us, so 𝑧𝑙 is implicit. In this case,

we must estimate 𝑧𝑙 first by some techniques. For example, naive

Bayes [30], survival models [37], and more generally, by assigning

𝑂𝑙 =

{
1 the event was displayed,

0 the event was not displayed,

we can find a relationship 𝑜 (·) between 𝑂𝑙 and the given features

such that 𝑜 (𝒙𝑙 ) ≈ 𝑂𝑙 , for 𝑙 = 1, · · · , �̂� by any machine learning

techniques (e.g., logistic regression [30], gradient boosting [25]).

Then 𝑧𝑙 ≡ 𝑜 (𝒙𝑙 ) for 𝑙 = 1, · · · , 𝐿 can be used as the propensity

scores in (23).

3.3 Doubly Robust Method
Doubly robust method for counterfactual learning was first pro-

posed in [6], which takes advantage of the two aforementioned

approaches by combining them together. Therefore, the following

optimization problem is solved.

min

W
𝜆𝑅(W)+

𝐿∑
𝑙=1

( ℓ (𝑦𝑙 , 𝑦𝑙 )
𝑧𝑙

− ℓ (𝜎𝑙 , 𝑦𝑙 )
)

︸                          ︷︷                          ︸
IPS method part

+
�̂�∑
𝑙=1

ℓ (𝜎𝑙 , 𝑦𝑙 )︸        ︷︷        ︸
direct method part

. (24)

The analysis in [6] shows that the bias of the doubly robust method

is the product of the two parts from the direct method and the IPS

method. Therefore, the bias of the doubly robust method can be

eliminated if either the direct method part or the IPS method part is

unbiased. Empirical studies confirm that the doubly robust method

performs better than solely a direct method or an IPS method.

3.4 Discussion on Feasibility of Existing
Approaches for CPC Systems

Though the estimators obtained by above-mentioned methods are

expected to give unbiased predictions of 𝑃 , we show that there

exist three main obstacles for applying these approaches for CTR

prediction in a real-world CPC system.

First, from the theoretic guarantee established by past literatures,

IPS works when the logging policy is stochastic such that with the

increase of 𝐿, sufficient events with various propensity scores can be

observed. That is, though the policy tends to select the events with

high propensity scores, those with low propensity scores still can

have a chance to be displayed and included in the labeled set. For

events with low propensity scores, the formulation in (23) leads to

larger corresponding instance weights, and then IPS can correct the

selection bias. However, commercial products such as CPC systems

usually avoid a stochastic policy because of the risk of revenue loss.

Instead, as we introduced in Section 1, the policy makes decisions

by considering if the expected revenue is large enough. Therefore,

the logging policy of our CPC system can be considered as under

the following deterministic setting.

𝑂𝑙 = I(ECPM𝑙 > 𝑡), (25)

where ECPM𝑙 is the expected revenue of the event 𝑙 , and 𝑡 is a

dynamic threshold. This policy deterministically selects the events

with high propensity scores to be displayed. In this case, the events



with low propensity scores are absent in the labeled set. The de-

terministic logging policy makes theory and practice of the IPS

method inapplicable to practical CTR prediction.

Secondly, for the direct method and the corresponding part in

the doubly robust method, we need an imputation model 𝜎 (·) to
generate labels for non-displayed events. However, as we have

shown that displayed events may carry the selection bias in Sec-

tion 2.2, many existing works [6, 19] find that imputation models

learnt from displayed events will propagate the selection bias to the

non-displayed events. Then both the direct and the doubly robust

methods cannot give unbiased predictions.

The third issue is that for estimators obtained by solving opti-

mization problems like (22) and (24), they involveO(�̂�) costs of time

and space. However, �̂� is extremely large considering all displayed

and non-displayed events. Therefore, to have a practical framework

for large-scale counterfactual CTR prediction, any O(�̂�) cost of
storage and computation should be avoided.

4 A PRACTICAL FRAMEWORK FOR
COUNTERFACTUAL CTR PREDICTION

To address issues mentioned in Section 3.4, we propose a practical

framework for counterfactual CTR prediction. Our framework ex-

tends the doubly robust method by dropping the propensity scores

to address the issue of using a deterministic logging policy. We call

it as the propensity-free doubly robust method. To further improve

the robustness of our framework, we propose a new way to obtain

the imputation model by taking the advantage of the small but

unbiased set 𝑆𝑡 defined in Section 2.2. Finally, by connecting the

CTR prediction with recommender systems, we propose an efficient

training algorithm so that the prohibitive O(�̂�) cost can be trickily

avoided if some conditions are satisfied.

4.1 Propensity-free Doubly Robust Method
A recent work [19] describes an analogous scenario that many

commercial statistical machine translation systems only determin-

istically provide the best translation result to users and then collect

corresponding feedbacks. Then they find that in their scenario, the

doubly robust method still can perform well even under a deter-

ministic logging policy. Their analysis provides a reason behind the

result that the direct method part of doubly robust imputes labels

for non-displayed events, which remedies the absence of unlabeled

events and improves the generalization ability of the model. This

result motivates us to investigate if the similar idea can be extended

on CTR prediction. Specifically, we follow [19] to set 𝑧𝑙 = 1 for all

displayed events logged by a deterministic policy. Then we modify

(24) to have the following problem of the propensity-free doubly

robust method.

min

W
𝜆𝑅(W) +

𝐿∑
𝑙=1

(
ℓ (𝑦𝑙 , 𝑦𝑙 ) −𝜔ℓ (𝜎𝑙 , 𝑦𝑙 )

)
+𝜔

�̂�∑
𝑙=1

ℓ (𝜎𝑙 , 𝑦𝑙 ), (26)

where 𝜔 is used as a hyper-parameter to balance the IPS part and

the direct method part.

Recall that the concept of the doubly robust method is that the

bias can be eliminated if either one of the two sub-estimators is

unbiased. Compared with (24), we can see that the IPS part in (26)

under the setting of 𝑧𝑙 = 1 is essentially reduced to the naive binary

Unbiased

Set 𝑆𝑡

Imputation

Model 𝜎 (·)

Displayed

𝑆𝑐 ∪ 𝑆𝑡

Non-displayed

All events

CTR

Model 𝑦 (·)

Uniform

Policy

Learned from

𝑆𝑡

Non-uniform

Policies

Imputing

Labels

Propensity-free

Doubly Robust

Figure 4: A diagram showing components of our framework

classification problem (4), which definitely cannot give unbiased

predictions. Therefore, we rely on the direct method part to get unbi-

ased predictions. However, if we follow existing works of the doubly

robust method (e.g., [6, 19]) to learn 𝜎 (·) from displayed events, the

carried selection bias will be propagated to non-displayed events

through the imputation model. In this case, the direct method part

can not give unbiased predictions either. In order to avoid this situ-

ation, we design a new approach to obtain the imputation model in

the next section.

4.2 Unbiased Imputation Models
Recall that in Section 2.2, to help realize the severity of the selection

bias, we collect a labeled set 𝑆𝑡 through deploying a uniform policy

on a small percentage of our online traffic. Though 𝑆𝑡 is very small,

it still contains some gold-standard unbiased information. We aim

to leverage 𝑆𝑡 in our framework.

Past studies that have used 𝑆𝑡 include, for example, [3, 29]. By

considering both 𝑆𝑐 and 𝑆𝑡 as training sets, they jointly learn two

models respectively from the two sets in a multi-task fashion and

conduct predictions by combining the two models. Our approach

differs from theirs on the usage of 𝑆𝑡 . As illustrated in Figure 4, we

learn the imputation model 𝜎 (·) from 𝑆𝑡 and apply the model to

impute labels of all displayed and non-displayed events; see the last

term in (26).

Note that in our framework, learning the imputation model and

learning the CTR model are two separate tasks. Different from the

task of learning the CTR model which is generally complex and

requires a large training set, the task of learning the imputation

model is much more flexible. We can decide the imputation model

and the corresponding feature set depending on the size of 𝑆𝑡 . That

is, when 𝑆𝑡 is large enough, the task can be as complex as that of

learning the CTR model. But when the size of 𝑆𝑡 is limited, the task

can be reduced to impute labels with a single value inferred from

𝑆𝑡 (e.g., the average CTR in 𝑆𝑡 ). Through the experimental results

shown in Section 5.5, we will see that unbiased imputation models

help our framework to obtain good performances even if 𝑆𝑡 is very

small.

4.3 Efficient Training
By imputing labels for all possible events in the direct method part,

(26) becomes a standard classification problem with �̂� instances.

