
Manuscript Number: 2187

Training ν-Support Vector Classifiers: Theory and

Algorithms

Chih-Chung Chang and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract The ν-support vector machine (ν-SVM) for classification proposed by

Schölkopf et al. has the advantage of using a parameter ν on controlling the

number of support vectors. In this paper, we investigate the relation between

ν-SVM and C-SVM in detail. We show that in general they are two different

problems with the same optimal solution set. Hence we may expect that many

numerical aspects on solving them are similar. However, comparing to regular

C-SVM, its formulation is more complicated so up to now there are no effective

methods for solving large-scale ν-SVM. We propose a decomposition method for

ν-SVM which is competitive with existing methods for C-SVM. We also discuss

the behavior of ν-SVM by some numerical experiments.

1 Introduction

The ν-support vector classification (Schölkopf et al. 2000; Schölkopf et al. 1999)

is a new class of support vector machines (SVM). Given training vectors xi ∈

R
n, i = 1, . . . , l in two classes, and a vector y ∈ R

l such that yi ∈ {1,−1}, they

consider the following primal problem:

(Pν) min
1

2
wTw − νρ +

1

l

l
∑

i=1

ξi (1.1)

yi(w
T φ(xi) + b) ≥ ρ − ξi,

ξi ≥ 0, i = 1, . . . , l, ρ ≥ 0.

Here 0 ≤ ν ≤ 1 and training vectors xi are mapped into a higher (maybe infinite)

dimensional space by the function φ. This formulation is different from the original

1

C-SVM (Vapnik 1998):

(PC) min
1

2
wTw + C

l
∑

i=1

ξi (1.2)

yi(w
T φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l.

In (1.2), a parameter C is used to penalize variables ξi. As it is difficult to select

an appropriate C, in (Pν), Schölkopf et al. introduce a new parameter ν which

lets one control the number of support vectors and errors. To be more precise,

they proved that ν is an upper bound on the fraction of margin errors and a

lower bound of the fraction of support vectors. In addition, with probability 1,

asymptotically, ν equals to both fractions.

Although (Pν) has such an advantage, its dual is more complicated than the

dual of (PC):

(Dν) min
1

2
αTQα

yT α = 0, eT α ≥ ν,

0 ≤ αi ≤ 1/l, i = 1, . . . , l, (1.3)

where e is the vector of all ones, Q is a positive semidefinite matrix, Qij ≡

yiyjK(xi,xj), and K(xi,xj) ≡ φ(xi)
T φ(xj) is the kernel.

Remember that the dual of (PC) is as follows:

(DC) min
1

2
αTQα − eT α

yT α = 0, 0 ≤ αi ≤ C, i = 1, . . . , l.

Therefore, it can be clearly seen that (Dν) has one more inequality constraint.

We are interested in the relation between (Dν) and (DC). Though in (Schölkopf

et al. 2000, Proposition 13), this issue has been studied, in Section 2 we investigate

this relation in more detail. The main result (Theorem 5) shows that solving them

is just like solving two different problems with the same optimal solution set. In

addition, the increase of C in C-SVM is like the decrease of ν in ν-SVM. Based on

the work in Section 2, in Section 3 we derive the formulation of ν as a decreasing

function of C.

2

Due to the density of Q, traditional optimization algorithms such as Newton,

Quasi Newton, etc., cannot be directly applied to solve (DC) or (Dν). Currently

major methods on solving large (DC) (for example, decomposition methods (Os-

una et al. 1997; Joachims 1998; Platt 1998; Saunders et al. 1998) and the method

of nearest points (Keerthi et al. 2000)) utilize the simple structure of constraints.

Because of the additional inequality, these methods cannot be directly used for

solving (Dν). Up to now, there are no implementation for large-scale ν-SVM. In

Section 4, we propose a decomposition method similar to the software SV M light

(Joachims 1998) for C-SVM.

Section 5 presents numerical results. Experiments indicate that several nu-

merical properties on solving (DC) and (Dν) are similar. A timing comparison

shows that the proposed method for ν-SVM is competitive with existing methods

for C-SVM. Finally in Section 6, we give some discussions and conclusions.

2 The Relation Between ν-SVM and C-SVM

In this section we construct a relationship between (Dν) and (DC) where the main

result is in Theorem 5. The relation between (DC) and (Dν) has been discussed

in (Schölkopf et al. 2000, Proposition 13) where they show that if (Pν) leads to

ρ > 0, then (PC) with C = 1/(ρl) leads to the same decision function. Here we

will have more complete investigation.

In this section we first try to simplify (Dν) by showing that the inequality

eT α ≥ ν can be treated as an equality:

Theorem 1 Let 0 ≤ ν ≤ 1. If (Dν) is feasible, there is at least one optimal

solution of (Dν) which satisfies eT α = ν. In addition, if the objective value of

(Dν) is not zero, all optimal solutions of (Dν) satisfy eT α = ν.

Proof. Since the feasible region of (Dν) is bounded, if it is feasible, (Dν) has at

least one optimal solution. Assume (Dν) has an optimal solution α such that

eT α > ν. Since eT α > ν ≥ 0, by defining

ᾱ ≡
ν

eT α
α,

3

ᾱ is feasible to (Dν) and eT ᾱ = ν. Since α is an optimal solution of (Dν), with

eT α > ν,

αTQα ≤ ᾱTQᾱ = (
ν

eT α
)2αTQα ≤ αTQα. (2.1)

Thus ᾱ is an optimal solution of (Dν) and αTQα = 0. This also implies that

if the objective value of (Dν) is not zero, all optimal solutions of (Dν) satisfy

eT α = ν. 2

Therefore, in general eT α ≥ ν in (Dν) can be written as eT α = ν. It has

been mentioned in (Schölkopf et al. 2000, Footnote 2) that practically one can

alternatively work with eT α ≥ ν as an equality constraint. From the primal side,

it was first shown in (Crisp and Burges 2000) that ρ ≥ 0 in (Pν) is redundant.

Without ρ ≥ 0, the dual becomes:

min
1

2
αTQα

yT α = 0, eT α = ν, (2.2)

0 ≤ αi ≤ 1/l, i = 1, . . . , l.

Therefore, the equality is naturally obtained. Note that this is an example that

two problems have the same optimal solution set but are associated with two duals

which have different optimal solution sets. It is interesting that here the primal

problem which has more restrictions is related to a dual which has a larger feasible

region. For our later analysis, we keep on using (Dν) but not (2.2). Interestingly

we will see that the exceptional situation where (Dν) has optimal solutions such

that eT α > ν happens only for those ν which we are not interested in.

Due to the additional inequality, the feasibility of (Dν) and (DC) is different.

For (DC), 0 is an trivial feasible point but (Dν) may be infeasible. An example

where (Pν) is unbounded below and (Dν) is infeasible is as follows: Given three

training data with y1 = y2 = 1, and y3 = −1. If ν = 0.9, there is no α in (Dν)

which satisfies 0 ≤ αi ≤ 1/3, [1, 1,−1]α = 0 and eT α ≥ 0.9. Hence (Dν) is

infeasible. When this happens, we can choose w = 0, ξ1 = ξ2 = 0, b = ρ, ξ3 = 2ρ

as a feasible solution of (Pν). Then the objective value is −0.9ρ+2ρ/3 which goes

to −∞ as ρ → ∞. Therefore, (Pν) is unbounded.

We then describe a lemma which was first proved in (Crisp and Burges 2000).

4

Lemma 1 (Dν) is feasible if and only if ν ≤ νmax, where

νmax ≡
2 min(#yi = 1, #yi = −1)

l
,

and (#yi = 1) and (#yi = −1) denote the number of elements in the first and

second classes, respectively.

Proof. Since 0 ≤ αi ≤ 1/l, i = 1, . . . , l, with yT α = 0, for any α feasible to (Dν),

we have eT α ≤ νmax. Therefore, if (Dν) is feasible, ν ≤ νmax. On the other hand,

if 0 < ν ≤ νmax, min(#yi = 1, #yi = −1) > 0 so we can define a feasible solution

of (Dν):

αj =

{

ν
2(#yi=1)

if yj = 1,
ν

2(#yi=−1)
if yj = −1.

