
Manuscript Number: 2752

Decomposition Methods for Linear Support Vector

Machines

Wei-Chun Kao, Kai-Min Chung, Chia-Liang Sun, and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan

cjlin@csie.ntu.edu.tw

Abstract In this paper, we show that decomposition methods with alpha seed-

ing are extremely useful for solving a sequence of linear SVMs with more data

than attributes. This strategy is motivated from (Keerthi and Lin 2003) which

proved that for an SVM with data not linearly separable, after C is large enough,

the dual solutions are at the same face. We explain why a direct use of decom-

position methods for linear SVMs is sometimes very slow and then analyze why

alpha seeding is much more effective for linear than nonlinear SVMs. We also

conduct comparisons with other methods which are efficient for linear SVMs, and

demonstrate the effectiveness of alpha seeding techniques for helping the model

selection.

1 Introduction

Solving linear and non-linear support vector machines (SVM) has been consid-

ered two different tasks. For linear SVM without too many attributes in data

instances, people have been able to train millions of data (e.g. (Mangasarian and

Musicant 2000)); but for other types of problems, in particular, non-linear SVMs,

the requirement of huge memory as well as computational time has prohibited

us from solving very large problems. Currently, the decomposition method, a

specially designed optimization procedure, is one of the main tools for non-linear

SVMs. In this paper, we show the drawbacks of existing decomposition methods,

in particular SMO-type algorithms, for linear SVMs. To remedy these drawbacks,

1

motivating from Theorem 3 of (Keerthi and Lin 2003), we develop effective strate-

gies so that decomposition methods become efficient for solving linear SVMs.

First, we briefly describe linear and non-linear SVMs. Given training vectors

xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl such that yi ∈ {1,−1},
the standard SVM formulation (Cortes and Vapnik 1995) is as follows:

min
w,b,ξ

1

2
wT w + C

l∑
i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1.1)

ξi ≥ 0, i = 1, . . . , l.

If φ(x) = x, usually we say (1.1) is the form of a linear SVM. On the other hand,

if φ maps x to a higher dimensional space, (1.1) a non-linear SVM.

For a non-linear SVM, the number of variables depends on the size of w and

can be very large (even infinite), so people solve the following dual form:

min
α

1

2
αT Qα− eT α

subject to yT α = 0, (1.2)

0 ≤ αi ≤ C, i = 1, . . . , l,

where Q is an l × l positive semi-definite matrix with Qij = yiyjφ(xi)
T φ(xj), e is

the vector of all ones, and K(xi, xj) = φ(xi)
T φ(xj) is the kernel function. (1.2) is

solvable because its number of variables is the size of the training set, independent

of the dimensionality of φ(x).

The primal and dual relation shows

w =
l∑

i=1

αiyiφ(xi), (1.3)

so

sgn(wT φ(x) + b) = sgn(
l∑

i=1

αiyiK(xi, x) + b)

is the decision function.

Unfortunately, for large training set, Q becomes such a huge dense matrix that

traditional optimization methods cannot be directly applied. Currently, some

specially designed approaches such as decomposition methods (Osuna, Freund,

2

and Girosi 1997; Joachims 1998; Platt 1998) and finding the nearest points of

two convex hulls (Keerthi, Shevade, Bhattacharyya, and Murthy 2000) are major

ways of solving (1.2).

On the other hand, for linear SVMs, if n ¿ l, w is not a huge vector variable,

so (1.1) can be solved by many regular optimization methods. As at the optimal

solution ξi = max(0, 1 − yi(w
T xi + b)), in a sense we mainly have to find out w

and b. Therefore, if the number of attributes n is small, there are not many main

variables w and b in (1.1) no matter how large the training set is. Currently, on

a normal computer, people have been able to train a linear SVM with millions

of data (e.g. (Mangasarian and Musicant 2000)); but for a non-linear SVM with

much fewer data, we already need more computational time as well as computer

memory.

Therefore, it is natural to ask whether in an SVM software linear and non-

linear SVMs should be treated differently and solved by two methods. It is also

interesting to see how capable non-linear SVM methods (e.g. decomposition meth-

ods) are for linear SVMs. Here, by linear SVMs we mean those with n < l. If

n ≥ l, the dual form (1.2) has fewer variables than w of the primal, a situation

similar to nonlinear SVMs. As the rank of Q is less than or (usually) equal to

min(n, l), the linear SVMs we are interested in here are those with low-ranked Q.

Recently, in many situations, linear and non-linear SVMs are considered to-

gether. Some approaches (Lee and Mangasarian 2001; Fine and Scheinberg 2001)

approximate non-linear SVMs by different problems which are in the form of lin-

ear SVMs (Lin and Lin 2003; Lin 2002) with n ¿ l. In addition, for non-linear

SVM model selection with Gaussian kernel, (Keerthi and Lin 2003) proposed an

efficient method which has to conduct linear SVMs model selection first (i.e. lin-

ear SVMs with different C). Therefore, it is important to discuss optimization

methods for linear and non-linear SVMs at the same time.

In this paper, we focus on decomposition methods. In Section 2, we show that

existing decomposition methods are inefficient for training linear SVMs. Section

3 demonstrates theoretically and experimentally that the alpha seeding technique

is particularly useful for linear SVMs. Some implementation issues are in Section

4. The decomposition method with alpha seeding is compared with existing linear

3

 100

 1000

 10000

 100000

 1e+06

-8 -6 -4 -2 0 2 4 6 8

I
t
e
r
a
t
i
o
n
s

log(C)

heart_scale

Figure 1: Number of decomposition iterations for solving SVMs with linear (the
thick line) and RBF (the thin line) kernel.