Because �̂� can be extremely large for a real-world CPC system, any

cost of O(�̂�) will make the training process infeasible. Therefore,



many existing optimization techniques, if directly applied, are un-

able to efficiently solve (26). For example, the stochastic gradient

(SG) method popularly used for CTR prediction [8, 16] may face

difficulties in the process of sampling O(�̂�) instances.2 To overcome

the difficulties, we connect CPC systems with a related but different

field, called recommender systems, where an analogous issue has

been well-studied.

In a typical recommender system, we observe part of a rating

matrix 𝑌 ∈ R𝑚×𝑛 of𝑚 users and 𝑛 items. For each observed (𝑖, 𝑗)
pair, 𝑌𝑖 𝑗 indicates the rating of item 𝑗 given by user 𝑖 . The goal is to

predict the rating of an item not rated by a user yet. Following the

idea, if we consider an event as a (request, ad) pair, an advertising

system is naturally a recommender system. As illustrated in Figure

5, the 𝐿 displayed events can be considered as 𝐿 observed (request,

ad) entries in a rating matrix 𝑌 ∈ R𝑚×𝑛 , where 𝑚 is the total

number of requests and 𝑛 is the total number of ads. According

to whether the ad was clicked by the user or not, these observed

entries can be grouped into the following two sets

Ω+ = {(𝑖, 𝑗) | ad 𝑗 was displayed and clicked in request 𝑖},
Ω− = {(𝑖, 𝑗) | ad 𝑗 was displayed but not clicked in request 𝑖}.

By assigning ratings to observed entries as

𝑌𝑖 𝑗 =

{
1 (𝑖, 𝑗) ∈ Ω+,
−1 (𝑖, 𝑗) ∈ Ω−,

and replacing the index 𝑙 with the index (𝑖, 𝑗), we can re-write (26)

as

min

W
𝜆𝑅(W) +

∑
(𝑖, 𝑗) ∈Ω

(
ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔ℓ (𝐴𝑖 𝑗 , 𝑌𝑖 𝑗 )

)
+ 𝜔

𝑚∑
𝑖=1

𝑛∑
𝑗=1

ℓ (𝐴𝑖 𝑗 , 𝑌𝑖 𝑗 ),
(27)

where

Ω = Ω+ ∪ Ω−

is the set of displayed pairs with |Ω | = 𝐿, �̂� =𝑚𝑛, 𝑌 ∈ R𝑚×𝑛 is the

output matrix with 𝑌𝑖 𝑗 = 𝑦 (𝒙𝑖, 𝑗 ), and 𝐴 ∈ R𝑚×𝑛 is the matrix of

imputed labels with

𝐴𝑖 𝑗 = 𝜎 (𝒙𝑖, 𝑗 ) . (28)

Under the above setting, �̂� = 𝑚𝑛 indicates the total number of

possible events. The second term in (27) involves O(𝑚𝑛) = O(�̂�)
operations, which are prohibitive when𝑚 and 𝑛 are large. The same

O(𝑚𝑛) difficulty occurs in a topic called “recommender systems

with implicit feedbacks” [12, 13, 33, 36]. It describes a scenario

where a rating matrix 𝑌 includes both positive and negative entries.

However, only a subset Ω+ including some positive entries have

been observed. An approach to handle this scenario is to treat all

unobserved pairs as a negative rating 𝑟 , such as 0 or -1 in [34, 36].

Let 𝐴 ∈ R𝑚×𝑛 be an artificial rating matrix with

𝐴𝑖 𝑗 =

{
1 (𝑖, 𝑗) ∈ Ω+,
𝑟 (𝑖, 𝑗) ∉ Ω+ .

(29)

2
The failure of SG on handling similar scenarios has been reported in several past

works [33, 36].

ad 1 ad 2 · · · · · · ad 𝑛

request 1

.

.

.

request𝑚

✓ ✗ ? ? ?

? ? ? ✓ ✗

? ✓ ? ? ✗

Figure 5: An illustration of a rating matrix of 𝑚 requests
and 𝑛 ads, where 𝐿 events are displayed. The symbols ‘✓’, ‘✗’,
and ‘?’ indicate the event is clicked, not clicked, and not dis-
played, respectively.

To find a model fitting all 𝐴𝑖 𝑗 values, the cost of O(𝑚𝑛) arises in
solving the following problem with𝑚𝑛 instances.

min

W
𝜆𝑅(W) +

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐶𝑖 𝑗 ℓ (𝐴𝑖 𝑗 , 𝑌𝑖 𝑗 ) . (30)

where 𝐶𝑖 𝑗 is a cost parameter. To avoid the O(𝑚𝑛) cost, existing
studies [1, 33, 34, 36] impose some resctrictions on terms over values

not in Ω+ and change (30) to

min

W
𝜆𝑅(W) +

∑
(𝑖, 𝑗) ∈Ω+

𝐶𝑖 𝑗 ℓ (1, 𝑌𝑖 𝑗 ) +
∑
(𝑖, 𝑗)∉Ω+

𝐶𝑖 𝑗 ℓ̄ (𝑟, 𝑌𝑖 𝑗 )

=𝜆𝑅(W) +
∑
(𝑖, 𝑗) ∈Ω+

(
𝐶𝑖 𝑗 ℓ (1, 𝑌𝑖 𝑗 ) −𝐶𝑖 𝑗 ℓ̄ (𝑟, 𝑌𝑖 𝑗 )

)
+

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝐶𝑖 𝑗 ℓ̄ (𝑟, 𝑌𝑖 𝑗 ), (31)

where the following conditions should apply.

• The cost parameters 𝐶𝑖 𝑗 in (31) cannot be arbitrary values. In

practice, a constant value is often considered.

• A simple loss function ℓ̄ (·, ·) is needed. In most existing works

the squared loss is considered.

• The model function 𝑦 (·) can not be an arbitrary one. Specifically,

given a feature vector 𝒙𝑖, 𝑗 , 𝑦 (𝒙𝑖, 𝑗 ) can be factorized into multiple

parts, each of which is only related to 𝑖 or 𝑗 and convex in the

corresponding parameters. For example, a modified FFM model

proposed in [36] satisfies this condition.

Optimization methods have been proposed so that the O(𝑚𝑛) term
in the overall cost can be replaced with a smaller O(𝑚) +O(𝑛) term.

The main reason why O(𝑚𝑛) can be eliminated is because results

on all 𝑖 and all 𝑗 can be obtained by using values solely related to

𝑖 and 𝑗 , respectively. A conceptual illustration is in the following

equation.

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(· · · ) =
𝑚∑
𝑖=1

(· · · ) × or +
𝑛∑
𝑗=1

(· · · ). (32)

By considering the similarity between (27) and (31), with the

corresponding restrictions in mind, we propose the following final



realization of the framework (26):

min

W
𝜆𝑅(W) +

∑
(𝑖, 𝑗) ∈Ω

(
ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝐴𝑖 𝑗 − 𝑌𝑖 𝑗 )2

)
+ 𝜔

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝐴𝑖 𝑗 − 𝑌𝑖 𝑗 )2 .
(33)

For (𝑖, 𝑗) in Ω, we allow general convex loss functions in the original

IPS part to maintain the connection to conventional CTR training,

while in the direct method part, we follow the above restriction for

ℓ̄ in (31) to consider the squared loss. We then compare the two

O(𝑚𝑛) terms in (31) and (33). By respectively excluding 𝐶𝑖 𝑗 and 𝜔 ,

ours considers a more complicated setting of 𝐴 in (28), where all

𝑚𝑛 entries can be various rather than only a constant value in (31).

There remains a cost of O(𝑚𝑛) caused by 𝐴 in (33). Inspired by

the restriction of 𝑦 (·) that is used to have 𝑌𝑖 𝑗 = 𝑦 (𝒙𝑖, 𝑗 ), to extend
existing optimization methods for (31) on our proposed framework,

an additional condition should be considered:

• The imputation model function 𝜎 (·) can not be an arbitrary one.

Specifically, given a feature vector 𝒙𝑖, 𝑗 , 𝜎 (𝒙𝑖, 𝑗 ) can be factorized

into multiple parts, each of which is only related to 𝑖 or 𝑗 but

not required to be convex in parameters. Thus the choice of 𝜎 (·)
is broader than that of 𝑦 (·). For example, the multi-view deep

learning approach proposed in [7] satisfies this condition.

In our realization, we implement various imputation models from

simple to complex, all of which satisfy the above condition; see

details in Section 5.2.2.

To use (33), we consider the FFM model for 𝑦 (𝒙𝑖, 𝑗 ) and develop

an optimization method. Details are in Section A of supplementary

materials.

5 EXPERIMENTS
We begin by presenting our experimental settings including data

sets and parameter selections. Then, we design and conduct a series

of experiments to demonstrate the effectiveness and robustness of

our proposed framework in Section 4.