This α satisfies 0 ≤ αi ≤ 1/l, i = 1, . . . , l and yT α = 0. If ν = 0, clearly α = 0 is

a feasible solution of (Dν). 2

Note that the size of νmax depends on how balanced the training set is. If the

numbers of positive and negative examples match, then νmax = 1.

We then note that if C > 0, by dividing each variable by Cl, (DC) is equivalent

to the following problem:

(D′
C) min

1

2
αTQα −

eT α

Cl
yT α = 0, 0 ≤ αi ≤ 1/l, i = 1, . . . , l.

It can be clearly seen that (D′
C) and (Dν) are very similar. We prove the

following lemma about (D′
C):

Lemma 2 If (D′
C) has different optimal solutions α1 and α2, then eT α1 = eT α2

and αT
1 Qα1 = αT

2 Qα2. Therefore, we can define two functions eT αC and

αT
CQαC on C, where αC is any optimal solution of (D′

C).

Proof. Since (D′
C) is a convex problem, if α1 6= α2 are both optimal solutions,

for all 0 ≤ λ ≤ 1,

1

2
(λα1 + (1 − λ)α2)

TQ(λα1 + (1 − λ)α2) − eT (λα1 + (1 − λ)α2)/(Cl)

= λ(
1

2
αT

1 Qα1 − eT α1/(Cl)) + (1 − λ)(
1

2
αT

2 Qα2 − eT α2/(Cl)).

5

This implies

αT
1 Qα2 =

1

2
αT

1 Qα1 +
1

2
αT

2 Qα2. (2.3)

Since Q is positive semidefinite, Q = LT L so (2.3) implies ‖Lα1 − Lα2‖ = 0.

Thus αT
2 Qα2 = αT

1 Qα1. Therefore, eT α1 = eT α2 and the proof is complete. 2

Next we prove a theorem on optimal solutions of (D′
C) and (Dν):

Theorem 2 If (D′
C) and (Dν) share one optimal solution α∗ with eT α∗ = ν,

their optimal solution sets are the same.

Proof. From Lemma 2, any other optimal solution α of (D′
C) also satisfies eT α =

ν so α is feasible to (Dν). Since αTQα = (α∗)TQα∗ from Lemma 2, all (D′
C)’s

optimal solutions are also optimal solutions of (Dν). On the other hand, if α is

any optimal solution of (Dν), it is feasible to (D′
C). With the constraint eT α ≥

ν = eT α∗ and αTQα = (α∗)TQα∗,

1

2
αTQα − eT α/(Cl) ≤

1

2
(α∗)TQ(α∗) − eT α∗/(Cl).

Therefore, all optimal solutions of (Dν) are also optimal to (D′
C). Hence their

optimal solution sets are the same. 2

If α is an optimal solution of (D′
C), it satisfies the following KKT condition:

Qα −
e

Cl
+ by = λ − ξ, (2.4)

λT α = 0, ξT (
e

l
− α) = 0,yT α = 0

λi ≥ 0, ξi ≥ 0, 0 ≤ αi ≤ 1/l, i = 1, . . . , l.

By setting ρ ≡ 1/(Cl) and ν ≡ eT α, α also satisfies the KKT condition of (Dν):

Qα − ρe + by = λ − ξ,

λT α = 0, ξT (
e

l
− α) = 0, (2.5)

yT α = 0, eT α ≥ ν, ρ(eT α − ν) = 0,

λi ≥ 0, ξi ≥ 0, ρ ≥ 0, 0 ≤ αi ≤ 1/l, i = 1, . . . , l.

From Theorem 2, this implies that for each (D′
C), its optimal solution set is the

same as that of (Dν), where ν = eT α. For each (D′
C), such a (Dν) is unique as

from Theorem 1, if ν1 6= ν2, (Dν1
) and (Dν2

) have different optimal solution sets.

Therefore, we have the following theorem:

6

Theorem 3 For each (D′
C), C > 0, its optimal solution set is the same as that of

one (and only one) (Dν), where ν = eT α and α is any optimal solution of (D′
C).

Similarly, we have

Theorem 4 If (Dν), ν > 0, has a nonempty feasible set and its objective value is

not zero, (Dν)’s optimal solution set is the same as that of at least one (D′
C).

Proof. If the objective value of (Dν) is not zero, from the KKT condition (2.5),

αTQα − ρeT α = −

l
∑

i=1

ξi/l.

Then αTQα > 0 and (2.5) imply

ρeT α = αTQα +
l

∑

i=1

ξi/l > 0, ρ > 0, and eT α = ν.

By choosing a C > 0 such that ρ = 1/(Cl), α is a KKT point of (D′
C). Hence

from Theorem 2, the optimal solution set of this (D′
C) is the same as that of (Dν).

2

Next we prove two useful lemmas. The first one deals with the special situation

when the objective value of (Dν) is zero.

Lemma 3 If the objective value of (Dν), ν ≥ 0, is zero and there is a (D′
C), C > 0

such that any its optimal solution αC satisfies eT αC = ν, then ν = νmax and all

(D′
C), C > 0, have the same optimal solution set as that of (Dν).

Proof. For this (Dν), we can set ρ = 1/(Cl), so αC is a KKT point of (Dν).

Therefore, since the objective value of (Dν) is zero, αT
CQαC = 0. Furthermore,

we have QαC = 0. In this case, (2.4) of (D′
C)’s KKT condition becomes

−
e

Cl
+

[

beI

−beJ

]

= λ − ξ, (2.6)

where λi, ξi ≥ 0, and I and J are indices of two different classes. If beI ≥ 0, there

are three situations of (2.6):

[

> 0
< 0

]

,

[

< 0
< 0

]

,

[

= 0
< 0

]

.

7

The first case implies (αC)I = 0 and (αC)J = (eJ)/l. Hence if J is nonempty,

yT αC 6= 0 causes a contradiction. Hence all data are in the same class. Therefore,

(Dν) and all (D′
C), C > 0, have the unique optimal solution zero due to the

constraints yT α = 0 and α ≥ 0. Furthermore, eT α = ν = νmax = 0.

The second case happens only when αC = e/l. Then yT α = 0 and yi = 1 or −1

imply that (#yi =1) = (#yi =−1) and eT αC = 1 = ν = νmax. We then show that

e/l is also an optimal solution of any other (D′
C). Since 0 ≤ αi ≤ 1/l, i = 1, . . . , l,

for any feasible α of (D̄′
C), the objective function satisfies

1

2
αTQα −

eT α

Cl
≥ −

eT α

Cl
≥ −

1

Cl
. (2.7)

Now (#yi = 1) = (#yi = −1) so e/l is feasible. When α = e/l, the inequality

of (2.7) becomes an equality. Thus e/l is actually an optimal solution of all

(D′
C), C > 0. Therefore, (Dν) and all (DC), C > 0 have the same unique optimal

solution e/l.

For the third case, b = 1/(Cl), (αC)J = eJ/l, ν = eT αC = 2eT
J (αC)J = νmax,

and J contains elements which have fewer elements. Because there exists such a C

and b, for any other C, b can be adjusted accordingly so that the KKT condition is

still satisfied. Therefore, from Theorem 3, all (D′
C), C > 0 have the same optimal

solution set as that of (Dν). The situation when beI ≤ 0 is similar. 2

Lemma 4 Assume αC is any optimal solution of (D′
C), then eT αC is a contin-

uous decreasing function of C on (0,∞).