SVM methods in Section 5. We then, in Section 6, apply the new implementation

to solve a sequence of linear SVMs required for the model selection method in

(Keerthi and Lin 2003). Final discussion and concluding remarks are in Section

7.

2 Drawbacks of Decomposition Methods for Lin-

ear SVMs with n ¿ l

The decomposition method is an iterative procedure. In each iteration, the index

set of variables is separated to two sets B and N , where B is the working set. Then

in that iteration variables corresponding to N are fixed while a sub-problem on

variables corresponding to B is minimized. If q is the size of the working set B, in

each iteration, only q columns of the Hessian matrix Q are required. They can be

calculated and stored in the computer memory when needed. Thus, unlike regular

optimization methods which usually require the access of the whole Q, here, the

memory problem is solved. Clearly, decomposition methods are specially designed

for nonlinear SVMs. Throughout this paper, we use the term DSVM to refer the

solver of SVM that adopts the decomposition method, e.g. LIBSVM (Chang and

Lin 2001b) and SV M light (Joachims 1998). When the size of its working set is

two, we say it is of SMO-type (Platt 1998).

Unlike popular optimization methods such as Newton or quasi-Newton which

4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

E
rr

o
r

fa
ce

 r
a

te

Iteration x 100

heart_scale(linear, C=128)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000

E
rr

o
r

fa
ce

 r
a

te

Iteration x 100

heart_scale(linear, C=256)

Figure 2: The error-face rate (i.e., the difference between the current face and the
one at the final solution) for solving linear SVM with C = 128 and C = 256.

enjoy fast convergence, decomposition methods converges slowly as in each itera-

tion only very few variables are updated. We will show that the situation is even

worse when solving linear SVMs.

It has been demonstrated (e.g. (Hsu and Lin 2002b)) by experiments that if C

is large and the Hessian matrix Q is not well-conditioned, decomposition methods

converge very slowly. For linear SVMs, if n ¿ l, then Q is a low-rank and hence

ill-conditioned matrix. In Figure 1, we demonstrate a simple example by using the

problem heart from the statlog database (Michie, Spiegelhalter, and Taylor 1994).

Each attribute is scaled to [−1, 1]. We use LIBSVM (Chang and Lin 2001b) to solve

linear and nonlinear (RBF kernel, e−‖xi−xj‖2/(2σ2) with 1/(2σ2) = 1/n) SVMs with

C = 2−8, 2−7.5, . . . , 28 and present the number of iterations. Though two different

problems are solved (in particular, their Qij’s are in different ranges), Figure 1

clearly indicates the huge number of iterations for solving the linear SVMs. Note

that for linear SVMs, the slope is greater than that for nonlinear SVMs and is

very close to one, especially when C is large. This means that a doubled C leads

to a doubled number of iterations.

The following theorems that hold only for linear SVMs help us to realize the

difficulty the decomposition methods suffer from. Theorem 2 can further explain

why the number of iterations is nearly doubled when C is doubled.

Theorem 1 (Keerthi and Lin 2003) The dual linear SVM has the following prop-

5

erties:

• There is C∗ such that for all C ≥ C∗, there are optimal solutions at the

same face.

• In addition, for all C ≥ C∗, the primal solution w is the same.

By the face of α we mean three types of value of each αi: (i) lower-bounded,

i.e., αi = 0, (ii) upper-bounded, i.e., αi = C, and (iii) free, i.e., 0 < αi < C. More

precisely, the face of α can be represented by a length-l vector whose components

are in {lower-bounded, upper-bounded, free}.
This theorem indicates that after C ≥ C∗, exponentially-increased numbers

of iterations are wasted in order to obtain the same primal solution w. Even if

we could detect C∗ and stop training SVMs, for C not far below C∗, the number

of iterations may be already huge. Therefore, it is important to have an efficient

linear SVM solver which could handle both large and small C.

Next, we try to explain the nearly doubled iterations by the hardness of locat-

ing faces of the dual solution α.

Theorem 2 Assume that any two parallel hyperplanes in the feature space do not

contain more than n + 1 points of {xi} on them. We have∗

1. For any optimal solution of (1.2), it has no more than n+1 free components.

2. There is C∗ such that after C ≥ C∗, all optimal solutions of (1.2) share at

least the same l − n− 1 bounded α variables.

The proof is available in the technical report (Chung, Kao, Sun, and Lin 2002).

This result indicates that when n ¿ l, most components of optimal solutions are

at bounds. Furthermore, dual solutions at C and 2C share at least the same

l − 2(n − 1) upper and lower-bounded components. If upper-bounded αi at C

remains upper-bounded at 2C, a direct use of decomposition methods means that

∗Note that a pair of two parallel hyperplane is decided by n + 1 numbers (n number decides
one hyperplane in the feature space Rn; and another one decides the other hyperplane parallel to
it.) So the assumption of Theorem 2 would be violated if m linear equations in n + 1 variables,
where m > n + 1, have solutions. The occurrence of this scenario is of measure zero. This
explains that the assumption of Theorem 2 is genetic.

6

Table 3.1: Comparison of iterations (linear kernel); with and without alpha seed-
ing.