5.1 Data Sets
We consider the following data sets for experiments, where statistics

are described in Table 2.

• CPC: This is a large-scale data set for CTR prediction, which

includes events of nine days from a real-world CPC system. We

consider a two-slot scenario so that for each request, the two

ads with the highest expected revenues from 140 candidates

are displayed. To have training, validation and test sets under

uniform and non-uniform policies, as illustrated in Figure 6, we

segment the data to six subsets. The five subsets used in our

experiments are described below.

– 𝑆𝑡 , 𝑆𝑐 defined in Section 2.2, are used separately or together as

the training set depending the approach.

– 𝑆va is the set obtained in the validation period under the uni-

form logging policy. As an unbiased set, it is used by all meth-

ods for the parameter selection.

– 𝑆te is the set obtained in the test period under the uniform

logging policy. As an unbiased set, it is used to check the test

performance of all methods.

Non-uniform

policies:

𝑆𝑐 𝑆 ′𝑐

Uniform

policy:

𝑆𝑡 𝑆va 𝑆te

1 2 3—9

days

Figure 6: An illustration of data segmentation according to
training, validation, and test periods.

Table 2: Data statistics

Data set 𝑚 𝑛 𝐷 |𝑆𝑐 | |𝑆𝑡 | |𝑆va | |𝑆te |
Yahoo! R3 14,877 1,000 15,877 176,816 2,631 2,775 48,594

CPC 21.7M 140 1.4M 42.8M 0.35M 0.31M 2.0M

– 𝑆 ′𝑐 is the set of events logged by non-uniform policies in the

validation period. For methods that have involved 𝑆𝑐 for train-

ing in the validation process, after parameters are selected, 𝑆 ′𝑐
is included for training the final model to predict 𝑆te.

For the feature set, we collect user profiles, contextual informa-

tion (e.g., time, location) of each request and side information of

each advertisement. All are categorical features.

• Yahoo! R3 [23]: The data set, from a music recommendation ser-

vice, includes a training and a test set of rated (user, song) pairs in

a rating matrix 𝑅. For the training set, users deliberately selected

and rated the songs by preference, which can be considered as

a stochastic logging policy by following [30, 32]. For the test

set, users were asked to rate 10 songs randomly selected by the

system. Because the logging policy of the test set is completely

random, the ratings contained in the test set can be considered

as the ground truth without the selection bias. In Section B.1 of

supplementary material, we give details of modifying the prob-

lem to simulate a deterministic logging policy, which is what our

framework intends to handle.

5.2 Considered Approaches
The considered approaches in our comparison fall into two main

categories.

5.2.1 Conventional Approaches for CTR Prediction. This category
includes approaches that solve the binary classification problem in

(4) with the following CTR model.

• FFM: This is the CTR model reviewed in Section 2.1. We consider

the slightly modified formulation proposed in [36].

For the training set, we consider the following three combinations

of 𝑆𝑐 and 𝑆𝑡 .

• 𝑆𝑐 : This is a large set including events logged by non-uniform

policies; see Section 2.2. This simulates the setting of most sys-

tems for CTR prediction.

• 𝑆𝑡 : This is a small set including events logged by a uniform policy;

see Section 2.2. Because the set is free from the selection bias,

some works (e.g., [22]) deploy a model trained on 𝑆𝑡 , though an

issue is that |𝑆𝑡 | is small.

• 𝑆𝑐 ∪ 𝑆𝑡 : This is the set of all logged events.



5.2.2 Counterfactual Learning Approaches. This category includes

the following approaches, where all of them consider FFM as the

CTR model and 𝑆𝑐 ∪ 𝑆𝑡 as the training set.

• IPS: The approach was reviewed in Section 3.2. For the estimation

of propensity scores, we follow [30] to consider the following

Naive Bayes propensity estimator.

𝑧𝑙 ≈ 𝑃 (𝑂𝑙 = 1 | 𝑦𝑙 = 𝑦) ≈ 𝑃 (𝑦,𝑂 = 1)
𝑃 (𝑦) , (34)

where 𝑦 = {−1, 1} is the label, 𝑃 (𝑦,𝑂 = 1) is the ratio of events

labeled as𝑦 in the displayed set, and 𝑃 (𝑦) is the ratio of the events
labeled as 𝑦 in a selection-bias free set. We estimated them by

respectively using 𝑆𝑐 ∪ 𝑆𝑡 and 𝑆𝑡 .
• CausE: The “causal embedding” approach [3] jointly learns two

CTR models 𝑦𝑐 (·) and 𝑦𝑡 (·) respectively from 𝑆𝑐 and 𝑆𝑡 . They

solve the following optimization problem.

min

W𝑐 ,W𝑡

1

|𝑆𝑐 |
∑

(𝑦,𝒙) ∈𝑆𝑐
ℓ (𝑦,𝑦𝑐 (𝒙)) +

1

|𝑆𝑡 |
∑

(𝑦,𝒙) ∈𝑆𝑡
ℓ (𝑦,𝑦𝑡 (𝒙))

+ 𝜆𝑐𝑅(W𝑐 ) + 𝜆𝑡𝑅(W𝑡 ) + 𝜆 ∥𝑡−𝑐 ∥ ∥W𝑐 −W𝑡 ∥22 ,

whereW𝑐 andW𝑡 are are parameters of 𝑦𝑐 (·) and 𝑦𝑡 (·), respec-
tively, and the last term controls the discrepancy betweenW𝑐

andW𝑡 . The original study in [3] only supports matrix factor-

ization models. We make an extension to support more complex

models (e.g., FFM). For the prediction, we follow [3] to use only

𝑦𝑐 (·).
• New: This approach is a realization of our proposed framework

in (33), where we use the logistic loss defined in (5) as ℓ (·, ·). We

use a modified FFM model in [36] for the CTR model 𝑦 (·). It
satisfies the conditions needed in Section 4.3. For the imputation

model 𝜎 (·), we consider three settings.
– avg: This is a simple setting is to impute labels with the

average CTR in 𝑆𝑡 . We use the following logit function to

transform a probability to a model output in [−∞,∞].

𝜎 (𝒙𝑖, 𝑗 ) = log( CTR

1 − CTR
), ∀𝑖, 𝑗

where CTR is the average CTR from events in 𝑆𝑡 .

– item-avg: This is an item-wise extension of avg as

𝜎 (𝒙𝑖, 𝑗 ) = log(
CTR𝑗

1 − CTR 𝑗

), ∀𝑖

where CTR𝑗 is the average CTR of ad 𝑗 from events in 𝑆𝑡 .

– complex: This is a complex setting to learn 𝜎 (·) from 𝑆𝑡 by

solving (4) with the modified FFM model in [36].

We further include two constant predictors as baselines.

• average (𝑆𝑐 ): This is a constant predictor defined as

𝑦 (𝒙𝑖, 𝑗 ) = log( CTR

1 − CTR
), ∀𝑖, 𝑗

where CTR is the average CTR from events in 𝑆𝑐 .

• average (𝑆𝑡 ): It is the same as average (𝑆𝑐 ), except that the average
CTR from events in 𝑆𝑡 is considered.

Table 3: A performance comparison of different approaches.
We show the relative improvements over the average (𝑆𝑐 ) on
test NLL and AUC scores. The best approach is bold-faced.

Metric NLL AUC NLL AUC

Approach

Data set Yahoo! R3 CPC

average (𝑆𝑐 ) +0.0% +0.0% +0.0% +0.0%

average (𝑆𝑡 ) +79.1% +0.0% +29.6% +0.0%

FFM (𝑆𝑐 ) -7.7% +36.4% -16.9% +32.2%

FFM (𝑆𝑡 ) -20.7% +4.6% +32.4% +42.8%

FFM (𝑆𝑐 ∪ 𝑆𝑡 ) +0.2% +36.4% +10.6% +34.6%

IPS +62.2% +23.2% +28.5% +31.2%

CausE +6.8% +37.8% +25.3% +39.4%

New (avg) +79.1% +51.8% +32.9% +48.6%

New (item-avg) +76.8% +54.2% +32.4% +48.2%

New (complex) -0.2% +37.4% +33.4% +50.6%

Table 4: The performance when 𝑆𝑡 becomes smaller sets. |𝑆𝑡 |
indicates the size of 𝑆𝑡 as the percentage of total data. We
present the relative improvements over the average (𝑆𝑐 ) on
test NLL and AUC scores. The CPC set is considered and the
best approach is bold-faced.

