
Journal of Machine Learning Research 9 (2008) 1871-1874 Submitted 5/08; Published 8/08

LIBLINEAR: A Library for Large Linear Classification

Rong-En Fan b90098@csie.ntu.edu.tw

Kai-Wei Chang b92084@csie.ntu.edu.tw

Cho-Jui Hsieh b92085@csie.ntu.edu.tw

Xiang-Rui Wang r95073@csie.ntu.edu.tw

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University

Taipei 106, Taiwan

Last modified: March 5, 2022

Editor: Soeren Sonnenburg

Abstract

LIBLINEAR is an open source library for large-scale linear classification. It supports logistic
regression and linear support vector machines. We provide easy-to-use command-line tools
and library calls for users and developers. Comprehensive documents are available for both
beginners and advanced users. Experiments demonstrate that LIBLINEAR is very efficient
on large sparse data sets.

Keywords: large-scale linear classification, logistic regression, support vector machines,
open source, machine learning

1. Introduction

Solving large-scale classification problems is crucial in many applications such as text clas-
sification. Linear classification has become one of the most promising learning techniques
for large sparse data with a huge number of instances and features. We develop LIBLINEAR
as an easy-to-use tool to deal with such data. It supports L2-regularized logistic regression
(LR), L2-loss and L1-loss linear support vector machines (SVMs) (Boser et al., 1992). It
inherits many features of the popular SVM library LIBSVM (Chang and Lin, 2011) such as
simple usage, rich documentation, and open source license (the BSD license1). LIBLINEAR
is very efficient for training large-scale problems. For example, it takes only several seconds
to train a text classification problem from the Reuters Corpus Volume 1 (rcv1) that has more
than 600,000 examples. For the same task, a general SVM solver such as LIBSVM would
take several hours. Moreover, LIBLINEAR is competitive with or even faster than state of the
art linear classifiers such as Pegasos (Shalev-Shwartz et al., 2007) and SVMperf (Joachims,
2006). The software is available at http://www.csie.ntu.edu.tw/~cjlin/liblinear.

This article is organized as follows. In Sections 2 and 3, we discuss the design and
implementation of LIBLINEAR. We show the performance comparisons in Section 4. Closing
remarks are in Section 5.

1. The New BSD license approved by the Open Source Initiative.

©2008 Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang and Chih-Jen Lin.

http://www.csie.ntu.edu.tw/~cjlin/liblinear

Fan, Chang, Hsieh, Wang and Lin

2. Large Linear Classification (Binary and Multi-class)

LIBLINEAR supports two popular binary linear classifiers: LR and linear SVM. Given a set
of instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈ {−1,+1}, both methods solve the
following unconstrained optimization problem with different loss functions ξ(w;xi, yi):

min
w

1

2
wTw + C

∑l

i=1
ξ(w;xi, yi), (1)

where C > 0 is a penalty parameter. For SVM, the two common loss functions are max(1−
yiw

Txi, 0) and max(1−yiwTxi, 0)2. The former is referred to as L1-SVM, while the latter is

L2-SVM. For LR, the loss function is log(1+e−yiw
Txi), which is derived from a probabilistic

model. In some cases, the discriminant function of the classifier includes a bias term, b.
LIBLINEAR handles this term by augmenting the vector w and each instance xi with an
additional dimension: wT ← [wT , b],xTi ← [xTi , B], where B is a constant specified by the
user. See Appendix A for details.2 The approach for L1-SVM and L2-SVM is a coordinate
descent method (Hsieh et al., 2008). For LR and also L2-SVM, LIBLINEAR implements a
Newton method (Galli and Lin, 2021). The Appendix of our SVM guide3 discusses when to
use which method. In the testing phase, we predict a data point x as positive if wTx > 0,
and negative otherwise. For multi-class problems, we implement the one-vs-the-rest strategy
and a method by Crammer and Singer. Details are in Keerthi et al. (2008).

3. The Software Package

The LIBLINEAR package includes a library and command-line tools for the learning task.
The design is highly inspired by the LIBSVM package. They share similar usage as well as
application program interfaces (APIs), so users/developers can easily use both packages.
However, their models after training are quite different (in particular, LIBLINEAR stores w
in the model, but LIBSVM does not.). Because of such differences, we decide not to combine
these two packages together. In this section, we show various aspects of LIBLINEAR.