Proof. If C1 < C2, and α1 and α2 are optimal solutions of (D′
C1

) and (D′
C2

),

respectively, we have

1

2
αT

1 Qα1 −
eT α1

C1l
≤

1

2
αT

2 Qα2 −
eT α2

C1l
(2.8)

and
1

2
αT

2 Qα2 −
eT α2

C2l
≤

1

2
αT

1 Qα1 −
eT α1

C2l
. (2.9)

Hence
eT α1

C2l
−

eT α2

C2l
≤

1

2
αT

1 Qα1 −
1

2
αT

2 Qα2 ≤
eT α1

C1l
−

eT α2

C1l
. (2.10)

8

Since C2 > C1 > 0, (2.10) implies eT α1 − eT α2 ≥ 0. Therefore, eT αC is a

decreasing function on (0,∞). From this result, we know that for any C∗ ∈ (0,∞),

limC→(C∗)+ eT αC and limC→(C∗)− eT αC exist, and

lim
C→(C∗)+

eT αC ≤ eT αC∗ ≤ lim
C→(C∗)−

eT αC .

To prove the continuity of eT αC , it is sufficient to prove limC→C∗ eT αC = eT αC∗ ,

for all C∗ ∈ (0,∞).

If limC→(C∗)+ eT αC < eT αC∗ , there is a ν̄ such that

0 ≤ lim
C→(C∗)+

eT αC < ν̄ < eT αC∗ . (2.11)

Hence ν̄ > 0. If (Dν̄)’s objective value is not zero, from Theorem 4 and the fact

that eT αC is a decreasing function, there exists a C > C∗ such that αC satisfies

eT αC = ν̄. This contradicts (2.11) where limC→(C∗)+ eT αC < ν̄.

Therefore, the objective value of (Dν̄) is zero. Since for all (Dν), ν ≤ ν̄, their

feasible regions include that of (Dν̄), their objective values are also zero. From

Theorem 3, the fact that eT αC is a decreasing function, and limC→(C∗)+ eT αC < ν̄,

each (D′
C), C > C∗, has the same optimal solution set as that of one (Dν), where

eT αC = ν < ν̄. Hence by Lemma 3, eT αC = νmax, for all C. This contradicts

(2.11).

Therefore, limC→(C∗)+ eT αC = eT αC∗ . Similarly, limC→(C∗)− eT αC = eT αC∗ .

Thus

lim
C→C∗

eT αC = eT αC∗ .

2

Using the above lemmas, we are now ready to prove the main theorem:

Theorem 5 We can define

lim
C→∞

eT αC = ν∗ ≥ 0 and lim
C→0

eT αC = ν∗ ≤ 1,

where αC is any optimal solution of (D′
C). Then ν∗ = νmax. For any ν > ν∗, (Dν)

is infeasible. For any ν ∈ (ν∗, ν
∗], the optimal solution set of (Dν) is the same

as that of either one (D′
C), C > 0, or some (D′

C), where C is any number in an

interval. In addition, the optimal objective value of (Dν) is strictly positive. For

any 0 ≤ ν ≤ ν∗, (Dν) is feasible with zero optimal objective value.

9

Proof. First from Lemma 4 and the fact that 0 ≤ eT α ≤ 1, we know ν∗ and ν∗

can be defined without problems. We then prove ν∗ = νmax by showing that after

C is small enough, all (D′
C)’s optimal solutions αC satisfy eT αC = νmax.

Assume I includes elements of the class which has fewer elements and J in-

cludes elements of the other class. If αC is an optimal solution of (D′
C), it satisfies

the following KKT condition:

[

QII QIJ

QJI QJJ

] [

(αC)I

(αC)J

]

−
e

Cl
+ bC

[

yI

yJ

]

=

[

(λC)I − (ξC)I

(λC)J − (ξC)J

]

,

where λC ≥ 0, ξC ≥ 0,αT
CλC = 0, and ξT

C(e/l − αC) = 0. When C is small

enough, bCyJ > 0 must hold. Otherwise, since QJI(αC)I +QJJ(αC)J is bounded,

QJI(αC)I +QJJ(αC)J −eJ/(Cl)+ bCyJ < 0 implies (αC)J = eJ/l which violates

the constraint yT α = 0 if (#yi = 1) 6= (#yi = −1). Therefore, bCyJ > 0 so

bCyI < 0. This implies that (αC)I = eI/l when C is sufficiently small. Hence

eT αC = νmax = ν∗.

If (#yi =1) = (#yi =−1), we can let αC = e/l and bC = 0. When C is small

enough, this will be a KKT point. Therefore, eT αC = νmax = ν∗ = 1.

From Lemma 1 we immediately know that (Dν) is infeasible if ν > ν∗. From

Lemma 4 that eT αC is a continuous function, for any ν ∈ (ν∗, ν
∗], there is a

(D′
C) such that eT αC = ν. Then from Theorem 3, (D′

C) and (Dν) have the same

optimal solution set.

If (Dν) has the same optimal solution set as that of (D′
C1

) and (D′
C2

) where

C1 < C2, since eT αC is a decreasing function, for any C ∈ [C1, C2], its optimal

solutions satisfy eT α = ν. From Theorem 3, its optimal solution set is the same

as that of (Dν). Thus such Cs construct an interval.

If ν < ν∗, (Dν) must be feasible from Lemma 1. It cannot have nonzero

objective value due to Theorem 4 and the definition of ν∗. For (Dν∗), if ν∗ = 0,

the objective value of (Dν∗) is zero as α = 0 is a feasible solution. If ν∗ > 0, since

feasible regions of (Dν) are bounded by 0 ≤ αi ≤ 1/l, i = 1, . . . , l, with Theorem 1,

there is a sequence {ανi
}, ν1 ≤ ν2 ≤ · · · < ν∗ such that ανi

is an optimal solution

of (Dνi
), eT ανi

= νi, and α̂ ≡ limνi→ν∗ ανi
exists. Since eT ανi

= νi, eT α̂ =

limνi→ν∗ eT ανi
= ν∗. We also have 0 ≤ α̂ ≤ 1/l and yT α̂ = limνi→ν∗ yT ανi

= 0 so

α̂ is feasible to (Dν∗). However, α̂TQα̂ = limνi→ν∗ αT
νi
Qανi

= 0 as αT
νi
Qανi

= 0

10

for all νi. Therefore, the objective value of (Dν∗) is always zero.

Next we prove that the objective value of (Dν) is zero if and only if ν ≤ ν∗.

From the above discussion, if ν ≤ ν∗, the objective value of (Dν) is zero. If the

objective value of (Dν) is zero but ν > ν∗, Theorem 3 implies ν = νmax = ν∗ = ν∗

which causes a contradiction. Hence the proof is complete. 2

Note that when the objective value of (Dν) is zero, the optimal solution w

of the primal problem (Pν) is zero. In (Crisp and Burges 2000, Section 4), they

considered such a (Pν) as a “trivial” problem. Next we present a corollary:

Corollary 1 If training data are separable, ν∗ = 0. If training data are non-

separable, ν∗ ≥ 1/l > 0. Furthermore, if Q is positive definite, training data are

separable and ν∗ = 0.

Proof. From (Lin 2001a, Theorem 3.3), if data are separable, there is a C∗ such

that for all C ≥ C∗, an optimal solution αC∗ of (DC∗) is also optimal to (DC).

Therefore, for (D′
C), an optimal solution becomes αC∗/(Cl) and eT αC∗/(Cl) → 0

as C → ∞. Thus ν∗ = 0. On the other hand, if data are non-separable, no matter

how large C is, there are components of optimal solutions at the upper bound.

Therefore, eT αC ≥ 1/l > 0 for all C. Hence ν∗ ≥ 1/l.

If Q is positive definite, the unconstrained problem

min
1

2
αTQα − eT α (2.12)

has an unique solution at α = Q−1e. If we add additional constraints to (2.12),

min
1

2
αTQα − eT α

yT α = 0, αi ≥ 0, i = 1, . . . , l, (2.13)

is a problem with a smaller feasible region. Thus the objective value of (2.13)

is bounded. From Corollary 27.3.1 of (Rockafellar 1970), any bounded finite di-

mensional space quadratic convex function over a polyhedral attains at least an

optimal solution. Therefore, (2.13) is solvable. From (Lin 2001a, Theorem 2.2),

this implies the following primal problem is solvable:

min
1

2
wTw

yi(w
T φ(xi) + b) ≥ 1, i = 1, . . . , l.