Metric NLL AUC NLL AUC

Approach

|𝑆𝑡 |
0.1% 0.01%

average (𝑆𝑡 ) +29.2% +0.0% +28.7% +0.0%

FFM (𝑆𝑡 ) +28.6% +18.6% +26.5% +1.2%

FFM (𝑆𝑐 ∪ 𝑆𝑡 ) -12.5% +29.6% -16.9% +32.0%

IPS +26.1% +26.8% +18.7% +23.6%

CausE +25.6% +37.4% +22.4% +31.6%

New (avg) +33.5% +48.4% +30.4% +47.2%
New (item-avg) +31.5% +46.6% +26.7% +46.0%

New (complex) +32.2% +44.6% +32.5% +43.0%

For evaluation criteria, we consider NLL and AUC respectively

defined in (8) and (9) and report relative improvements over the

method average (𝑆𝑐 ) as

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ − 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛average (𝑆𝑐 )
|𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛average (𝑆𝑐 ) |

,

where 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 is either NLL or AUC, and 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ is the ap-

proach being measured. Because the performance of average (𝑆𝑐 ) is
unchanged in all experiments, results presented in different tables

can be comparable. Details of our parameter selection procedure

are in supplementary materials.

5.3 Comparison on Various Approaches
By comparing models in Table 3, we have the following observa-

tions.

• For two constant predictors, NLL scores of average (𝑆𝑡 ) are much

better than those of average (𝑆𝑐 ) estimated from the biased 𝑆𝑐 set.

The reason is that the distribution of 𝑆𝑡 is consistent with that

of the test set. However, because average (𝑆𝑡 ) is still a constant
predictor, its AUC scores are the same as those of average (𝑆𝑐 ).



• For FFM (𝑆𝑡 ), it performs much better than FFM (𝑆𝑐 ) and FFM
(𝑆𝑐 ∪ 𝑆𝑡 ) on CPC set. This result confirms our conjecture in Sec-

tion 2.2 that conventional approaches considering only displayed

events selected by non-uniform policies may cause a strong se-

lection bias. However, the result of FFM (𝑆𝑡 ) on Yahoo! R3 set

is not ideal. The reason is that the feature set of Yahoo! R3 is

too sparse by having only two identifier features
3
and 𝑆𝑡 is too

small to learn an FFM model.

• IPS has good NLL scores, but its AUC scores are not competitive.

In (34) to estimate propensity scores, the set 𝑆𝑡 is used. This

may explain why the obtained NLL is similar to that by average
(𝑆𝑡 ). On the other hand, the unsatisfactory AUC results may be

because the Naive Bayes estimator used in (34) is too simple.

• For CausE, it performs better than FFM (𝑆𝑐 ) and FFM (𝑆𝑐 ∪ 𝑆𝑡 )
but worse than FFM (𝑆𝑡 ) on the CPC set. The reason might be

that models learnt from 𝑆𝑡 are better than those learnt from 𝑆𝑐 ,

but we follow [3] to use only 𝑦𝑐 (·) for prediction.
• Our proposed framework performs significantly better than oth-

ers, though an exception is New (complex) on the Yahoo! R3
set. The reason is analogous to the explanation of the bad result

of FFM (𝑆𝑡 ) on Yahoo! R3 set where 𝑆𝑡 is too small. In contrast,

for the CPC set, because 𝑆𝑡 is large enough to learn a complex

imputation model, New (complex) performs the best.

5.4 Impact of Unbiased Imputation Models
Learnt from 𝑆𝑡

In Section 4.2, we proposed unbiased imputation models because

past works [6, 19] find that learning from biased data sets will propa-

gate the carried selection bias to non-displayed events and worsens

the performance. We conduct an experiment to verify this conjec-

ture and the importance of using an unbiased imputation model.

Detailed results are in Section B.3 of supplementary materials.

5.5 Impact of the Size of 𝑆𝑡
To examine the robustness of the approaches relying on 𝑆𝑡 to learn

an unbiased imputation model, we shrink 𝑆𝑡 to see how they per-

form on the CPC set. For experiments in Section 5.3, 𝑆𝑡 includes

1% of the data. We now select two subsets respectively having 0.1%

and 0.01% of total data. These subsets are then used as 𝑆𝑡 for exper-

iments, though each model’s parameters must be re-selected. The

set 𝑆𝑐 remains unchanged.

The result is in Table 4. By comparing the third column of Table 3,

which shows the result of using 1% data as 𝑆𝑡 , we observe that with

the shrinkage of 𝑆𝑡 , the performance of all approaches gradually

becomes worse. However, our proposed framework still performs

significantly better than others. In particular, for other approaches

AUC values are strongly affected by the size of 𝑆𝑡 , but ours remain

similar. Among the three settings of our framework, the simple

setting New (avg) of using average CTR in 𝑆𝑡 as the imputation

model is competitive. This might be because for small 𝑆𝑡 , training

a complicated imputation model is not easy.

3
See details of the Yahoo! R3 set in supplementary materials

6 CONCLUSION
In this work, through an A/B test on our system, we show that

conventional approaches for CTR prediction considering only dis-

played events may cause a strong selection bias and inaccurate

predictions. To alleviate the bias, we need to conduct counterfac-

tual learning by considering non-displayed events. We point out

some difficulties for applying counterfactual learning techniques

in real-world advertising systems.

(1) For many advertising systems, the thresholding operation (25)

is applied as a deterministic logging policy, but existing ap-

proaches may require stochastic policies.

(2) Learning imputation models from displayed events causes the

selection bias being propagated to non-displayed events.

(3) The high cost of handling all displayed and non-displayed

events causes some approaches impractical for large systems.

To overcome these difficulties, we propose a novel framework for

counterfactual CTR prediction. We introduce a propensity-free dou-

bly robust method. Then we propose a setting to obtain unbiased

imputation models in our framework. For efficient training we

link the proposed framework to recommender systems with im-

plicit feedbacks and adapt algorithms developed there. Experiments

conducted on real-world data sets show our proposed framework

outperforms not only conventional approaches for CTR prediction

but also some existing counterfactual learning methods.
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A DETAILS OF EFFICIENT TRAINING
As we mentioned in Section 4.3, to solve (33) without O(𝑚𝑛) costs,
the CTR model and the imputation model should satisfy some

conditions. In this section, we take a modified FFM model proposed

in [36] as an example to present our efficient training algorithm.

The modified FFM model, which is a multi-block convex function

[2], is considered as both CTR and imputation models.

We note that [36] considers a slightly modified FFM model to

make each sub-problem convex, where the idea is extended from

related works in [2, 5]. If we let

𝒙 =


𝒙1

.

.

.

𝒙𝐹


be considered as a concatenation of 𝐹 sub-vectors, where 𝒙 𝑓 ∈ R𝐷𝑓

includes 𝐷 𝑓 features which belong to the field 𝑓 , then the modified

function is

𝑦 (𝒙) =
𝐹∑

𝑓1=1

𝐹∑
𝑓2=𝑓1

(𝑊 𝑓2
𝑓1

𝑇 𝒙 𝑓1 )
𝑇 (𝐻 𝑓1

𝑓2

𝑇 𝒙 𝑓2 )

=

𝐹∑
𝑓1=1

𝐹∑
𝑓2=𝑓1

𝒑 𝑓1,𝑓2
𝑇 𝒒𝑓2,𝑓1 ,

(A.1)

where

𝑊
𝑓2
𝑓1

= [𝒘
1,𝑓2 , · · · ,𝒘𝐷𝑓

1
,𝑓2 ]

𝑇 ∈ R𝐷𝑓
1
×𝑘 ,

𝐻
𝑓1
𝑓2

=

{
𝑊

𝑓1
𝑓2

𝑓1 ≠ 𝑓2,

[𝒉
1,𝑓1 , · · · ,𝒉𝐷𝑓

2
,𝑓1 ]𝑇 𝑓1 = 𝑓2,

𝒑 𝑓1,𝑓2
=𝑊

𝑓2
𝑓1

𝑇 𝒙 𝑓1 and 𝒒𝑓2,𝑓1 = 𝐻
𝑓1
𝑓2

𝑇 𝒙 𝑓2 . (A.2)

We do not show that (A.1) is a minor modification from (7); for

details, please see [36].

In recommendation, each 𝒙 is usually a combination of user

feature 𝒖 and item feature 𝒗. For 𝒙𝑙 corresponding to user 𝑖 and

item 𝑗 , 𝒙𝑙 can be written as

𝒙𝑖, 𝑗 =

[
𝒖𝑖

𝒗 𝑗

]
.

Under any given field 𝑓 , the vector 𝒙𝑖, 𝑗
𝑓

consists of two sub-vectors

respectively corresponding to request 𝑖 and ad 𝑗 .

