
Supplementary Materials for “LIBMF: A Library for Parallel Matrix
Factorization in Shared-memory Systems”

Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, Yong Zhuang,
Yu-Chin Juan, Chih-Jen Lin

Department of Computer Science, National Taiwan University, Taipei 10617, Taiwan

1. The Parallel Stochastic Gradient Method in LIBMF

In LIBMF, we implement a parallel stochastic gradient method to solve RVMF, BMF, as
well as OCMF under the framework proposed by Chin et al. (2015a). First, the training
matrix is divided into many blocks and some working threads are created. Then, a block
scheduler assigns independent blocks to threads that run stochastic gradient method (SG)
in parallel. We use the learning rate scheduler in Chin et al. (2015b) and further extend
it to cover more loss and regularization functions by following Duchi et al. (2011). In the
rest of Section 1, we derive the SG update rules for RVMF and BMF, and the algorithm of
OCMF is left in Section 2.

Let R be a training matrix and P ∈ Rk×m and Q ∈ Rk×n standard for the two factor
matrices. Both RVMF and BMF can be formulated as an unconstrained optimization
problem.

min
P,Q

∑
(u,v)∈R

φu,v(P,Q) + ρu,v(P,Q), (1)

where
φu,v(P,Q) = f(pu, qv; ru,v) + λp ‖pu‖

2
2 + λq ‖qv‖

2
2

ρu,v(P,Q) = µp ‖pu‖1 + µq ‖qv‖1 .
In (1), u and v are respectively the row index and the column index of R, and f(·) is
a non-convex loss function of pu and qv. In each SG iteration, we sample one entry to
construct a subproblem problem combining a first-order approximation of the loss and the
L2-regularization, the L1-regularization terms, and the two proximal terms ‖p− pu‖

2
2 and

‖q − qv‖
2
2. If an entry (u, v) is sampled, the corresponding subproblem is

min
p

gT
up + µp ‖p‖1 +

√
Gu

2η
‖p− pu‖

2
2

min
q

hT
v q + µq ‖q‖1 +

√
Hv

2η
‖q − qv‖

2
2 ,

(2)

where
gu = ∂pu

φu,v = ∂pu
f + λppu,

hv = ∂qv
φu,v = ∂qv

f + λqqv,

and η is a pre-specified constant controlling the weight of the proximal terms. Obviously,
the existence of the proximal terms encourages a new model close to the current model.
See Table 1 for the supported loss functions and their subgradients ∂pf and ∂qf . The two
values Gu and Hv are respectively defined by

Gu =
1

k

Tu−1∑
t=1

(gt
u)Tgt

u and Hv =
1

k

Tv−1∑
t=1

(ht
v)Tht

v,

1

Table 1: Subgradients of supported loss functions in LIBMF. The first three are for RVMF,
and the others are for BMF. Note we denote pTq by r̂.

Loss f(p, q; r) ∂pf ∂qf κ

L2-norm (r − r̂)2 κq κp r̂ − r

L1-norm |r − r̂| κq κp


−1 if r − r̂ > 0

1 if r − r̂ < 0

0 otherwise

KL-divergence r log(rr̂)− r + r̂ κq κp 1− r
r̂

Squared hinge max (0, 1− rr̂)2 κq κp −2rmax (0, 1− rr̂)

Hinge max (0, 1− r̂) κq κp

{
−r if 1− rr̂ > 0

0 otherwise

Logistic log(1 + exp(−rr̂)) κq κp −r exp(−rr̂)
1+exp(−rr̂)

where Tu and Tv are the numbers of updates of pu and qv, respectively. Notice that Gu

and Hv are scalars rather than matrices in Duchi et al. (2011). Moreover, Duchi et al.
(2011) use L2-norm instead of squared L2-norm in (2), and they do not provide the update
rules considering both L1-regularization and L2-regularization. According to the optimality
condition of (2), we can drive the SG update rules

(pu)i ← sign

(
(pu)i −

η√
Gu

(gu)i

)
max

(
0, | (pu)i −

η√
Gu

(gu)i | −
η√
Gu

µp

)
(qv)i ← sign

(
(qv)i −

η√
Hv

(hv)i

)
max

(
0, | (qv)i −

η√
Hv

(hv)i | −
η√
Hv

µq

)
,

(3)

which can be reduced to

(pu)i ← (pu)i −
η√
Gu

(gu)i

(qv)i ← (qv)i −
η√
Hv

(hv)i

if L1-regularization is dropped (i.e., µp = µq = 0). The complete procedure of one SG
iteration is shown in Algorithm 1. First, some variables are initialized and the value κ in
Table 1 is computed and cached according to the selected loss function. We then apply (3)
on all coordinates of pu and qv, while Gu and Hv are updated in the end of the iteration.
Note that for NMF we add two projections at line 16-19 by following Dror et al. (2012).

2

Algorithm 1 One SG update for solving RVMF and BMF in LIBMF.