α-seeding without α-seeding
Problem #iter C∗ wT w #total iter #iter(C = 27.5) #iter(C = 28)
heart 27231 23.5 5.712 2449067 507122 737734
australian 79162 22.5 2.071 20353966 3981265 5469092
diabetes 33264 26.5 16.69 1217926 274155 279062
german 277932 210 3.783 42673649 6778373 14641135
web 24044242 unstable unstable ≥ 108 74717242 ≥ 108

adult 3212093 unstable unstable ≥ 108 56214289 84111627
ijcnn 590645 26 108.6 41440735 8860930 13927522

Table 3.2: Comparison of iterations (RBF kernel); with and without alpha seeding.

Problem l n α-seeding without α-seeding
heart 270 13 43663 56792
australian 690 14 230983 323288
diabetes 768 8 101378 190047
german 1000 24 191509 260774
web 49749 300 633788 883319
adult 32561 123 2380265 4110663
ijcnn 49990 22 891563 1968396

αi is updated from 0 to C and from 0 to 2C, respectively. Thus, we anticipate

the efforts are roughly doubled. We confirm this explanation by comparing the

error-face rate (i.e., the difference between the current face and the one at the

final solution) with C = 27 and C = 28. As shown in Figure 2, two curves are

quite similar except that the scale of x-axis differs by twice. This indicates that

α travels similar faces for C = 27 and C = 28, and the number of iterations spent

on each face with C = 28 is roughly doubled.

3 Alpha Seeding for Linear SVMs

Theorem 2 implies that for linear SVMs, dual solutions may share many upper

and lower-bounded variables. Therefore, we conjecture that if α1 is an optimal

solution at C = C1, then α1C2/C1 can be a very good initial point for solving

(1.2) with C = C2. The reason is that α1C2/C1 is at the same face as α1 and it is

likely to be at a similar face of one optimal solution of C = C2. This technique,

called alpha seeding, was originally proposed for SVM model selection (DeCoste

7

and Wagstaff 2000) where several (1.2) with different C have to be solved. Earlier

work which focus on nonlinear SVMs mainly uses alpha seeding as a heuristic.

Now for linear SVMs, the speed could be significantly boosted due to the above

analysis.

The following theorem further supports the use of alpha seeding:

Theorem 3 There are two vectors A, B, and a number C∗ such that for any

C ≥ C∗, AC + B is an optimal solution of (1.2).

The proof is in the technical report (Chung, Kao, Sun, and Lin 2002). If

Ai > 1, AiC + B > C after C is large enough and this violates the bounded

constraints in (1.2). Similarly, Ai cannot be less than zero, so 0 ≤ Ai ≤ 1.

Therefore, we can consider the following three situations of vectors A and B:

1. 0 < Ai ≤ 1,

2. Ai = 0, Bi = 0,

3. Ai = 0, Bi > 0.

For the second case, α1
i

C2

C1
= AiC2 + Bi = 0, and for the first case, AiC À Bi

after C is large enough. Therefore, α1
i

C2

C1
= AiC2 + Bi

C2

C1
≈ AiC2 + Bi. For both

cases, alpha seeding is very useful. On the other hand, using Theorem 2, there

are few (≤ n + 1) components satisfying the third case.

Next, we conduct some comparisons between DSVM with and without alpha

seeding. Here, we consider two-class problems only. Some statistics of the data

sets used are in Table 3.2. The four small problems are from the statlog collection

(Michie, Spiegelhalter, and Taylor 1994). The problem adult is compiled by Platt

(1998) from the UCI “adult” data set (Blake and Merz 1998). Problem web is

also from Platt. Problem ijcnn is from the first problem of IJCNN challenge 2001

(Prokhorov 2001). Note that we use the winner’s transformation of the raw data

(Chang and Lin 2001a).

We train linear SVMs with C ∈ {2−8, 2−7.5, . . . , 28}. That is, [2−8, 28] is dis-

cretized to 33 points with equal ratio. Table 3.1 presents the total number of

iterations of training 33 linear SVMs using the alpha seeding approach. We

8

also individually solve them by LIBSVM and list the number of iterations (to-

tal, C = 27.5, and C = 28). The alpha seeding implementation, will be described

in detail in Section 4. We also list the approximate C∗ for which linear SVMs

with C ≥ C∗ have the same decision function. In addition, the constant wT w

after C ≥ C∗ is also given. For some problems (e.g. web and adult), wT w has

not reached a constant until C is very large so we indicate them as “unstable” in

Table 3.1.

To demonstrate that alpha seeding is much more effective for linear than non-

linear SVMs, Table 3.2 presents the number of iterations using the RBF kernel

K(xi, xj) = e−‖xi−xj‖2/(2σ2) with 1/2σ2 = 1/n. It is clear that the saving of iter-

ations by using alpha seeding is marginal. In addition, comparing to the “total

iter.” column in Table 3.1, we confirm again the slow convergence for linear SVMs

if without alpha seeding.

The alpha seeding approach performs so well to the point that its total number

of iterations is much less than solving one single linear SVM with the original

decomposition implementation. Therefore, if we intend to solve one linear SVM

with a particular C, it may be more efficient to solve one with small initial C0

and then use the proposed alpha seeding method by gradually increasing C.

Furthermore, since we have solved linear SVMs with different C, model se-

lection by cross-validation is already done. From the discussion in Section 2, if

without alpha seeding, solving several linear SVMs is time consuming and the

model selection is not an easy task.

Note that in Table 3.1, web is the most difficult problem and requires the

largest number of iterations. Theorem 2 helps to explain this: since web’s large

number of attributes might lead to more free variables during iterations or at the

final solution, alpha seeding is less effective.

4 Implementation

Though the concept is so simple, to have an efficient and elegant implementation,

there are many considerations which will be discussed in this section.