𝒙𝑖, 𝑗
𝑓

=

{
𝒖𝑖
𝑓

𝑓 ≤ 𝐹𝑢 ,

𝒗 𝑗
𝑓

𝑓 > 𝐹𝑢 .
(A.3)

where 𝐹𝒖 is the number of user fields and 𝐹𝒗 is number of item

fields. The corresponding output function is

𝑦 (𝒙𝑖, 𝑗 ) =
𝐹𝒖+𝐹𝒗∑
𝑓1=1

𝐹𝒖+𝐹𝒗∑
𝑓2=𝑓1

(𝑊 𝑓2
𝑓1

𝑇 𝒙𝑖, 𝑗
𝑓1
)𝑇 (𝐻 𝑓1

𝑓2

𝑇 𝒙𝑖, 𝑗
𝑓2
)

=

𝐹∑
𝑓1=1

𝐹∑
𝑓2=𝑓1

𝒑𝑖, 𝑗
𝑓1,𝑓2

𝑇 𝒒𝑖, 𝑗
𝑓2,𝑓1

, (A.4)

where

𝒑𝑖, 𝑗
𝑓1,𝑓2

=𝑊
𝑓2
𝑓1

𝑇 𝒙 𝑓1 , 𝒒
𝑖, 𝑗

𝑓2,𝑓1
= 𝐻

𝑓1
𝑓2

𝑇 𝒙 𝑓2 . (A.5)

With the reformulation, our proposed (33) has a multi-block ob-

jective function. At each cycle of the block CD method we sequen-

tially solve one of 𝐹 (𝐹 + 1) convex sub-problems by the following

loop.

1: for 𝑓1← {1 · · · 𝐹 } do
2: for 𝑓2← {𝑓1 · · · 𝐹 } do
3: Solve a sub-problem of𝑊

𝑓2
𝑓1

by fixing others

4: Solve a sub-problem of 𝐻
𝑓1
𝑓2
by fixing others

5: end for
6: end for
If we consider to update the block𝑊

𝑓2
𝑓1

corresponding to fields

𝑓1 and 𝑓2, then the convex sub-problem is to minimize

𝜆

2

𝑅(𝑊 𝑓2
𝑓1
) +

∑
(𝑖, 𝑗) ∈Ω

(ℓ (𝐴𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝐴𝑖 𝑗 − 𝑌𝑖 𝑗 )2)

+
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝜔 (𝐴𝑖 𝑗 − 𝑌𝑖 𝑗 )2,
(A.6)

where l2 regularization is considered. That is, 𝑅(𝑊 ) = ∥𝑊 ∥2
F
. In

[36], the sub-problem is a special case of (A.6), where the objective

function is quadratic because of the squared loss function. Thus

solving the sub-problem in [36] is the same as solving a linear sys-

tem by taking the first derivative to be zero. In contrast, ours in (A.6)

is a general convex function, so some differentiable optimization

techniques such as gradient descent, Quasi-Newton or Newton are

needed. All these methods must calculate the gradient (i.e., the first

derivative) or the Hessian-vector product (where Hessian is the

second-order derivative), but the O(𝑚𝑛) cost is the main concern.

In next content, by following [34, 36], we develop an efficient

Newton method for solving (A.6), where any O(𝑚𝑛) cost can be

avoided.

A.1 Newton Methods for Solving Sub-problems
We discuss details in solving the sub-problem of𝑊

𝑓2
𝑓1

in (A.6). Fol-

lowing [36], for easy analysis, we write (A.6) to a vector form

𝑓 (�̃�),

where �̃� = vec(𝑊 𝑓2
𝑓1
) and vec(·) stacks the columns of a matrix. We

consider Newton methods to solve the sub-problem.



An iterative procedure is conducted in a Newton method. Each

Newton iteration minimizes a second-order approximation of the

function to obtain a updating direction 𝒔

min

𝒔
∇𝑓 (�̃�)𝑇 𝒔 + 1

2

𝒔𝑇∇2 𝑓 (�̃�)𝒔 . (A.7)

Because 𝑓 (�̃�) is convex, the direction 𝒔 can be obtained by solving

the following linear system

∇2 𝑓 (�̃�)𝒔 = −∇𝑓 (�̃�) . (A.8)

We follow [36] to solve (A.7) by a iterative procedure called the

conjugate gradient method (CG). The main reason of using CG is

that ∇2 𝑓 (�̃�) is too large to be stored, and each CG step requires

mainly the product between ∇2 𝑓 (�̃�) and a vector 𝒗

∇2 𝑓 (�̃�)𝒗, (A.9)

which, with the problem structure, may be conducted without ex-

plicitly forming ∇2 𝑓 (�̃�).
A difference from [36] is that the sub-problem in [36] is a qua-

dratic function because of the squared loss. Thus, an optimization

procedure like the Newton method is not needed. Instead, only one

linear system is solved by CG.

To ensure the convergence of the Newton method, after obtain-

ing an updating direction 𝒔, a line search procedure is conducted

to find a suitable step size 𝜃 . Then we update the �̃� by

�̃� ← �̃� + 𝜃𝒔 .

We follow the standard backtracking line search to check a sequence

1, 𝛽, 𝛽2, · · · and choose the largest 𝜃 such that the sufficient decrease

of the function value is obtained

𝑓 (�̃� + 𝜃𝒔) − 𝑓 (�̃�) ≤ 𝜃𝜈∇𝑓 𝑇 (�̃�)𝒔 . (A.10)

where 𝛽, 𝜈 ∈ (0, 1) are pre-specified constants.

A.2 Algorithm Details
To discuss techniques for addressing the issue of O(𝑚𝑛) complexity,

let

�̃� = vec(𝑊 𝑓2
𝑓1
)

and re-write (A.6) as

𝑓 (�̃�) = 𝜆

2

∥�̃� ∥2
2
+ 𝐿+ (�̃�) + 𝐿− (�̃�), (A.11)

where

𝐿+ (�̃�) =
∑
(𝑖, 𝑗) ∈Ω

ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔
1

2

(𝐴𝑖 𝑗 − 𝑌𝑖 𝑗 )2 (A.12)

𝐿− (�̃�) = 𝜔

𝑚∑
𝑖=1

𝑛∑
𝑗=1

1

2

(𝐴𝑖 𝑗 − 𝑌𝑖 𝑗 )2 .

Then the gradient and Hessian-vector product can be respectively

re-written as

∇ ˜𝑓 (�̃�) = 𝜆�̃� + ∇𝐿+ (�̃�) + ∇𝐿− (�̃�),

∇2 ˜𝑓 (�̃�)𝒗 = 𝜆𝒗 + ∇2𝐿+ (�̃�)𝒗 + ∇2𝐿− (�̃�)𝒗 .

A.2.1 The Computation of the Right-hand Side of the Linear System.
To efficiently calculate the gradient, [36] takes a crucial property

of recommender systems into account.

For each request 𝑖 and ad 𝑗 pairs, there are 𝐹 (𝐹 + 1) numbers of

feature embedding vectors according to different field combinations

of 𝑓1 and 𝑓2. From (A.2) and (A.3),

𝒑𝑖, 𝑗
𝑓1,𝑓2
→


𝒑𝑖
𝑓1,𝑓2

=𝑊
𝑓2
𝑓1

𝑇
𝒖𝑖
𝑓1

𝑓1 ≤ 𝐹𝑢 ,

𝒑 𝑗

𝑓1,𝑓2
=𝑊

𝑓2
𝑓1

𝑇
𝒗 𝑗
𝑓1

𝑓1 > 𝐹𝑢 ,

and

𝒒𝑖, 𝑗
𝑓1,𝑓2
→


𝒒𝑖
𝑓2,𝑓1

= 𝐻
𝑓1
𝑓2

𝑇
𝒖𝑖
𝑓2

𝑓1 ≤ 𝐹𝑢 ,

𝒒 𝑗
𝑓2,𝑓1

= 𝐻
𝑓1
𝑓2

𝑇
𝒗 𝑗
𝑓2

𝑓1 > 𝐹𝑢 .

When updating vec(𝑊 𝑓2
𝑓1
), the value 𝑌𝑖 𝑗 can be written as

𝒙𝑖, 𝑗
𝑓1

𝑇𝑊
𝑓2
𝑓1
𝒒𝑖, 𝑗
𝑓2,𝑓1
+ const. = vec(𝑊 𝑓2

𝑓1
)𝑇 (𝒒𝑖, 𝑗

𝑓2,𝑓1
⊗ 𝒙𝑖, 𝑗

𝑓1
) + const.

= �̃�𝑇 (𝒒𝑖, 𝑗
𝑓2,𝑓1
⊗ 𝒙𝑖, 𝑗

𝑓1
) + const.