11

Hence training data are separable. 2

In many situations Q is positive definite. For example, from (Micchelli 1986),

if the RBF kernel is used and xi 6= xj, Q is positive definite.

We illustrate the above results by some examples. Given three non-separable

training points x1 = 0,x2 = 1, and x3 = 2 with y = [1,−1, 1]T , we will show

that this is an example of Lemma 3. Note that this is a non-separable problem.

For all C > 0, the optimal solution of (D′
C) is α = [1/6, 1/3, 1/6]T . Therefore,

in this case, ν∗ = ν∗ = 2/3. For (Dν), ν ≤ 2/3, an optimal solution is α =

(3ν/2)[1/6, 1/3, 1/6]T with the objective value

(3ν/2)2[1/6, 1/3, 1/6]





0 0 0
0 1 −2
0 −2 4









1/6
1/3
1/6



 = 0.

Another example shows that we may have the same value of eT αC for all C

in an interval, where αC is any optimal solution of (D′
C). Given x1 = [−1

0] ,x2 =

[1
1] ,x3 = [0

−1], and x4 = [0
0] with y = [1,−1, 1,−1]T , part of the KKT condition

of (D′
C) is









1 1 0 0
1 2 1 0
0 1 1 0
0 0 0 0

















α1

α2

α3

α4









−
1

4C









1
1
1
1









+ b









1
−1
1
−1









= λ − ξ.

Then one optimal solution of (D′
C) is:

αC = [1
4
, 1

4
, 1

4
, 1

4
]T b ∈ [1 − 1

4C
, 1

4C
− 1

2
] if 0 < C ≤ 1

3
,

= 1
36

[3 + 2
C
,−3 + 4

C
, 3 + 2

C
, 9]T = 1

12C
if 1

3
≤ C ≤ 4

3
,

= [1
8
, 0, 1

8
, 1

4
]T = 1

4C
− 1

8
if 4

3
≤ C ≤ 4,

= [1
2C

, 0, 1
2C

, 1
C
]T = −1

4C
if C ≥ 4.

This is a separable problem. We have ν∗ = 1, ν∗ = 0, and

eT αC =















1 if 0 < C ≤ 1
3
,

1
3

+ 2
9C

if 1
3
≤ C ≤ 4

3
,

1
2

if 4
3
≤ C ≤ 4,

1
2C

if C ≥ 4.

(2.14)

In summary this section shows

1. The increase of C in C-SVM is like the decrease of ν in ν-SVM.

12

2. Solving (Dν) and (D′
C) is just like solving two different problems with the

same optimal solution set. We may expect that many numerical aspects on

solving them are similar. However, they are still two different problems so

we cannot obtain C without solving (Dν). Similarly, without solving (DC),

we cannot find ν either.

3 The Relation Between ν and C

A formula like (2.14) motivates us to conjecture that all ν = eT αC have a similar

form. That is, in each interval of C, eT αC = A + B/C, where A and B are

constants independent of C. The formulation of eT αC will be the main topic of

this section.

We note that in (2.14), in each interval of C, αC are at the same face. Here

we say two vectors at the same face if they have the same components which are

free, at the lower bound, and at the upper bound. The following lemma deals

with the situation when αC are at the same face:

Lemma 5 If C < C and there are αC and αC at the same face, then for each

C ∈ [C,C], there is at least one optimal solution αC of (D′
C) which is at the same

face as αC and αC. Furthermore,

eT αC = ∆1 +
∆2

C
,C ≤ C ≤ C,

where ∆1 and ∆2 are constants independent of C. In addition, ∆2 ≥ 0.

Proof. If {1, . . . , l} are separated to two sets A and F , where A corresponds to

bounded variables and F corresponds to free variables of αC (or αC as they are

at the same face), the KKT condition shows
[

QFF QFA

QAF QAA

] [

αF

αA

]

−
e

Cl
+ b

[

yF

yA

]

=

[

0
λA − ξA

]

, (3.1)

yT
F αF + yT

AαA = 0, (3.2)

λi ≥ 0, ξi ≥ 0, i ∈ A. (3.3)

(3.1) and (3.2) can be rewritten as




QFF QFA yF

QAF QAA yA

yT
F yT

A 0









αF

αA

b



 −





eF /(Cl)
eA/(Cl)

0



 =





0
λA − ξA

0



 .

13

If QFF is positive definite,

αF = Q−1
FF (eF /(Cl) − QFAαA − byF). (3.4)

Thus,

yT
F αF + yT

AαA = yT
FQ−1

FF (eF /(Cl) − QFAαA − byF) + yT
AαA = 0

implies

b =
yT

AαA + yT
FQ−1

FF (eF /(Cl) − QFAαA)

yT
FQ−1

FFyF

.

Therefore,

αF = Q−1
FF (

eF

Cl
− QFAαA −

yT
AαA + yT

FQ−1
FF (eF /(Cl) − QFAαA)

yT
FQ−1

FFyF

yF). (3.5)

We note that for C ≤ C ≤ C, if (αC)F is defined by (3.5) and (αC)A ≡ (αC)A

(or (αC)A), then (αC)i ≥ 0, i = 1, . . . , l. In addition, αC satisfies the first part of

(3.1) (i.e. the part with right-hand side zero). The sign of the second part is not

changed and (3.2) is also valid. Thus we have constructed an optimal solution αC

of (D′
C) which is at the same face as αC and αC . Then following from (3.5) and

αA is a constant vector for all C ≤ C ≤ C,

eT αC

= eT
FQ−1

FF (eF /(Cl) − QFAαA − byF) + eT
AαA

= eT
FQ−1

FF (eF /(Cl) − QFAαA −
yT

AαA + yT
FQ−1

FF (eF /(Cl) − QFAαA)

yT
FQ−1

FFyF

yF)+

eT
AαA

= (
eT

FQ−1
FFeF

l
−

eT
FQ−1

FF (yT
FQ−1

FFeF /l)yF

yT
FQ−1

FFyF

)/C + ∆1

= (
eT

FQ−1
FFeF

l
−

(eT
FQ−1

FFyF)2

(yT
FQ−1

FFyF)l
)/C + ∆1

= ∆2/C + ∆1.

If QFF is not invertible, it is positive semi-definite so we can have QFF =

Q̂DQ̂
T
, where Q̂

−1
= Q̂

T
is an orthonormal matrix. Without loss of generality

we assume D =
[

¯D 0
0 0

]

. Then (3.4) can be modified to

DQ̂
T
αF = Q̂

−1
(eF /(Cl) − QFAαA − byF).

14

One solution of the above system is

αF = Q̂
−T

[

D̄
−1

0
0 0

]

Q̂
−1

(eF /(Cl) − QFAαA − byF).

Thus a representation similar to (3.4) is obtained and all arguments follow.

Note that due to the positive semi-definiteness of QFF , αF may have multiple

solutions. From Lemma 2, eT αC is a well-defined function of C. Hence the

representation ∆1 + ∆2/C is valid for all solutions. From Lemma 4, eT αC is a

decreasing function of C so ∆2 ≥ 0. 2

The main result on the representation of eT αC is in the following theorem:

Theorem 6 There are 0 < C1 < · · · < Cs and Ai, Bi, i = 1, . . . , s such that

eT αC =











ν∗ C ≤ C1,

Ai + Bi

C
Ci ≤ C ≤ Ci+1, i = 1, . . . , s − 1,

As + Bs

C
Cs ≤ C,

where αC is an optimal solution of (DC′). We also have

Ai +
Bi

Ci+1

= Ai+1 +
Bi+1

Ci+1

, i = 1, . . . , s − 1. (3.6)

Proof. From Theorem 5, we know eT αC = ν∗ when C is sufficiently small.