Most DSVM implementations maintain the gradient vector of the dual objec-

tive function during iterations. The gradient is used for selecting the working set

9

or checking the stopping condition. In the non-linear SVM, calculation of the gra-

dient Qα− e requires O(l2n) operations (O(n) for each kernel evaluation), which

are expensive. Therefore, many DSVM software use α = 0 as the initial solution,

which makes that the initial gradient −e is immediately available. However, in

DSVM with alpha seeding, the initial solution is obtained from the last problem,

so the initial gradient is not a constant vector any more. Fortunately, for linear

SVMs, the situation is not as bad as that in the non-linear SVM. In this case,

the kernel matrix is of the form Q = XT X, where X = [y1x1, . . . , ylxl] is an n

by l matrix. So we can calculate the gradient by Qα − e = XT (Xα) − e, which

requires only O(ln) operations. The first decomposition software which uses this

trick for linear SVMs is SV M light (Joachims 1998).

Similarly, if α is changed by ∆α between two consecutive iterations, then

the change of gradient is Q(∆α) = XT (X∆α). Since there are only q non-

zero elements in ∆α, the gradient can be updated with O(nq) + O(ln) = O(ln)

operations, where q is the size of working set. Note that because l À q, increasing

q from 2 to some other small constant will not effect the time of updating gradient.

In contrast, for non-linear SVMs, if Q is not in the cache, the cost for updating

gradient is by computing Q(∆α), which, requiring q columns of Q, takes O(lnq)-

time. Thus, while the implementation of non-linear SVMs may choose SMO-type

implementation (i.e., q = 2) to have less cost per iteration, we should use a larger

q for linear SVMs as the gradient update is independent of q and the number of

total iterations may be reduced.

As mentioned above, in the non-linear SVM, constructing the kernel matrix

Q is expensive. So the cache for storing recently used elements of Q is a must.

However, in the linear SVM, either the kernel matrix Q or the cache is not needed

any more.

5 Comparison with Other Approaches

It is interesting to compare the proposed alpha seeding approach with efficient

methods for linear SVMs. In this section, we consider Active SVM (ASVM)

(Mangasarian and Musicant 2000) and Lagrangian SVM (LSVM) (Mangasarian

and Musicant 2001).

10

DSVM, ASVM , and LSVM solve slightly different formulations, so it is difficult

to conduct a fair comparison. However, our goal here is only to demonstrate

that, with alpha seeding, decomposition methods, can be several times faster and

competitive with other linear-SVM methods. In the following we briefly describe

the three implementations.

DSVM is the standard SVM which uses the dual formulation (1.2). ASVM and

LSVM both consider a square error term in the objective function:

min
w,b,ξ

1

2
(wT w + b2) + C

l∑
i=1

ξ2
i . (5.1)

Then, the dual problem of (5.1) is

min
α

1

2
αT (Q + yyT +

I

2C
)α− eT α (5.2)

subject to 0 ≤ αi, i = 1, . . . , l,

where I is the identity matrix. The solution of (5.2) has far more free components

than that of (1.2) as upper-bounded variables of (1.2) are likely to be free now.

With different formulations, their stopping conditions are not exactly the same.

We use conditions from similar derivations and details are discussed in (Chung,

Kao, Sun, and Lin 2002).

In this experiment, we consider LIBSVM for DSVM (with and without alpha

seeding). For ASVM, we directly use the authors’ C++ implementation available

at

http://www.cs.wisc.edu/dmi/asvm. The authors of LSVM provide only MAT-

LAB programs so we implement it by modifying LIBSVM. The experiments were

done on an Intel Xeon 2.8GHz machine with 1024MB RAM using the gcc compiler.

Using the same benchmark problems as in Section 3, we perform comparisons

in Table 5.1 as follows: for each problem, we randomly select two thirds data

for training and leave the remaining for testing. For algorithms except DSVM

without alpha seeding, five-fold cross validation with C = 2−10, 2−9.5, . . . , 28 on

the training set is conducted. For DSVM without alpha seeding, as the training

time is huge, only C up to 23 is tried. Then using the C which gives the best

cross-validation rate, we train a model and predict the test data. Both testing

accuracy and the total computational time are reported.

11

Table 5.1: Comparison of different approaches for linear SVMs. Acc.: test accu-
racy using the parameter obtained from cross validation. Time (in seconds): total
training time of five-fold cross validation by trying C = 2−10, 2−9.5, . . . , 28 (or 23

if specified).

Decomposition methods (LIBSVM) Methods for linear SVMs
With α seeding Without α seeding ASVM LSVM

problem Acc. Time: C ≤ 28(C ≤ 23) Time: C ≤ 23 Acc. Time Time
australian 85.51 4.1 (3.6) 7.0 88.70 8.1 2.3
heart 85.56 1.4 (0.9) 1.0 85.56 5.8 1.8
diabetes 79.69 2.4 (2.3) 1.6 81.64 6.2 2.0
german 73.65 10.2 (6.2) 18.2 73.95 16.4 9.0
ijcnn 92.65 981.9 (746.0) 3708.6 92.51 725.2 17496.4
adult 85.02 1065.9 (724.8) 12026.8 84.90 3130.7 13445.4
web 98.67 18035.3 (1738.2) 7035.6 98.63 10315.9 43060.1

In Table 5.1, alpha seeding with C up to 28 is competitive with solving C up to

only 23 without alpha seeding. For these problems, considering C ≤ 23 is enough,

and if alpha seeding stops at 23 as well, it is several times faster than without

alpha seeding.