= �̃�𝑇 vec(𝒙𝑖, 𝑗
𝑓1
𝒒𝑖, 𝑗
𝑓2,𝑓1

𝑇 ) + const.
(A.13)

and its first derivative (𝑌𝑖 𝑗 )′ with respect to �̃� is

�̃�𝑖, 𝑗
𝑓1

= vec(𝒙𝑖, 𝑗
𝑓1
𝒒𝑖, 𝑗
𝑓2,𝑓1

𝑇 ).

Then ∇𝐿+ (�̃�) and ∇𝐿− (�̃�) can be computed as

∇𝐿+ (�̃�) =
∑
(𝑖, 𝑗) ∈Ω

(ℓ ′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 )) (𝑌𝑖 𝑗 )′

=
∑
(𝑖, 𝑗) ∈Ω

vec((ℓ ′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 ))𝒙𝑖, 𝑗𝑓1 𝒒
𝑖, 𝑗

𝑓2,𝑓1

𝑇 )

(A.14)

where ℓ ′(𝑌,𝑌 ) indicates the derivative with respect to 𝑌 , and

∇𝐿− (�̃�) =
𝑚∑
𝑖=1

𝑛∑
𝑗=1

vec(𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 ) (𝑌𝑖 𝑗 )′

=

𝑚∑
𝑖=1

𝑛∑
𝑗=1

vec(𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 )𝒙𝑖, 𝑗𝑓1 𝒒
𝑖, 𝑗

𝑓2,𝑓1

𝑇 ). (A.15)

From (A.4),

𝑌𝑖 𝑗 =

𝐹∑
𝛼=1

𝐹∑
𝛽=𝛼

𝒑𝑖, 𝑗
𝛼,𝛽

𝑇 𝒒𝑖, 𝑗
𝛽,𝛼

.

The ∇𝐿+ (�̃�) evaluation requires the summation of O(|Ω |) terms.

With |Ω | ≪𝑚𝑛, ∇𝐿+ (�̃�) can be easily calculated but the bottleneck

is on ∇𝐿− (�̃�), which sum up O(𝑚𝑛) terms.

In order to deal with the O(𝑚𝑛) cost, in [36], an efficient ap-

proach has been provided to compute

∇𝐿− (�̃�) =
𝑚∑
𝑖=1

𝑛∑
𝑗=1

vec(𝜔 (𝑌𝑖 𝑗 − 𝑟 )𝒙𝑖, 𝑗𝑓1 𝒒
𝑖, 𝑗

𝑓2,𝑓1

𝑇 ). (A.16)

where all 𝐴𝑖 𝑗 are treated as a constant 𝑟 . We can leverage their

technique by breaking (A.15) into two parts

𝑚∑
𝑖=1

𝑛∑
𝑗=1

vec(𝜔𝑌𝑖 𝑗𝒙𝑖, 𝑗𝑓1 𝒒
𝑖, 𝑗

𝑓2,𝑓1

𝑇 ) (A.17)



and

−
𝑚∑
𝑖=1

𝑛∑
𝑗=1

vec(𝜔𝐴𝑖 𝑗𝒙
𝑖, 𝑗

𝑓1
𝒒𝑖, 𝑗
𝑓2,𝑓1

𝑇 ). (A.18)

It is clear that (A.17) is actually a specific case in [36] with 𝑟 = 0.

Furthermore, since a FFM imputation model is used, 𝑌𝑖 𝑗 and 𝐴𝑖 𝑗

have an identical structure.

𝐴𝑖 𝑗 =

𝐹∑
𝛼=1

𝐹∑
𝛽=𝛼

𝒑′𝑖, 𝑗
𝛼,𝛽

𝑇 𝒒′𝑖, 𝑗
𝛽,𝛼

(A.19)

where

𝒑′𝑖, 𝑗
𝑓1,𝑓2
→


𝒑′𝑖

𝑓1,𝑓2
=𝑊 ′𝑓2

𝑓1

𝑇
𝒖𝑖
𝑓1

𝑓1 ≤ 𝐹𝑢 ,

𝒑′ 𝑗
𝑓1,𝑓2

=𝑊 ′𝑓2
𝑓1

𝑇
𝒗 𝑗
𝑓1

𝑓1 > 𝐹𝑢 ,

and

𝒒′𝑖, 𝑗
𝑓1,𝑓2
→


𝒒′𝑖

𝑓2,𝑓1
= 𝐻 ′𝑓1

𝑓2

𝑇
𝒖𝑖
𝑓2

𝑓1 ≤ 𝐹𝑢 ,

𝒒′ 𝑗
𝑓2,𝑓1

= 𝐻 ′𝑓1
𝑓2

𝑇
𝒗 𝑗
𝑓2

𝑓1 > 𝐹𝑢 .

We have that𝑊 ′ and 𝐻 ′ are the imputation model’s embedding

matrixes. Therefore, we can apply same computation method on

(A.17) and (A.18).

The computation of (A.17) depends on the following three cases
𝑓1, 𝑓2 ≤ 𝐹𝑢 ,

𝑓1, 𝑓2 > 𝐹𝑢 ,

𝑓1 ≤ 𝐹𝑢 , 𝑓2 > 𝐹𝑢 .

Let

𝑃
𝑓2
𝑓1

=

[
𝒑1

𝑓1,𝑓2
, · · · ,𝒑𝑚

𝑓1,𝑓2

]𝑇
, 𝑄

𝑓1
𝑓2
=

[
𝒒1

𝑓2,𝑓1
, · · · , 𝒒𝑛

𝑓2,𝑓1

]𝑇
,

𝑃 ′𝑓2
𝑓1
=

[
𝒑′1𝑓1,𝑓2 , · · · ,𝒑

′𝑚
𝑓1,𝑓2

]𝑇
, 𝑄 ′𝑓1

𝑓2
=

[
𝒒′1𝑓2,𝑓1 , · · · , 𝒒

′𝑛
𝑓2,𝑓1

]𝑇
,

𝑈𝑓1 =

[
𝒖1

𝑓1
, · · · , 𝒖𝑚

𝑓1

]𝑇
.

• For the first case, (A.17) can be computed by

𝑈𝑇
𝑓1

diag(𝒛)𝑄 𝑓1
𝑓2
,

where

𝑧𝑖 = 𝜔 (𝑛𝑎𝑖 +
𝑛∑
𝑗=1

𝑏 𝑗 + 𝑑𝑖 ),

𝒅 =

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑃𝛽𝛼 (𝑄𝛼
𝛽
𝑇 1𝑛×1)) ∈ R𝑚,

𝑎𝑖 =

𝐹𝑢∑
𝛼=1

𝐹𝑢∑
𝛽=𝛼

𝒑𝑖
𝛼,𝛽

𝑇 𝒒𝑖
𝛽,𝛼

, and 𝑏 𝑗 =

𝐹∑
𝛼=𝐹𝑢+1

𝐹∑
𝛽=𝛼

𝒑 𝑗

𝛼,𝛽
𝑇 𝒒 𝑗

𝛽,𝛼
.

Similarly, (A.18) can be computed by

−𝑈𝑇
𝑓1

diag(𝒛′)𝑄 𝑓1
𝑓2
,

where

𝑧′𝑖 = 𝜔 (𝑛𝑎′𝑖 +
𝑛∑
𝑗=1

𝑏 ′𝑗 + 𝑑
′
𝑖 ),

𝒅 ′ =
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑃 ′𝛽𝛼 (𝑄 ′𝛼𝛽
𝑇 1𝑛×1)) ∈ R𝑚,

𝑎′𝑖 =
𝐹𝑢∑
𝛼=1

𝐹𝑢∑
𝛽=𝛼

𝒑′𝑖𝛼,𝛽
𝑇 𝒒′𝑖𝛽,𝛼 , and 𝑏

′
𝑗 =

𝐹∑
𝛼=𝐹𝑢+1

𝐹∑
𝛽=𝛼

𝒑′ 𝑗
𝛼,𝛽

𝑇 𝒒′ 𝑗
𝛽,𝛼

.

The overall summation of (A.14) and (A.15) can be written as

𝑈𝑇
𝑓1

diag(𝒛)𝑄 𝑓1
𝑓2
,

where

𝑧𝑖 = 𝑧𝑖 − 𝑧′𝑖 +
∑
𝑗 ∈Ω𝑖

(ℓ ′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 ))

and Ω𝑖 = { 𝑗 | (𝑖, 𝑗) ∈ Ω}.
• For the second case, let

𝑉𝑓1 =

[
𝒗1

𝑓1
, · · · , 𝒗𝑛

𝑓1

]𝑇
.