From Lemma 4, if we gradually increase C, we will reach a C1 such that if

C > C1, e
T αC < ν∗. If for all C ≥ C1, αC are at the same face, from Lemma 5,

we have eT αC = A1 + B1/C, ∀C ≥ C1. Otherwise, from this C1, we can increase

C to a C2 such that for all intervals (C2, C2 + ǫ), ǫ > 0, there is no αC at the same

face as αC1
and αC2

. Then from Lemma 5, for C1 ≤ C ≤ C2, we can have A1 and

B1 such that

eT αC = A1 +
B1

C
.

We can continue this procedure. Since the number of possible faces is finite (≤ 3l),

we have only finite Ci’s. Otherwise, we will have Ci and Cj, j ≥ i + 2, such that

there exist αCi
and αCj

at the same face. Then Lemma 5 implies that for all

Ci ≤ C ≤ Cj, all αC are at the same face as αCi
and αCj

. This contradicts the

definition of Ci+1.

From Lemma 4, the continuity of eT αC immediately implies (3.6). 2

15

Finally we provide Figure 1 to demonstrate the relation between ν and C. It

clearly indicates that ν is a decreasing function of C. Information about these

two test problems australian and heart are in Section 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3 -2 -1 0 1 2 3 4 5

ν

log10 C

australian

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3 -2 -1 0 1 2 3 4 5

ν

log10 C

heart

(b)

Figure 1: The relation between ν and C

4 A Decomposition Method for ν-SVM

Based on existing decomposition methods for C-SVM, in this section we propose

a decomposition method for ν-SVM.

For solving (DC), existing decomposition methods separate the index {1, . . . , l}

of the training set to two sets B and N , where B is the working set if α is the

16

current iterate of the algorithm. If we denote αB and αN as vectors containing

corresponding elements, the objective value of (DC) is equal to 1
2
αT

BQBBαB −

(eB + QBNαN)T αB + 1
2
αT

NQNNαN − eT
NαN . At each iteration, αN is fixed and

the following problem with the variable αB is solved:

min
1

2
αT

BQBBαB − (eB − QBNαN)T αB

yT
BαB = −yT

NαN , (4.1)

0 ≤ (αB)i ≤ C, i = 1, . . . , q,

where
[

Q
BB

Q
BN

Q
NB

Q
NN

]

is a permutation of the matrix Q and q is the size of B. The

strict decrease of the objective function holds and the theoretical convergence was

studied in (Chang et al. 2000; Keerthi and Gilbert 2002; Lin 2001b).

An important process in the decomposition methods is the selection of the

working set B. In the software SV M light (Joachims 1998), there is a systematic

way to find the working set B. In each iteration the following problem is solved:

min ∇f(αk)
Td

yTd = 0, −1 ≤ di ≤ 1, (4.2)

di ≥ 0, if (αk)i = 0, di ≤ 0, if (αk)i = C, (4.3)

|{di | di 6= 0}| = q, (4.4)

where we represent f(α) ≡ 1
2
αTQα− eT α, αk is the iterate at the kth iteration,

∇f(αk) is the gradient of f(α) at αk. Note that |{di | di 6= 0}| means the

number of components of d which are not zero. The constraint (4.4) implies that

a descent direction involving only q variables is obtained. Then components of αk

with non-zero di are included in the working set B which is used to construct the

sub-problem (4.1). Note that d is only used for identifying B but not as a search

direction.

If q is an even number, (Joachims 1998) showed a simple strategy on solving

(4.2)-(4.4). First he sorts yi∇f(αk)i, i = 1, . . . , l in a decreasing order. Then

solution is by successively picking the q/2 elements from the top of the sorted list

which 0 < (αk)i < C or di = −yi obeys (4.3). Similarly we pick the q/2 elements

from the bottom of the list for which 0 < (αk)i < C or di = yi obeys (4.3). Other

17

elements of d are assigned to be zero. Thus these q nonzero elements compose the

working set. A complete analysis of his procedure is in (Lin 2001b, Section 2).

To modify the above strategy for (Dν), we consider the following problem in

each iteration:

min ∇f(αk)
Td

yTd = 0, eTd = 0, −1 ≤ di ≤ 1,

di ≥ 0, if (αk)i = 0, di ≤ 0, if (αk)i = 1/l, (4.5)

|{di | di 6= 0}| ≤ q,

where q is an even integer. Now f(α) ≡ 1
2
αTQα. Here we use “≤” instead of

“=” because in theory q nonzero elements may not be always available. This was

first pointed out in (Chang et al. 2000). Note that the sub-problem (4.1) becomes

as follows if decomposition methods are used for solving (Dν):

min
1

2
αT

BQBBαB + QBNαT
NαB

yT
BαB = −yT

NαN , (4.6)

eT
BαB = ν − eT

NαN ,

0 ≤ (αB)i ≤ 1/l, i = 1, . . . , q.

Problem (4.5) is more complicated then (4.2) as there is an additional constraint

eTd = 0. The situation of q = 2 has been discussed in (Keerthi and Gilbert 2002).

We will describe a recursive procedure for solving (4.5).

We consider the following problem:

min
∑

t∈S

∇f(αk)tdt

∑

t∈S

ytdt = 0,
∑

t∈S

dt = 0, −1 ≤ dt ≤ 1,

dt ≥ 0, if (αk)t = 0, dt ≤ 0, if (αk)t = 1/l, (4.7)

|{dt | dt 6= 0, t ∈ S}| ≤ q,

which is the same as (4.5) if S = {1, . . . , l}. We denote the variables {dt|t ∈ S}

as d and the objective function
∑

t∈S ∇f(αk)tdt as obj(d).

18

Algorithm 1 If q = 0, the algorithm stops and outputs d = 0. Otherwise choose

a pair of indices i and j from either

i = argmint{∇f(αk)t|yt = 1, (αk)t < 1/l, t ∈ S},
j = argmaxt{∇f(αk)t|yt = 1, (αk)t > 0, t ∈ S},

(4.8)

or
i = argmint{∇f(αk)t|yt = −1, (αk)t < 1/l, t ∈ S},
j = argmaxt{∇f(αk)t|yt = −1, (αk)t > 0, t ∈ S},

(4.9)

depending on which one gives a smaller ∇f(αk)i −∇f(αk)j. If there are no such

i and j, or ∇f(αk)i − ∇f(αk)j ≥ 0, the algorithm stops and outputs a solution

d = 0. Otherwise we assign di = 1, dj = −1 and determine values of other

variables by recursively solving a smaller problem of (4.7):

min
∑

t∈S′

∇f(αk)tdt

∑

t∈S′

ytdt = 0,
∑

t∈S′

dt = 0, −1 ≤ dt ≤ 1,

dt ≥ 0, if (αk)t = 0, dt ≤ 0, if (αk)t = 1/l, (4.10)

|{dt | dt 6= 0, t ∈ S ′}| ≤ q′,

where S ′ = S\{i, j} and q′ = q − 2.

Algorithm 1 assigns nonzero values to at most q/2 pairs. The indices of nonzero

elements in the solution d are used as B in the sub-problem (4.6). Note that

Algorithm 1 can be implemented as an iterative procedure by selecting q/2 pairs

sequentially. Then the computational complexity is similar to Joachim’s strategy.

Here for the convenience of writing proofs, we describe it in a recursive way. Next

we prove that Algorithm 1 solves (4.5).

Lemma 6 If there is an optimal solution d of (4.7), there exists an optimal in-

teger solution d∗ with d∗
t ∈ {−1, 0, 1}, for all t ∈ S.

Proof. Because
∑

t∈S dt = 0, if there are some non-integer elements in d, there

must be at least two. Furthermore, from the linear constraints

∑

t∈S

ytdt = 0 and
∑

t∈S

dt = 0,

19

we have
∑

t∈S,yt=1

ytdt = 0 and
∑

t∈S,yt=−1

ytdt = 0. (4.11)

Thus if there are only two non-integer elements di and dj, they must satisfy yi = yj.