Since alpha seeding is not applied to ASVM and LSVM, we admit that their

computational time can be further improved. Results here also serve as the first

comparison between ASVM and LSVM. Clearly ASVM is faster. Moreover, due

to the huge computational time, we set the maximal iterations of LSVM to be

1,000. For problems adult and web, after C is large, iteration limit is reached

before stopping conditions are satisfied.

In addition to comparing DSVM with ASVM and LSVM, we compare the

performance of SMO-type (q = 2) and that with a larger working set (q = 30) for

DSVM with alpha seeding in Table 5.2 by modifying the software SV M light, which

allows adjustable q. All default settings of SV M light are used. In this experiment,

we solve linear SVMs with C = 2−8, 2−7.5, . . . , 28 and report their computational

time and total number of iterations. Note that when q is two, SV M light and

LIBSVM use the same algorithm and differ only in some implementation details.

The results in Table 5.2 show that the implementation with a larger working

set takes less time than that with a smaller one. This is consistent with our

earlier statement that for linear SVMs, SMO-type decomposition methods are

12

Table 5.2: Comparison of different subproblem size in decomposition methods for
linear SVMs (time in second; q: size of the working set). Note that time here is
shorter than that in Table 5.1 because we do not perform cross validation.

Decomposition methods with alpha seeding
q = 2 (SV M light) q = 30 (SV M light)

problem total iter. time total iter. time
australian 50145 0.71 6533 1.19
heart 25163 0.21 1317 0.33
diabetes 30265 0.4 5378 0.31
german 182051 2.9 6006 3.68
ijcnn 345630 185.85 79847 115.03
adult 1666607 1455.2 414798 516.71
web N/A∗ N/A∗ 2673578 1885.1

∗: SV M light faced numerical difficulties.

less favorable.

Regarding the computational time reported in this section, we must exercise

the caution that quite a few implementation details may affect it. For example,

each iteration of ASVM and LSVM involves several matrix-vector multiplications.

Hence, it is possible to use finely-tuned dense linear algebra subroutines. For

the LSVM implementation here, by using ATLAS (Whaley, Petitet, and Dongarra

2000), for large problems, the time is reduced by two third. Thus, it is possible to

further reduce the time of ASVM in Table 5.1 though we find it too complicated

to modify the authors’ program. Using such tools also means X is considered as

a dense matrix. In contrast, X is currently treated as a sparse matrix in both

LIBSVM and SV M light, where each iteration requires two matrix-vector multipli-

cations X(XT (αk+1−αk)). This sparse format creates some overheads when data

are dense.

6 Experiments on Model Selection

If the RBF kernel

K(xi, xj) = e−‖xi−xj‖2/(2σ2)

is used, (Keerthi and Lin 2003) proposes the following model selection procedure

for finding good C and σ2:

Algorithm 1 Two-line model selection

13

1. Search for the best C of linear SVMs and call it C̃.

2. Fix C̃ from step 1 and search for the best (C, σ2) satisfying log σ2 = log C −
log C̃ using the RBF kernel.

That is, we solve a sequence of linear SVMs first and then a sequence of nonlinear

SVMs with the RBF kernel. The advantage of Algorithm 1 over an exhausted

search of the parameter space is that only parameters on two lines are considered.

If decomposition methods are directly used for both linear and nonlinear SVMs

here, due to the huge number of iterations, solving the linear SVMs becomes the

bottleneck. Our goal is to show that by applying the alpha seeding technique to

linear SVMs, the computational time spent on the linear part becomes similar to

that on the nonlinear SVMs.

Earlier in (Keerthi and Lin 2003), due to the difficulty on solving linear SVMs,

Algorithm 1 is only tested on small two-class problems. Here, we would like to

evaluate this algorithm on large multi-class data sets. We consider problems

dna, satimage, letter, and shuttle, which were originally from the statlog collection

(Michie, Spiegelhalter, and Taylor 1994) and were used in (Hsu and Lin 2002a).

Except dna, which takes two possible values 0 and 1, each attribute of all train-

ing data is scaled to [-1,1]. Then, test data are adjusted using the same linear

transformation.

Since LIBSVM contains a well-developed cross-validation procedure, we use

it as the DSVM solver in this experiment. We search for C̃ by five-fold cross-

validation on linear SVMs using uniformly spaced log2 C̃ value in [−10, 10] (with

grid space 1). As LIBSVM considers γ = 1/2σ2 as the kernel parameter, the second

step is to search for good (C, γ) satisfying

−1− log2 γ = log2 C − log2 C̃. (6.1)

We discretize [−10, 4] as values of log2 γ and calculate log2 C from (6.1). To

avoid that log2 C locates in an abnormal region, we consider only points with

−2 ≤ log2 C ≤ 12 so the second step may solve less SVMs than the first step.

The same computational environment as that for Section 3 is used.

Since this model selection method is based on the analysis of binary SVMs, a

multi-class problem has to be decomposed to several binary SVMs. We employ the

14

“one-against-one” approach: if there are k classes of data, all k(k−1)/2 two-class

combinations are considered. For any two classes of data, the model selection

is conducted to have the best (C, σ2). With the k(k − 1)/2 best (C, σ2) and

corresponding decision functions, a voting strategy is used for the final prediction.

In Table 6.1, we compare this approach with two versions complete grid searches.