Then (A.17) can be computed as

𝑉𝑇
𝑓1

diag(𝒛)𝑄 𝑓1
𝑓2
,

where

𝑧 𝑗 = 𝜔 (
𝑚∑
𝑖=1

𝑎𝑖 +𝑚𝑏 𝑗 + 𝑒 𝑗 ),

and

𝒆 =
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑄𝛼
𝛽
(𝑃𝛽𝛼𝑇 1𝑚×1)) ∈ R𝑛,

Similarly, (A.18) can be computed as

−𝑉𝑇
𝑓1

diag(𝒛′)𝑄 ′𝑓1
𝑓2
,

where

𝑧′𝑗 = 𝜔 (
𝑚∑
𝑖=1

𝑎′𝑖 +𝑚𝑏 ′𝑗 + 𝑒
′
𝑗 ),

and

𝒆′ =
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑄 ′𝛼𝛽 (𝑃
′𝛽
𝛼
𝑇 1𝑚×1)) ∈ R𝑛,

The overall summation of (A.15) and (A.14) can be written as

𝑉𝑇
𝑓1

diag(𝒛′)𝑄 𝑓1
𝑓2
,

where

𝑧 𝑗 = 𝑧 𝑗 − 𝑧′𝑗 +
∑
𝑖∈Ω̄ 𝑗

(ℓ ′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 ))

and Ω̄ 𝑗 = {𝑖 | (𝑖, 𝑗) ∈ Ω}.
• Considering the third case, (A.17) can be computed as

𝜔 ((𝑈𝑇
𝑓1
𝒂)𝒒𝑇

o
+ (𝑈𝑇

𝑓1
1𝑚×1)𝒒𝑇

b
+𝑈𝑇

𝑓1
𝑇 ),

where

𝑇 =

𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑃𝛽𝛼 (𝑄𝛼
𝛽
𝑇𝑄

𝑓1
𝑓2
)),

𝒒
o
= 𝑄

𝑓1
𝑓2

𝑇 1𝑛×1, and 𝒒
b
= 𝑄

𝑓1
𝑓2

𝑇 𝒃 .

Similarly, the (A.18) can be computed as

−𝜔 ((𝑈𝑇
𝑓1
𝒂′)𝒒

o

𝑇 + (𝑈𝑇
𝑓1
1𝑚×1)𝒒′

b

𝑇 +𝑈𝑇
𝑓1
𝑇 ′),

where

𝑇 ′ =
𝐹𝑢∑
𝛼=1

𝐹∑
𝛽=𝐹𝑢+1

(𝑃 ′𝛽𝛼 (𝑄 ′𝛼𝛽
𝑇𝑄

𝑓1
𝑓2
))



and

𝒒′
b
= 𝑄

𝑓1
𝑓2

𝑇 𝒃 ′.

The overall summation of (A.15) and (A.14) can be written as

𝑈𝑇
𝑓1


𝒛𝑇

1

.

.

.

𝑧𝑇𝑚

 + 𝜔 ((𝑈
𝑇
𝑓1
𝒂)𝒒𝑇

o
+ (𝑈𝑇

𝑓1
1𝑚×1)𝒒𝑇

b
+𝑈𝑇

𝑓1
𝑇 )

− 𝜔 ((𝑈𝑇
𝑓1
𝒂′)𝒒

o

𝑇 + (𝑈𝑇
𝑓1
1𝑚×1)𝒒′

b

𝑇 +𝑈𝑇
𝑓1
𝑇 ′),

where

𝒛𝑖 =
∑
𝑗 ∈Ω𝑖

(ℓ ′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔 (𝑌𝑖 𝑗 −𝐴𝑖 𝑗 ))𝒒 𝑗𝑓2,𝑓1 .

A.2.2 The computation of Matrix-vector Products. From the repre-

sentation of 𝑌𝑖 𝑗 in (A.13), (A.14) and (A.15),

∇2𝐿+ (�̃�) =
∑
(𝑖, 𝑗) ∈Ω

(ℓ ′′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔)�̃�𝑖, 𝑗𝑓1 �̃�
𝑖, 𝑗

𝑓1

𝑇
(A.20)

and

∇2𝐿− (�̃�) = 𝜔

𝑚∑
𝑖=1

𝑛∑
𝑗=1

�̃�𝑖, 𝑗
𝑓1
�̃�𝑖, 𝑗
𝑓1

𝑇 , (A.21)

where ℓ ′′(𝑌,𝑌 ) indicates the second derivative with respect to 𝑌 .

Following the calculation in [36], the two products∇2𝐿+ (�̃�) vec(𝑀)
and ∇2𝐿− (�̃�) vec(𝑀) can be computed as

∇2𝐿+ (�̃�) vec(𝑀)

=
∑
(𝑖, 𝑗) ∈Ω

(ℓ ′′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔)�̃�𝑖, 𝑗𝑓1 �̃�
𝑖, 𝑗

𝑓1

𝑇
vec(𝑀)

=
∑
(𝑖, 𝑗) ∈Ω

(ℓ ′′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔) vec(𝒙𝑖, 𝑗
𝑓1
(𝒙𝑖, 𝑗

𝑓1

𝑇
𝑀𝒒𝑖, 𝑗

𝑓2,𝑓1
)𝒒𝑖, 𝑗

𝑓2,𝑓1

𝑇 ),

(A.22)

and

∇2𝐿− (�̃�) vec(𝑀)

= 𝜔

𝑚∑
𝑖=1

𝑛∑
𝑗=1

�̃�𝑖, 𝑗
𝑓1
�̃�𝑖, 𝑗
𝑓1

𝑇
vec(𝑀)

= 𝜔

𝑚∑
𝑖=1

𝑛∑
𝑗=1

vec(𝒙𝑖, 𝑗
𝑓1
(𝒙𝑖, 𝑗

𝑓1

𝑇
𝑀𝒒𝑖, 𝑗

𝑓2,𝑓1
)𝒒𝑖, 𝑗

𝑓2,𝑓1

𝑇 ) . (A.23)

The cost of evaluating∇2𝐿+ (�̃�) vec(𝑀) is proportional toO(|Ω |)
and can be computed directly. However, ∇2𝐿− (�̃�) vec(𝑀) needs a
delicate derivation. We adopt the results in [36] below.

If first situation considered, the ∇2𝐿− (�̃�) vec(𝑀) can be com-

puted as

vec(𝑈𝑇
𝑓1

diag(𝒛)𝑄 𝑓1
𝑓2
),

where

𝒛 = 𝜔𝑛

(
(𝑈𝑓1𝑀) ⊙𝑄

𝑓1
𝑓2

)
1𝑘×1

The overall summation of (A.22) and (A.23) can be written as

𝑈𝑇
𝑓1

diag(𝒛)𝑄 𝑓1
𝑓2
,

where

𝒛𝑖 = 𝒛𝑖 +
∑
𝑗 ∈Ω𝑖

(ℓ ′′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔)𝒖𝑖𝑓1
𝑇
𝑀 �̃�𝑖

𝑓2,𝑓1

For the second case, details are omitted because an analogous

derivation of the first case can be used. If the third case is considered,

(A.22) can be computed as

𝜔 vec(𝑈𝑇
𝑓1
(𝑈𝑓1𝑀) (𝑄

𝑓1
𝑓2

𝑇𝑄
𝑓1
𝑓2
)) .

The overall summation of (A.22) and (A.23) can be written as

vec(𝑈𝑇
𝑓1


𝝉𝑇

1

.

.

.

𝝉𝑇𝑚

)) + 𝜔 vec(𝑈𝑇
𝑓1
(𝑈𝑓1𝑀) (𝑄

𝑓1
𝑓2

𝑇𝑄
𝑓1
𝑓2
)),

where

𝝉𝑖 =
∑
𝑗 ∈Ω𝑖

(ℓ ′′(𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 ) − 𝜔) (𝒖𝑖𝑓1
𝑇
𝑀 �̃� 𝑗

𝑓2,𝑓1
)�̃� 𝑗

𝑓2,𝑓1
.

For complexity analysis please see [36].

A.2.3 Line Search. To check the sufficient decrease condition in

(A.10), for the current iterate �̃� and a direction 𝑆 , we must calculate

𝑓 (�̃� + 𝜃 vec(𝑆)) − 𝑓 (�̃�) . (A.24)

Because

1

2

𝜆∥�̃� ∥ + 𝐿− (�̃�)

is quadratic, (A.24) is equivalent to

𝐿+ (�̃� + 𝜃 vec(𝑆)) − 𝐿+ (�̃�) + 𝜃∇( 1
2

𝜆∥�̃� ∥2 + 𝐿− (�̃�))𝑇 vec(𝑆)

+ 1

2

𝜃2
vec(𝑆)𝑇∇2 ( 1

2

𝜆∥�̃� ∥2 + 𝐿− (�̃�)) vec(𝑆)

= 𝐿+ (�̃� + 𝜃 vec(𝑆)) − 𝐿+ (�̃�) + 𝜃 (𝜆�̃� + ∇𝐿− (�̃�))𝑇 vec(𝑆)

+ 1

2

𝜃2
vec(𝑆)𝑇 (𝜆𝐼 + ∇2𝐿− (�̃�)) vec(𝑆) .