Therefore, if d contains some non-integer elements , there must be two of them

di and dj which satisfy yi = yj. If di + dj = c,

∇f(αk)idi + ∇f(αk)jdj = (∇f(αk)i −∇f(αk)j)di + c∇f(αk)j. (4.12)

Since di, dj /∈ {−1, 0, 1} and −1 < di, dj < 1, if ∇f(αk)i 6= ∇f(αk)j, we can

pick a sufficiently small ǫ > 0 and shift di and dj by −ǫ(∇f(αk)i −∇f(αk)j) and

ǫ(∇f(αk)i −∇f(αk)j), respectively, without violating their feasibility. Then the

decrease of the objective value contradicts the assumption that d is an optimal

solution. Hence we know ∇f(αk)i = ∇f(αk)j.

Then we can eliminate at least one of the non-integers by shifting di and dj by

argminv{|v| : v ∈ {di−⌊di⌋, ⌈di⌉−di, dj −⌊dj⌋, ⌈dj⌉−dj}}. The objective value is

the same because of (4.12) and ∇f(αk)i = ∇f(αk)j. We can repeat this process

until an integer optimal solution d∗ is obtained. 2

Lemma 7 If there is an optimal integer solution d of (4.7) which is not all zero

and (i, j) can be chosen from (4.8) or (4.9), then there is an optimal integer

solution d∗ with d∗
i = 1 and d∗

j = −1.

Proof. As (i, j) can be chosen from (4.8) or (4.9), we know (αk)i < 1/l and

(αk)j > 0. We will show that if di 6= 1 and dj 6= −1, we can construct an optimal

integer solution d∗ from d such that d∗
i = 1 and d∗

j = −1.

We first note that for any nonzero integer element di′ , from (4.11), there is a

nonzero integer element dj′ such that

dj′ = −di′ and yj′ = yi′ .

We define p(i′) ≡ j′.

If di = −1, we can find i′ = p(i) such that di′ = 1 and yi = yi′ . Since

di′ = 1, (αk)i′ < 1/l. By the definition of i and the fact that (αk)i < 1/l,

∇f(αk)i ≤ ∇f(αk)i′ . Let d∗
i = 1, d∗

i′ = −1, and d∗
t = dt otherwise. Then

20

obj(d∗) ≤ obj(d) so d∗ is also an optimal solution. Similarly, if dj = 1, we can

have an optimal solution d∗ with d∗
j = −1.

Therefore, if the above transformation has been done, we have only three cases

left: (di, dj) = (0,−1), (1, 0), and (0, 0). For the first case, we can find an i′ = p(j)

such that di′ = 1 and yi′ = yi = yj. From the definition of i and the fact that

(αk)i′ < 1/l and (αk)i < 1/l, ∇f(αk)i ≤ ∇f(αk)i′ . We can define d∗
i = 1, d∗

i′ = 0,

and d∗
t = dt otherwise. Then obj(d∗) ≤ obj(d) so d∗ is also an optimal solution.

If (di, dj) = (1, 0), the situation is similar.

Finally we check the case where di and dj are both zero. Since d is a nonzero

integer vector, we can consider a di′ = 1 and j′ = p(i′). From (4.8) and (4.9),

∇f(αk)i −∇f(αk)j ≤ ∇f(αk)i′ −∇f(αk)j′ . Let d∗
i = 1, d∗

j = −1, d∗
i′ = d∗

j′ = 0,

and d∗
t = dt otherwise. Then d∗ is feasible to (4.7) and obj(d∗) ≤ obj(d). Thus

d∗ is an optimal solution. 2

Lemma 8 If there is an integer optimal solution of (4.7) and Algorithm 1 outputs

a zero vector d, then d is already an optimal solution of (4.7).

Proof. If the result is wrong, there is an integer optimal solution d∗ of (4.7) such

that

obj(d∗) =
∑

t∈S

∇f(αk)td
∗
t < 0.

Without loss of generality, we can consider only the case of

∑

t∈S,yt=1

∇f(αk)td
∗
t < 0. (4.13)

From (4.11) and d∗
t ∈ {−1, 0, 1}, the number of indices satisfying d∗

t = 1, yt = 1 is

the same as those of d∗
t = −1, yt = 1. Therefore, we must have

min
d∗t =1,yt=1

∇f(αk)t − max
d∗t =−1,yt=1

∇f(αk)t < 0. (4.14)

Otherwise,

∑

d∗t =1,yt=1

∇f(αk)t −
∑

d∗t =−1,yt=1

∇f(αk)t =
∑

yt=1

∇f(αk)td
∗
t ≥ 0

contradicts (4.13).

21

Then (4.14) implies that in Algorithm 1, i and j can be chosen with di = 1

and dj = −1. This contradicts the assumption that Algorithm 1 outputs a zero

vector. 2

Theorem 7 Algorithm 1 solves (4.7).

Proof. First we note that the set of d which satisfies |{dt | dt 6= 0, t ∈ S}| ≤ q

can be considered as the union of finitely many closed sets of the form {d |

di1 = 0, . . . , dil−q
= 0}. Therefore, the feasible region of (4.7) is closed. With the

bounded constraints −1 ≤ di ≤ 1, i = 1, . . . , l, the feasible region is compact so

there is at least one optimal solution.

As q is an even integer, we assume q = 2k. We then finish the proof by

induction on k:

k = 0: Algorithm 1 correctly finds the solution zero.

k > 0: Suppose Algorithm 1 outputs a vector d with di = 1 and dj = −1. In

this situation the optimal solution of (4.7) cannot be zero. Otherwise, by assigning

a vector d̄ with d̄i = 1, d̄j = −1, and d̄t = 0 for all t ∈ S\{i, j}, obj(d̄) < 0 gives

a smaller objective value than that of the zero vector. Thus the assumptions of

Lemma 7 hold. Then by the fact that (4.7) is solvable and Lemmas 6 and 7, we

know that there is an optimal solution d∗ of (4.5) with d∗
i = 1 and d∗

j = −1.

By induction {dt, t ∈ S ′} is an optimal solution of (4.10). Since {d∗
t , t ∈ S ′} is

also feasible to (4.10), we have

obj(d) = ∇f(αk)idi + ∇f(αk)jdj +
∑

t∈S′

∇f(αk)tdt

≤ ∇f(αk)id
∗
i + ∇f(αk)jd

∗
j +

∑

t∈S′

∇f(αk)td
∗
t = obj(d∗). (4.15)

Thus d, the output of Algorithm 1, is an optimal solution.

Suppose Algorithm 1 does not output a vector d with di = 1 and dj = −1.

Then d is actually a zero vector. Immediately from Lemma 8, d = 0 is an optimal

solution. 2

Since (4.5) is a special case of (4.7), Theorem 7 implies that Algorithm 1 can

solve it.

22

After solving (Dν), we want to calculate ρ and b in (Pν). The KKT condition

(2.5) shows

(Qα)i − ρ + byi = 0 if 0 < αi < 1/l,

≥ 0 if αi = 0,

≤ 0 if αi = 1/l.

Define

r1 ≡ ρ − b, r2 ≡ ρ + b.

If yi = 1 the KKT condition becomes

(Qα)i − r1 = 0 if 0 < αi < 1/l, (4.16)

≥ 0 if αi = 0,

≤ 0 if αi = 1/l.

Therefore, if there are αi which satisfy (4.16), r1 = (Qα)i. Practically to avoid

numerical errors, we can average them:

r1 =

∑

0<αi<1/l,yi=1(Qα)i
∑

0<αi<1/l,yi=1 1
.

On the other hand, if there is no such αi, as r1 must satisfy

max
αi=1/l,yi=1

(Qα)i ≤ r1 ≤ min
αi=0,yi=1

(Qα)i,

we take r1 the midpoint of the range.

For yi = −1, we can calculate r2 in a similar way.

After r1 and r2 are obtained,

ρ =
r1 + r2

2
and − b =

r1 − r2

2
.

Note that the KKT condition can be written as

max
αi>0,yi=1

(Qα)i ≤ min
αi<1/l,yi=1

(Qα)i and max
αi>0,yi=−1

(Qα)i ≤ min
αi<1/l,yi=−1

(Qα)i.