First, for any two classes of data, five-fold cross-validation is conducted on 225

points, a discretization of the (log2 C, log2 γ) = [−2, 12] × [−10, 4] space. The

second way is from the cross-validation procedure adopted by LIBSVM for multi-

class data, where a list of (C, σ2) is selected first and then for each (C, σ2), one-

against-one method is used for estimating the cross-validation accuracy of the

whole multi-class data. Therefore, for the final optimal model, k(k−1)/2 decision

functions share the same C and σ2. Since the same number of nonlinear SVMs

are trained, the time for the two complete grid searches is exactly the same but

the performance (test accuracy) may be different. There is no comparison so far,

so we present a preliminary investigation here.

Table 6.1: Comparison of different model selection methods (time in second).

Complete grid search Algorithm 1
1 (C, σ2) k(k − 1)/2 (C, σ2) Time Time Time Accuracy

Problem Accuracy Time Accuracy (linear) (non-linear)
dna 95.62 4945 95.11 202 123 79 94.86 (94.77)
satimage 91.9 7860 92.2 1014 743 271 91.55 (90.55)
letter 97.9 56753 97.72 5365 3423 1942 96.54 (95.9)
shuttle 99.92 104904 99.94 4196 2802 1394 99.81 (99.7)

Accuracies of Algorithm 1 enclosed in parentheses are the accuracies if we search
log2 C̃ ∈ [−10, 3] in step 1 of Algorithm 1.

Table 6.2: Mean and Standard deviation of two model selection methods (each
method applied 10 times).

Complete grid search Algorithm 1
log2 C log2 γ Accuracy log2 C̃ Accuracy

Problem Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
banana 7 4.45 -0.4 1.51 87.91 0.47 -1.9 2.18 76.36 12.21
adult small 5.4 2.37 -7.6 1.71 83.82 0.27 0.3 4.08 83.20 1.28
dna 5.4 3.34 -5 0 95.56 0.19 - - 94.85 0.20
satimage 2.5 0.71 0.1 0.57 91.74 0.24 - - 91.19 0.28

Table 6.1 presents experimental results. For each problem, we compare test

accuracy by two complete grid searches and by Algorithm 1. The two grid searches

15

are represented as “1 (C, σ2)” and “k(k − 1)/2 (C, σ2),” respectively, depending

on how many (C, σ2) used by the decision functions. The performance of the

three approaches are very similar. However, the total model selection time of

Algorithm 1 is much shorter. In addition, we also list the accuracy of Algorithm 1

in parentheses if we only search log2 C̃ value in [−10, 3] in step 1. We can discover

that the accuracy is consistently lower if we only search C̃ in this smaller region.

In fact, if we search log2 C̃ in [−10, 3], there are many log2 C̃ equals to 3 in this

experiment. This means that [−10, 3] is too small to cover good parameter regions.

We make Algorithm 1 practical because of the use of alpha seeding. Otherwise,

time for solving linear SVMs is a lot more so the proposed model selection does

not possess any advantage.

We then investigate the stability of the new model selection approach. Due

to timing restriction, we consider two smaller problems banana and adult small

tested in (Keerthi and Lin 2003). Note that the adult small is a subset of the

adult used in Section 3. It is a binary problem with 1,605 examples. Table 6.2

shows the means and standard deviations of parameters and accuracy using 10-

time the “k(k − 1)/2 (C, σ2)” grid search and Algorithm 1. For Algorithm 1, we

list only C̃’s variances because the variances of parameters C and σ2, which are

computed from (6.1), are less meaningful. Note that different parameters as well

as accuracy by applying the same method 10 times are due to the randomness of

cross-validation.

From Table 6.2, we can see that although the performance (testing accuracy

and consumed time) of the model selection Algorithm 1 is good, it might be

less stable. That is, the variance of accuracy is significantly larger than that of

the complete grid search method while the variances of parameters are both large.

We think that in the complete grid search method, the cross-validation estimation

bounds the overall error. Thus, the variances of gained parameters do not affect

the testing performance. However, in the two-line search method (Algorithm 1),

two-stage cross-validations are utilized. Thus, the variance in the first stage may

affect the best performance of the second stage.

16

7 Discussion and Conclusion

It is arguable that we may have used a too strict stopping condition in DSVM when

C is large. One possibility is to use the stopping tolerance that is proportional to

C. This will reduce the number of iterations so that directly solving linear SVMs

with large C may be possible. However, in Appendix of the technical report

(Chung, Kao, Sun, and Lin 2002), we show that even in these settings, DSVM

with alpha seeding still makes the computational time several times faster than

the original DSVM, especially for large datasets. Moreover, too large stopping

tolerance will cause DSVM stops with wrong solutions.

In conclusion, we hope that based on this work, SVM software using decom-

position methods can be suitable for all types of problems, no matter n ¿ l or

n À l.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via

the grant NSC 90-2213-E-002-111. The authors thank Thorsten Joachims for the

help on modifying SV M light for experiments in Section 5.

References

Blake, C. L. and C. J. Merz (1998). UCI repository of machine learn-

ing databases. Technical report, University of California, Depart-

ment of Information and Computer Science, Irvine, CA. Available at

http://www.ics.uci.edu/~mlearn/MLRepository.html.

Chang, C.-C. and C.-J. Lin (2001a). IJCNN 2001 challenge: Generalization

ability and text decoding. In Proceedings of IJCNN. IEEE.

Chang, C.-C. and C.-J. Lin (2001b). LIBSVM: a li-

brary for support vector machines. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chung, K.-M., W.-C. Kao, C.-L. Sun, and C.-J. Lin (2002). Decomposition

methods for linear support vector machines. Technical report, Department

17

of Computer Science and Information Engineering, National Taiwan Uni-

versity.