(A.25)

The value 𝐿+ (�̃�) is available from the previous iteration. We then

calculate the following two values so that (A.25) can be easily ob-

tained for any 𝜃 .

(𝜆�̃� + ∇𝐿− (�̃�))𝑇 vec(𝑆) (A.26)

and

vec(𝑆)𝑇 (𝜆𝐼 + ∇2𝐿− (�̃�)) vec(𝑆) . (A.27)

Besides, we also have to cache the right hand side of (A.10), which

is

∇𝑓 (�̃�)𝑇 vec(𝑆) .
For the value in (A.27) we can calculate the following matrix-vector

product first.

(𝜆𝐼 + ∇2𝐿− (�̃�)) vec(𝑆)
= 𝜆 vec(𝑆) + ∇2𝐿− (�̃�) vec(𝑆),

where the second term can be conducted by the procedure in Section

A.2.2.

With the above cached values, to evaluate the function-value

difference at each new 𝜃 , we only need to calculate

𝐿+ (�̃� + 𝜃 vec(𝑆)). (A.28)

From (A.12), new 𝑌𝑖 𝑗 values are needed. That is, from (A.4) and

(A.5),

𝑌𝑖 𝑗 + 𝜃𝒙𝑖, 𝑗𝑓1
𝑇 𝑆𝒒𝑖, 𝑗

𝑓2,𝑓1
∀𝑖, 𝑗 ∈ Ω. (A.29)



We can avoid calculating (A.29) for any new 𝜃 by applying a similar

trick. Specifically, with the cached variables

Δ𝑌𝑖 𝑗 = 𝒙𝑖, 𝑗
𝑓1

𝑇 𝑆𝒒𝑖, 𝑗
𝑓2,𝑓1

,

we can calculate (A.28) by

𝐿+ (�̃� + 𝜃 vec(𝑆))

=
∑
(𝑖, 𝑗) ∈Ω

ℓ (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗 + 𝜃Δ𝑌𝑖 𝑗 ) − 𝜔
1

2

(𝐴𝑖 𝑗 − (𝑌𝑖 𝑗 + 𝜃Δ𝑌𝑖 𝑗 ))2

with the complexity proportional to O(|Ω |).

B ADDITIONAL DETAILS OF EXPERIMENTS
B.1 Data Preparation of the Yahoo! R3 Set
To simulate events logged by the deterministic policy of (25), we

modify the data set by the following procedures.

(1) We apply rating-based matrix factorization technique [17] on

(user, song) pairs in the training set to find a matrix �̃� with

�̃�𝑖 𝑗 ≈ 𝑅𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ Ω,

where parameters including the size of latent factors and the

𝑙2 regularization’s coefficient are selected through a five-fold

cross validation on a grid of values.

(2) We apply a thresholding operation to generate a new set as

Ω
det

= {(𝑖, 𝑗) | �̃�𝑖 𝑗 > 2.5,∀(𝑖, 𝑗) ∈ Ω}.

To generate 𝑆𝑐 , where each instance includes a feature vector 𝒙 and

a binary label 𝑦, we apply one-hot encoding and rating binarization

as follows

𝑆𝑐 = {(𝑌𝑖 𝑗 , 𝒙𝑖, 𝑗 ) | ∀(𝑖, 𝑗) ∈ Ωdet
},

where

𝒙𝑖, 𝑗 = [

𝑖︷︸︸︷
· · · , 1, · · · , 1︸         ︷︷         ︸

14,877+𝑗

, · · · ]𝑇 ∈ R15,877,

and

𝑌𝑖 𝑗 =

{
1 𝑅𝑖 𝑗 = 5,

−1 𝑅𝑖 𝑗 < 5.

Besides, we randomly split out 5% pairs from the original test set and

conduct one-hot encoding and binarization to generate 𝑆𝑡 defined

in Section 2.2. Analogously, the rest 95% is further split into two

subsets in ratios of 5% and 90% to generate 𝑆va and 𝑆te for parameter

selections and evaluations, respectively.

B.2 Parameter Selection
For parameter selections, we conduct grid searches by training

multiple models on the corresponding training set of each approach.

We consider to tune the following parameters.

• 𝜆: the 𝑙2 regularization coefficient for FFM, IPS, CausE and New.
• 𝜆𝑐 , 𝜆𝑡 : 𝑙2 regularization’s coefficients respectively forW𝑐 and

W𝑡 in CausE.
• 𝜆 ∥𝑡−𝑐 ∥ : the coefficient of the term in CausE, which controls the

discrepancy betweenW𝑐 andW𝑡 .

• 𝑘1: the number of latent factors of each approach for the CPC
set.

Table I: A comparison between learning the imputation
model via 𝑆𝑡 and 𝑆𝑐∪𝑆𝑡 . All results are relative improvements
over the average (𝑆𝑐 ). The best approach is bold-faced.

Metric NLL AUC NLL AUC

Approach

Data set Yahoo! R3 CPC

New (avg) +79.1% +51.8% +32.9% +48.6%

𝑆𝑡 New (item-avg) +76.8% +54.2% +32.4% +48.2%

New (complex) -0.2% +37.4% +33.4% +50.6%
New (avg) +0.5% +31.2% +4.34% +32.8%

𝑆𝑐 ∪ 𝑆𝑡 New (item-avg) -0.17% +37.4% +9.0% +38.4%

New (complex) -1.4% +36.8% +19.2% +43.0%

Table II: Search range of parameters considered in different
approaches.

FFM IPS CausE New
𝜆 2

{0, · · · ,7}
2
{0, · · · ,7}

- 2
{0, · · · ,7}

𝜆𝑐 , 𝜆𝑡 - - 2
{−4, · · · ,−10}

-

𝜆 ∥𝑡−𝑐 ∥ - - 2
{−4, · · · ,−10}

-

𝑘1 2
5

2
5

2
5

2
5

𝑘2 2
{3, · · · ,6}

2
{3, · · · ,6}

2
{3, · · · ,6}

2
{3, · · · ,6}

𝜔 - - - 2
{−8,−12,−16}

𝑇 [1, 100] [1, 100] [1, 100] [1, 100]

• 𝑘2: the number of latent factors of each approach for the Yahoo!
R3 set.
• 𝜔 : the coefficient to balance the IPS part and the direct method

part in New.
• 𝑇 : the number of training iterations of each approach.

The search range of each parameter is listed in Table II. We then

choose parameters achieving the highest NLL on 𝑆va. For building

the final model to predict the test set, we should include data in

the validation period. To this end, we consider the following new

training set.

• For approaches using 𝑆𝑐 , we use 𝑆𝑐 ∪ 𝑆 ′𝑐 as the new training set,

where for the Yahoo! R3 set, because all events in the original

training set have been included in 𝑆𝑐 , 𝑆
′
𝑐 = ∅. For the CPC set,

as shown in Figure 6, 𝑆 ′𝑐 is the subset of events logged by non-

uniform policies in the day of collecting 𝑆va.

• For approaches using 𝑆𝑡 , we use 𝑆𝑡 ∪ 𝑆va as the new training set.

• For approaches using 𝑆𝑐 ∪ 𝑆𝑡 , we use 𝑆𝑐 ∪ 𝑆𝑡 ∪ 𝑆va ∪ 𝑆 ′𝑐 as the
new training set.

We finally compute NLL and AUC scores of evaluating 𝑆te.

B.3 Impact of Unbiased Imputation Models
Learnt from 𝑆𝑡

In section 4.2, we proposed unbiased imputation models because

past works [6, 19] find that learning from biased data sets will

propagate the carried selection bias to non-displayed events and

worsen the performance. To verify this, we follow these works

to learn biased imputation models from 𝑆𝑐 ∪ 𝑆𝑡 . That is, in the

workflow presented in Figure 4, 𝑆𝑡 is replaced by 𝑆𝑡 ∪ 𝑆𝑐 . We then

re-select the parameters for the imputation model by a validation

procedure. From Table I, we observe that the performance of using



an imputation model learnt from 𝑆𝑡 is significantly better than from 𝑆𝑐 ∪ 𝑆𝑡 . This result confirms the importance of using an unbiased

imputation model.
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