Hence practically we can use the following stopping criterion: The decomposition

method stops if the iterate α satisfies the following condition:

−(Qα)i + (Qα)j < ǫ, (4.17)

where ǫ > 0 is a chosen stopping tolerance, and i and j are the first pair obtained

from (4.8) or (4.9).

In Section 5, we will conduct some experiments on this new method.

23

5 Numerical Experiments

It has been known that when C is large, there may have more numerical diffi-

culties on using decomposition methods for solving (DC). (see, for example, the

discussion in (Hsu and Lin 2002)). Now there is no C in (Dν) so intuitively we

may think that this difficulty no longer exists. In this section, we test the pro-

posed decomposition method on examples with different ν and examine required

time and iterations.

Table 5.1: Solving C-SVM and ν-SVM: C = 1 (time in seconds)

Problem l ν C Iter. ν Iter. C Time ν Time #SV #FSV ⌈νl⌉
australian 690 0.309619 1040 946 0.34 0.42 244 55 214
diabetes 768 0.574087 395 297 0.4 0.47 447 13 441
german 1000 0.556643 953 909 1.23 1.61 600 88 557
heart 270 0.43103 219 175 0.07 0.08 132 25 117
vehicle 846 0.501182 791 904 0.69 0.91 439 26 424
satimage 4435 0.083544 355 534 8.16 14.05 377 12 371
letter 15000 0.036588 764 897 22.59 35.13 563 26 549
shuttle 43500 0.141534 3267 6982 422.04 1058.0 6159 5 6157
a4a 4781 0.41394 1460 1464 21.14 28.86 2002 53 1980
w7a 24692 0.059718 1896 1721 74.51 102.99 1556 140 1475

Table 5.2: Solving C-SVM and ν-SVM: C = 1000 (time in seconds)

Problem l ν C Iter. ν Iter. C Time ν Time #SV #FSV ⌈νl⌉
australian 690 0.147234 151438 117758 10.98 8.65 222 167 102
diabetes 768 0.421373 216845 137941 18.96 11.79 376 102 324
german 1000 0.069128 79542 81824 11.24 11.37 509 494 70
heart 270 0.033028 11933 11075 0.38 0.35 100 99 9
vehicle 846 0.262569 220973 190324 20.07 17.01 284 111 223
satimage 4435 0.015416 44372 45323 28.3 28.31 136 106 69
letter 15000 0.005789 69052 70604 141.4 134.14 152 100 87
shuttle 43500 0.033965 143273 154558 1215.8 1468.56 1487 17 1478
a4a 4781 0.263506 359618 350818 257.51 244.84 1760 837 1260
w7a 24692 0.023691 187578 187170 1262.15 1112.07 1112 696 585

Since the constraints 0 ≤ αi ≤ 1/l, i = 1, . . . , l, imply αi are small, the ob-

jective value of (Dν) may be very close to zero. To avoid possible numerical

24

inaccuracy, here we consider the following scaled form of (Dν):

min
1

2
αTQα

yTd = 0, eT α = νl, (5.1)

0 ≤ αi ≤ 1, i = 1, . . . , l.

The working set selection follows the discussion in Section 4 and here we

implement a special case with q = 2. Then the working set in each iteration

contains only two elements.

For the initial point α1, we assign the first ⌈νl/2⌉ elements with yi = 1 as

[1, . . . , 1, νl/2 − ⌊νl/2⌋]T . Similarly, the same numbers are assigned to the first

⌈νl/2⌉ elements with yi = −1. Unlike the decomposition method for (DC), where

the zero vector is usually used as the initial solution so ∇f(α1) = −e, now α1

contains ⌈νl⌉ nonzero components. In order to obtain ∇f(α1) = Qα1 of (4.5),

in the beginning of the decomposition procedure, we must compute ⌈νl⌉ columns

of Q. This might be a disadvantage of using ν-SVM. Further investigations are

needed on this issue.

We test the RBF kernel with Qij = yiyje
−‖xi−xj‖

2/n, where n is the number of

attributes of a training data. Our implementation is part of the software LIBSVM∗

(version 2.03) which is an integrated package for SVM classification and regression.

We test problems from various collections. Problems australian to shuttle are

from the Statlog collection (Michie et al. 1994). Problems adult4 and web7 are

compiled by Platt (1998) from the UCI Machine Learning Repository (Murphy

and Aha 1994). Note that all problems from Statlog are with real numbers so we

scale them to [−1, 1]. Problems adult4 and web7 are with binary representation so

we do not conduct any scaling. Some of these problems have more than 2 classes

so we treat all data not in the first class as in the second class.

As LIBSVM also implements a decomposition method with q = 2 for C-SVM

(Chang and Lin 2000), we try to conduct some comparisons between C-SVM and

ν-SVM. Note that these two codes are nearly the same except different working

selections specially for (Dν) and (DC). For each problem, we solve its (DC) form

using C = 1 and C = 1000 first. If αC is an optimal solution of (DC), we then

∗LIBSVM is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

25

calculate ν by eT αC/(Cl) and solve (Dν). The stopping tolerance ǫ for solving

C-SVM is set to be 10−3. As the α of (4.17) is like the α of (DC) divided by C

and the stopping criterion involves Qα, to have a fair comparison, the tolerance

(i.e. ǫ of (4.17)) for (5.1) is set as 10−3/C.

The computational experiments for this section were done on a Pentium III-

500 with 256MB RAM using the gcc compiler. We used 100MB as the cache size

of LIBSVM for storing recently used Qij.

(a) ν = 0.5 (b) ν = 0.2

Figure 2: Training data and separating hyperplanes

Tables 5.1 and 5.2 report results of C = 1 and 1000, respectively. In each

table, the corresponding ν is listed and the number of iterations and time (in

seconds) of both algorithms are compared. Note that for the same problem, fewer

iterations do not always lead to less computational time. We think there are two

possible reasons: First the computational time for calculating the initial gradient

for (Dν) is more expensive. Second, due to different contents of the cache (or say

different numbers of kernel evaluations), the cost of each iteration is different. We

also present the number of support vectors (#SV column) as well as free support

vectors (#FSV column). It can be clearly seen that the proposed method for (Dν)

performs very well. This comparison has shown the practical viability of using

ν-SVM.

From (Schölkopf et al. 2000), we know that νl is a lower bound of the number

of support vectors and an upper bound of the number of bounded support vectors

(also number of misclassified training data). It can be clearly seen from Tables 5.1

and 5.2 that νl lies between the number of support vectors and bounded support

vectors. Furthermore, we can see that if ν becomes smaller, the total number of

26

support vectors decreases. This is consistent with the situation of using (DC),

where the increase of C decreases the number of support vectors.

We also observe that though the total number of support vectors decreases

as ν becomes smaller, the number of free support vectors increases. When ν

is decreased (C is increased), the separating hyperplane tries to to fit as many

training data as possible. Hence more points (that is, more free αi) tend to be at

two planes wT φ(x) + b = ±ρ. We illustrate this in Figures 2(a) and (b), where

ν = 0.5 and 0.2, respectively, are used on the same problem. Since the weakest

part of the decomposition method is that it cannot consider all variables together

in each iteration (only q elements are selected), a larger number of free variables

may cause more difficulty.

This gives an explanation why a lot more iterations are required when ν are

smaller. Therefore, here we have given an example that for solving (DC) and

(Dν), the decomposition method faces a similar difficulty.

6 Discussions and Conclusions

In an earlier version of this paper since we did not know how to design a decom-

position method for (Dν) which has two linear constraints, we tried to remove

one of them. For C-SVM, (Mangasarian and Musicant 1999) and (Friess et al.

1998) added b2/2 into the objective function so the dual does not have the linear

constraint yT α = 0. We exploited a similar approach for (Pν) by considering the

following new primal problem:

(P̄ν) min
1

2
wTw +

1

2
b2 − νρ +

1

l

l
∑

i=1

ξi (6.1)

yi(w
T φ(xi) + b) ≥ ρ − ξi,

ξi ≥ 0, i = 1, . . . , l, ρ ≥ 0.