Cortes, C. and V. Vapnik (1995). Support-vector network. Machine Learn-

ing 20, 273–297.

DeCoste, D. and K. Wagstaff (2000). Alpha seeding for support vector machines.

In Proceedings of International Conference on Knowledge Discovery and

Data Mining (KDD-2000).

Fine, S. and K. Scheinberg (2001). Efficient svm training using low-rank kernel

representations. Journal of Machine Learning Research 2, 243–264.

Hsu, C.-W. and C.-J. Lin (2002a). A comparison of methods for multi-class

support vector machines. IEEE Transactions on Neural Networks 13 (2),

415–425.

Hsu, C.-W. and C.-J. Lin (2002b). A simple decomposition method for support

vector machines. Machine Learning 46, 291–314.

Joachims, T. (1998). Making large-scale SVM learning practical. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Advances in Kernel

Methods - Support Vector Learning, Cambridge, MA. MIT Press.

Keerthi, S. S. and C.-J. Lin (2003). Asymptotic behaviors of support vector

machines with Gaussian kernel. Neural Computation 15 (7), 1667–1689.

Keerthi, S. S., S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy (2000).

A fast iterative nearest point algorithm for support vector machine classifier

design. IEEE Transactions on Neural Networks 11 (1), 124–136.

Lee, Y.-J. and O. L. Mangasarian (2001). RSVM: Reduced support vector ma-

chines. In Proceedings of the First SIAM International Conference on Data

Mining.

Lin, K.-M. (2002). Reduction techniques for training support vector machines.

Master’s thesis, Department of Computer Science and Information Engi-

neering, National Taiwan University.

Lin, K.-M. and C.-J. Lin (2003). A study on reduced support vector machines.

IEEE Transactions on Neural Networks . To appear.

18

Mangasarian, O. L. and D. R. Musicant (2000). Active set support vector ma-

chine classification. In Advances in Neural Information Processing Systems,

pp. 577–583.

Mangasarian, O. L. and D. R. Musicant (2001). Lagrangian support vector

machines. Journal of Machine Learning Research 1, 161–177.

Michie, D., D. J. Spiegelhalter, and C. C. Taylor (1994). Ma-

chine Learning, Neural and Statistical Classification. En-

glewood Cliffs, N.J.: Prentice Hall. Data available at

http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.

Osuna, E., R. Freund, and F. Girosi (1997). Training support vector machines:

An application to face detection. In Proceedings of CVPR’97, New York,

NY, pp. 130–136. IEEE.

Platt, J. C. (1998). Fast training of support vector machines using sequential

minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola

(Eds.), Advances in Kernel Methods - Support Vector Learning, Cambridge,

MA. MIT Press.

Prokhorov, D. (2001). IJCNN 2001 neural network competition.

Slide presentation in IJCNN’01, Ford Research Laboratory.

http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf .

Whaley, R. C., A. Petitet, and J. J. Dongarra (2000). Automatically tuned lin-

ear algebra software and the ATLAS project. Technical report, Department

of Computer Sciences, University of Tennessee.

A Proof of Theorem 2

For the first result, if it were wrong, there was an optimal α with more than

n + 1 free components. From the optimality condition (C.2) and the primal-dual

relation (1.3), for those 0 < αi < C,

(Qα + by)i = yi(w
T xi + b) = 1.

Thus, more than n + 1 xi are at two parallel hyperplanes. This contradicts the

assumption.

19

Next, we consider from Theorem 1 and define

A ≡ {i | for all optimal solutions with C > C∗, αi is at the upper (lower) bound}.

The second result of this theorem will hold if we can prove |A| ≥ l − n − 1. If

its result is wrong, we can assume all those i /∈ A are from α1, . . . , αs which are

optimal at C = C1, . . . , Cs, C∗ < C1 < · · · < Cs and s > n + 1. Thus, for any

i /∈ A, it is impossible that

α1
i = · · · = αs

i = 0 or α1
i = C1, . . . , α

s
i = Cs. (A.1)

For any convex combination with weights 0 < λj < 1 and
∑s

j=1 λj = 1,

0 <

s∑
j=1

λjα
j
i <

s∑
j=1

λjCj, ∀i /∈ A. (A.2)

Remember from Theorem 1, for all C ≥ C∗, the optimal w is the same. If we

define

ᾱ ≡
s∑

j=1

λjα
j,

then
l∑

i=1

yiᾱixi =
s∑

j=1

λj

l∑
i=1

yiα
j
ixi =

s∑
j=1

λjw = w.

Therefore, we have constructed an ᾱ which is optimal at C =
∑s

j=1 λjCj > C∗

with more than n + 1 free components (from (A.1) and (A.2)). This contradicts

the first part of this theorem so the proof is complete.

B Proof of Theorem 3

First we note that for any given C, if AiC+Bi, i = 1, 2, . . . are all optimal solutions

of (1.2), and there are vectors A and B such that

lim
i→∞

AiC + Bi = AC + B, (B.1)

then AC + B is an optimal solution as well. This is from the continuity of (1.2)’s

objective function and the compactness of its feasible region.

From Theorem 3 of (Keerthi and Lin 2003), there is a C∗ such that for any

C̄ > C∗, there exists a linear function AC + B which is optimal for (1.2) when

20

C ∈ [C∗, C̄]. Thus, we can consider C1 < C2 < · · · with limi→∞ Ci = ∞ and

functions AiC + Bi which are optimal solutions at C ∈ [C∗, C i].