1: Ḡ← 0, H̄ ← 0
2: ηu ← η0/

√
Gu, ηv ← η0/

√
Hv

3: z ← κ(ru,v,pu, qv)
4: for i← 1 to k do
5: (gu)i ← λp(pu)i + z(qv)i
6: (hv)i ← λq(qv)i + z(pu)i
7: Ḡ← Ḡ+ (gu)2i , H̄ ← H̄ + (hv)2i
8: (pu)i ← (pu)i − ηu(gu)i
9: (qv)i ← (qv)i − ηv(hv)i

10: if µp > 0 then
11: (pu)i ← sign ((pu)i) max (0, |(pu)i| − ηuµp)
12: end if
13: if µq > 0 then
14: (qv)i ← sign ((qv)i) max (0, |(qv)i| − ηvµq)
15: end if
16: if NMF then
17: (pu)i ← max (0, (pu)i)
18: (qv)i ← max (0, (qv)i)
19: end if
20: end for
21: Gu ← Gu + Ḡ/k, Hv ← Hv + H̄/k

2. One-class Matrix Factorization in LIBMF

Recall the OCMF model (i.e., BPR) in LIBMF. BPR assumes that all positive entries
should be ranked above all missing entries (i.e., dummy negative signals), so it is a kind of
pairwise ranking problem. Naturally, the pairwise logistic loss can be used to compare the
prediction values of a pair of positive and missing entries in the same row of R. We call the
corresponding optimization problem (4) row-oriented BPR.

min
P,Q

∑
(u,v)∈R

∑
(u,w)/∈Ru

[
log(1 + ep

T
u (qw−qv)) + µp ‖pu‖1 +

µq(‖qv‖1 + ‖qw‖1) +
λp
2
‖pu‖

2
2 +

λq
2

(‖qv‖
2
2 + ‖qt‖

2
2)

]
,

(4)

where Ru is the set of positive entries in the uth row of R. If u is column index and v and
w are row indexes, then (4) becomes column-oriented BPR. If a row contains the ratings of
a user, row-oriented BPR is suggested to build entry pairs user-wisely. Otherwise, column-
oriented BPR should be used. Because we need a pair of entries to construct a subproblem
for OCMF, the block scheduler in Chin et al. (2015a) is modified so that it returns two
blocks in which we can select pairs of positive and a dummy negative entries at random.
If a pair of a positive entry (u, v) ∈ R and a negative entry (u,w) /∈ R is sampled, the

3

Algorithm 2 One SG update for solving OCMF in LIBMF.

1: Ḡu ← 0, H̄v ← 0, H̄w ← 0
2: ηu ← η0/

√
Gu, ηv ← η0/

√
Hw, ηw ← η0/

√
Hw

3: z ← ep
T
u (qw−qv)/(1 + ep

T
u (qw−qv))

4: for i← 1 to k do
5: (gu)i ← λp(pu)i − z((qw)i − (qv)i)
6: (hv)i ← λq(qv)i − z(pu)i
7: (hw)i ← λq(qw)i + z(qu)i
8: Ḡu ← Ḡu + (gu)2i , H̄v ← H̄v + (hv)2i , H̄w ← H̄w + (hw)2i
9: (pu)i ← (pu)i − ηu(gu)i

10: (qv)i ← (qv)i − ηv(hv)i
11: (qw)i ← (qw)i − ηw(hw)i
12: if µp > 0 then
13: (pu)i ← sign ((pu)i) max (0, |(pu)i| − ηuµp)
14: end if
15: if µq > 0 then
16: (qv)i ← sign ((qv)i) max (0, |(qv)i| − ηvµq)
17: (qw)i ← sign ((qw)i) max (0, |(qw)i| − ηwµq)
18: end if
19: if NMF then
20: (pu)i ← max (0, (pu)i)
21: (qv)i ← max (0, (qv)i)
22: (qw)i ← max (0, (qw)i)
23: end if
24: end for
25: Gu ← Gu + Ḡu/k, Hv ← Hv + H̄v/k, Hw ← Hw + H̄w/k

subproblem of row-oriented BPR is

min
p

gT
up + µp ‖p‖1 +

√
Gu

2η
‖p− pu‖

2
2

min
q

hT
v q + µq ‖q‖1 +

√
Hv

2η
‖q − qv‖

2
2

min
q

hT
wq + µq ‖q‖1 +

√
Hw

2η
‖q − qw‖

2
2

,

where
gu = z(qw − qv) + λppu

hv = −zpu + λqqv

hw = zpu + λqqw

and

z =
ep

T
u (qw−qv)

1 + ep
T
u (qw−qv)

.

4

We omit the update rules because they are the same as (3). Algorithm 2 shows the SG
procedure for solving BPR.

References

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel stochastic
gradient method for matrix factorization in shared memory systems. ACM Transactions
on Intelligent Systems and Technology, 6:2:1–2:24, 2015a. URL http://www.csie.ntu.

edu.tw/~cjlin/papers/libmf/libmf_journal.pdf.

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A learning-rate schedule
for stochastic gradient methods to matrix factorization. In Proceedings of the Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2015b. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/libmf/mf_adaptive_pakdd.pdf.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The Yahoo! music
dataset and KDD-Cup 11. In JMLR Workshop and Conference Proceedings: Proceedings
of KDD Cup 2011, volume 18, pages 3–18, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–
2159, 2011.

5

http://www.csie.ntu.edu.tw/~cjlin/papers/libmf/libmf_journal.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libmf/libmf_journal.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libmf/mf_adaptive_pakdd.pdf

	The Parallel Stochastic Gradient Method in LIBMF
	One-class Matrix Factorization in LIBMF