The dual of (P̄ν) is:

(D̄ν) min
1

2
αT (Q + yyT)α

eT α ≥ ν, (6.2)

0 ≤ αi ≤ 1/l, i = 1, . . . , l.

27

Similar to Theorem 1, we can solve (D̄ν) using only the equality eT α = ν. Hence

the new problem has only one simple equality constraint and can be solved using

existing decomposition methods like SV M light.

Table 6.3: Solving (D̄ν): comparing with Table 5.1

Problem l ν ν Iter. ν Time #SV #FSV
australian 690 0.309619 4871 0.64 244 53
diabetes 768 0.574087 1816 0.58 447 13
german 1000 0.556643 1641 1.67 599 87
heart 270 0.43103 527 0.1 130 23
vehicle 846 0.501182 1402 1.04 437 26
satimage 4435 0.083544 3034 15.44 380 16
letter 15000 0.036588 7200 54.6 562 28
shuttle 43500 0.141534 17893 1198.83 6161 8
a4a 4781 0.41394 7500 35.03 2002 54
w7a 24692 0.059718 3109 107.5 1563 149

Table 6.4: Solving (D̄ν): comparing with Table 5.2

Problem l ν ν Iter. ν Time #SV #FSV
australian 690 0.147234 597205 36.06 222 167
diabetes 768 0.421373 1811571 132.7 376 102
german 1000 0.069128 504114 56.33 508 493
heart 270 0.033028 48581 1.13 100 99
vehicle 846 0.262569 1626315 125.51 284 112
satimage 4435 0.015416 919695 445.42 136 106
letter 15000 0.005789 1484401 2544.23 150 97
shuttle 43500 0.033965 8364010 59286.83 1487 18
a4a 4781 0.263506 8155518 4905.67 1759 842
w7a 24692 0.023691 28791608 96912.82 1245 830

To be more precise, the working selection becomes:

min ∇f(αk)
Td

eTd = 0, −1 ≤ di ≤ 1,

di ≥ 0, if (αk)i = 0, di ≤ 0, if (αk)i = 1/l, (6.3)

|{di | di 6= 0}| ≤ q,

where f(α) is 1
2
αT (Q + yyT)α.

28

(6.3) can be considered as a special problem of (4.2) since e of eTd = 0 is

a special case of y. Thus SV M light’s selection procedure can be directly used.

An earlier version of LIBSVM implemented this decomposition method for (D̄ν).

However, later we find that the performance is much worse than that of the

method for (Dν). This can be seen in Tables 6.3 and 6.4 which present the same

information as Tables 5.1 and 5.2 for solving (D̄ν). As the major difference is on

the working set selection, we suspect that the performance gap is similar to the

situation happened for C-SVM. In (Hsu and Lin 2002), the authors shown that

by directly using SV M light’s strategy, the decomposition method for

(D̄C) min
1

2
αT (Q + yyT)α − eT α

0 ≤ αi ≤ C, i = 1, . . . , l. (6.4)

performs much worse than that for (DC). Note that the relation between (D̄C)

and (D̄ν) is very similar to that of (DC) and (Dν) presented earlier. Thus we

conjecture that there are some common shortages of using SV M light’s working

set selection for (D̄C) and (D̄ν). Further investigations are needed to understand

whether explanations in (Hsu and Lin 2002) are true for (D̄ν).

In conclusion, this paper discusses the relation between ν-SVM and C-SVM in

detail. In particular, we show that solving them is just like solving two different

problems with the same optimal solution set. We also have proposed a decompo-

sition method for ν-SVM. Experiments on this method show that it is competitive

with methods for C-SVM. Hence we have demonstrated the practical viability of

ν-SVM.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via

the grant NSC 89-2213-E-002-013. The second author thanks Craig Saunders for

bringing him to the attention of ν-SVM. He also thanks a referee of (Lin 2001a)

whose comments lead him to think about the infeasibility of (Dν). The authors

also thank Dr. Bernhard Schölkopf and two anonymous referees for some helpful

comments.

29

References

Chang, C.-C., C.-W. Hsu, and C.-J. Lin (2000). The analysis of decomposi-

tion methods for support vector machines. IEEE Transactions on Neural

Networks 11 (4), 1003–1008.

Chang, C.-C. and C.-J. Lin (2000). LIBSVM: Introduction and benchmarks.

Technical report, Department of Computer Science and Information Engi-

neering, National Taiwan University, Taipei, Taiwan.

Crisp, D. J. and C. J. C. Burges (2000). A geometric interpretation of ν-SVM

classifiers. In S. Solla, T. Leen, and K.-R. Müller (Eds.), Advances in Neural

Information Processing Systems, Volume 12, Cambridge, MA. MIT Press.

Friess, T.-T., N. Cristianini, and C. Campbell (1998). The kernel adatron algo-

rithm: a fast and simple learning procedure for support vector machines. In

Proceedings of 15th Intl. Conf. Machine Learning. Morgan Kaufman Pub-

lishers.

Hsu, C.-W. and C.-J. Lin (2002). A simple decomposition method for support

vector machines. Machine Learning 46, 291–314.

Joachims, T. (1998). Making large-scale SVM learning practical. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Advances in Kernel

Methods - Support Vector Learning, Cambridge, MA. MIT Press.

Keerthi, S. S. and E. G. Gilbert (2002). Convergence of a generalized SMO

algorithm for SVM classifier design. Machine Learning 46, 351–360.

Keerthi, S. S., S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy (2000).

A fast iterative nearest point algorithm for support vector machine classifier

design. IEEE Transactions on Neural Networks 11 (1), 124–136.

Lin, C.-J. (2001a). Formulations of support vector machines: a note from an

optimization point of view. Neural Computation 13 (2), 307–317.

Lin, C.-J. (2001b). On the convergence of the decomposition method for support

vector machines. IEEE Transactions on Neural Networks 12 (6), 1288–1298.

Mangasarian, O. L. and D. R. Musicant (1999). Successive overrelaxation for

30

support vector machines. IEEE Transactions on Neural Networks 10 (5),

1032–1037.

Micchelli, C. A. (1986). Interpolation of scattered data: distance matrices and

conditionally positive definite functions. Constructive Approximation 2, 11–

22.

Michie, D., D. J. Spiegelhalter, C. C. Taylor, and J. Campbell (Eds.) (1994).

Machine learning, neural and statistical classification. Upper Saddle River,

NJ, USA: Ellis Horwood. Data available at http://archive.ics.uci.edu/

ml/machine-learning-databases/statlog/.

Murphy, P. M. and D. W. Aha (1994). UCI repository of machine learn-

ing databases. Technical report, University of California, Department

of Information and Computer Science, Irvine, CA. Data available at

http://www.ics.uci.edu/~mlearn/MLRepository.html.

Osuna, E., R. Freund, and F. Girosi (1997). Training support vector machines:

An application to face detection. In Proceedings of CVPR’97, New York,

NY, pp. 130–136. IEEE.

Platt, J. C. (1998). Fast training of support vector machines using sequential

minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola

(Eds.), Advances in Kernel Methods - Support Vector Learning, Cambridge,

MA. MIT Press.

Rockafellar, R. T. (1970). Convex Analysis. Princeton, NJ: Princeton University

Press.

Saunders, C., M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola

(1998). Support vector machine reference manual. Technical Report CSD-

TR-98-03, Royal Holloway, University of London, Egham, UK.

Schölkopf, B., A. Smola, R. C. Williamson, and P. L. Bartlett (2000). New

support vector algorithms. Neural Computation 12, 1207–1245.

Schölkopf, B., A. J. Smola, and R. Williamson (1999). Shrinking the tube: A

new support vector regression algorithm. In M. S. Kearns, S. A. Solla, and

D. A. Cohn (Eds.), Advances in Neural Information Processing Systems,

31

Volume 11, Cambridge, MA. MIT Press.

Vapnik, V. (1998). Statistical Learning Theory. New York, NY: Wiley.

32