Since

0 ≤ AiC
1 + Bi ≤ C1 and 0 ≤ AiC

2 + Bi ≤ C2,

are bounded for all i, there is an infinity set I such that

lim
i→∞,i∈I

AiC
1 + Bi = α1 and lim

i→∞,i∈I
AiC

2 + Bi = α2. (B.2)

If α1 6= α2, then two different points uniquely determine vectors A and B such

that

α1 = AC1 + B and α2 = AC2 + B. (B.3)

For any C > C2, there is 0 < λ < 1 such that C2 = λC1 + (1− λ)C so

AiC
2 + Bi = λ(AiC

1 + Bi) + (1− λ)(AiC + Bi). (B.4)

Taking the limit, (B.2), (B.3), and (B.4) imply

AC2 + B = λ(AC1 + B) + (1− λ) lim
i∈I,i→∞

(AiC + Bi).

Thus,

lim
i∈I,i→∞

(AiC + Bi) = AC + B, (B.5)

so (B.1) is valid. The situation for C∗ ≤ C ≤ C2 is similar. Thus AC + B is

optimal for (1.2), for all C ≥ C∗. On the other hand, if α1 = α2, since C2 > C1,

lim
i∈I,i→∞

Ai(C
2 − C1) = 0

from (B.2) implies

lim
i∈I,i→∞

Ai = 0 and lim
i∈I,i→∞

Bi = α1 = α2.

By defining A ≡ 0 and B ≡ α1, for any C ≥ C∗, (B.1) also holds so AC + B is

optimal for (1.2). Thus, the proof is complete. 2

21

C Stopping Criteria for Experiments in Section

5

We try to use similar stopping criteria for the four approaches. If f(α) is the

objective function, the stopping condition of LIBSVM is

max{−yi∇f(α)i | yi = 1, αi < C or yi = −1, αi > 0} −
min{−yi∇f(α)i | yi = −1, αi < C or yi = 1, αi > 0} ≤ ε, (C.1)

where ε = 0.001. This is from the Karush-Kuhn-Tucker (KKT) condition (i.e. the

optimality condition) of (1.2): α is optimal if and only if α is feasible and there

is a number b and two nonnegative vectors λ and µ such that

∇f(α) + by = λ− µ,

λiαi = 0, µi(C − α)i = 0, λi ≥ 0, µi ≥ 0, i = 1, . . . , l,

where ∇f(α) = Qα − e is the gradient of f(α), the objective function of (1.2).

This can be rewritten as

∇f(α)i + byi ≤ 0 if αi > 0,

∇f(α)i + byi ≥ 0 if αi < C.

Using yi = ±1 and reformulating (C.2) as upper and lower bounds of b and

introducing a stopping tolerance 0.001, we have (C.1). For BSVM, without the

linear constraint yT α = 0, (C.1) can be simplified to

max
αi>0

∇f(α)i − min
αi<C

∇f(α)i ≤ ε. (C.2)

For ASVM, the αi ≤ C constraints are removed so (C.2) is further reduced to

max
αi>0

∇f(α)i −min
i
∇f(α)i ≤ ε. (C.3)

However, (C.3) is not suitable for LSVM as it does not keep αi ≥ 0 throughout all

iterations. Thus, we modify (C.3) to be

max
αi>ε/100

∇f(α)i −min
i
∇(α)i ≤ ε

and

αi ≥ −ε/100,∀i,

22

where ε = 0.001, as the stopping condition of LSVM. This has been used in

(Lin and Lin 2003) which implements LSVM for solving Reduced SVM (Lee and

Mangasarian 2001).

D Conclusion Considering Stopping Criteria

Table D.1: Comparison of the running time for linear SVMs with stopping toler-
ance Cε (time in second).

Problem with alpha seeding without alpha seeding
australian 2.30 6.90
heart 0.36 1.16
diabetes 0.75 7.97
german 17.58 46.24
ijcnn 1052.07 25779.50
adult 923.76 40059.15
web 2311.79 7547.94

It is arguable that we may have used a too strict stopping condition in the

DSVM when C is large. One possibility is to use the stopping tolerance that is

proportional to C, instead of ε is used in (C.1), the number of iterations (without

alpha seeding) would be much smaller. Thus, directly solving linear SVMs with

large C becomes possible. However, in Table D.1, we show that even in these

settings, DSVM with alpha seeding still makes the computational time several

times faster than the original DSVM, especially for large datasets.

The stopping condition has long been a controversial issue for SVM software

design. So far we have not found out a satisfactory way which is not too loose

or too strict for most problems. This is why in most software, ε is left to be

adjusted by users. For example, although using Cε takes a significant advantage

on running time, especially for solving linear SVMs, it may lead us to a wrong

optimal solution when C is too large. An extreme scenario is as follows: Let the

initial solution α = 0 and

∇f(α) = Qα− e = e.

23

The stopping condition (C.1) becomes

max{−yiei | yi = 1, αi < C or yi = −1, αi > 0} −
min{−yiei | yi = −1, αi < C or yi = 1, αi > 0} ≤ 2.

If Cε > 2, the initial α already satisfies the stopping condition. Then, the opti-

mization procedure stops with w = 0, an obviously wrong solution. Since a large

stopping tolerance may cause a fake convergence, decomposition methods should

also be efficient enough under the same strict setting.

In conclusion, we hope that based on this work, SVM software using decom-

position methods can be suitable for all types of problems, no matter n ¿ l or

n À l.

24