3.1 Practical Usage

To illustrate the training and testing procedure, we take the data set news20,4 which has
more than one million features. We use the default classifier L2-SVM.

$ train news20.binary.tr

[output skipped]

$ predict news20.binary.t news20.binary.tr.model prediction

Accuracy = 96.575% (3863/4000)

The whole procedure (training and testing) takes less than 15 seconds on a modern com-
puter. The training time without including disk I/O is less than one second. Beyond this

2. After version 2.40, for some optimization methods implemented in LIBLINEAR, users can choose whether
the bias term should be regularized.

3. The guide can be found at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
4. This is the news20.binary set from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. We

use a 80/20 split for training and testing.

1872

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

LIBLINEAR: A Library for Large Linear Classification

simple way of running LIBLINEAR, several parameters are available for advanced use. For
example, one may specify a parameter to obtain probability outputs for logistic regression.
Details can be found in the README file.

3.2 Documentation

The LIBLINEAR package comes with plenty of documentation. The README file describes the
installation process, command-line usage, and the library calls. Users can read the “Quick
Start” section, and begin within a few minutes. For developers who use LIBLINEAR in their
software, the API document is in the “Library Usage” section. All the interface functions
and related data structures are explained in detail. Programs train.c and predict.c are
good examples of using LIBLINEAR APIs. If the README file does not give the information
users want, they can check the online FAQ page.5 In addition to software documentation,
theoretical properties of the algorithms and comparisons to other methods are in Lin et al.
(2008) and Hsieh et al. (2008). The authors are also willing to answer any further questions.

3.3 Design

The main design principle is to keep the whole package as simple as possible while making
the source codes easy to read and maintain. Files in LIBLINEAR can be separated into
source files, pre-built binaries, documentation, and language bindings. All source codes
follow the C/C++ standard, and there is no dependency on external libraries. Therefore,
LIBLINEAR can run on almost every platform. We provide a simple Makefile to compile
the package from source codes. For Windows users, we include pre-built binaries.

Library calls are implemented in the file linear.cpp. The train() function trains a
classifier on the given data and the predict() function predicts a given instance. To handle
multi-class problems via the one-vs-the-rest strategy, train() conducts several binary clas-
sifications, each of which is by calling the train one() function. train one() then invokes
the solver of users’ choice. Implementations follow the algorithm descriptions in Lin et al.
(2008) and Hsieh et al. (2008). As LIBLINEAR is written in a modular way, a new solver
can be easily plugged in. This makes LIBLINEAR not only a machine learning tool but also
an experimental platform.

Making extensions of LIBLINEAR to languages other than C/C++ is easy. Following
the same setting of the LIBSVM MATLAB/Octave interface, we have a MATLAB/Octave
extension available within the package. Many tools designed for LIBSVM can be reused with
small modifications. Some examples are the parameter selection tool and the data format
checking tool.

4. Comparison

Due to space limitation, we skip here the full details, which are in Lin et al. (2008) and Hsieh
et al. (2008). We only demonstrate that LIBLINEAR quickly reaches the testing accuracy
corresponding to the optimal solution of (1). We conduct five-fold cross validation to select
the best parameter C for each learning method (L1-SVM, L2-SVM, LR); then we train on
the whole training set and predict the testing set. Figure 1 shows the comparison between

5. FAQ can be found at http://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html.

1873

http://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html

Fan, Chang, Hsieh, Wang and Lin

(a) news20, l: 19,996, n: 1,355,191, #nz: 9,097,916 (b) rcv1, l: 677,399, n: 47,236, #nz: 156,436,656

Figure 1: Testing accuracy versus training time (in seconds). Data statistics are listed after
the data set name. l: number of instances, n: number of features, #nz: number
of nonzero feature values. We split each set to 4/5 training and 1/5 testing.

LIBLINEAR and two state of the art L1-SVM solvers: Pegasos (Shalev-Shwartz et al., 2007)
and SVMperf (Joachims, 2006). Clearly, LIBLINEAR is efficient.

To make the comparison reproducible, codes used for experiments in Lin et al. (2008)
and Hsieh et al. (2008) are available at the LIBLINEAR web page.

5. Conclusions

LIBLINEAR is a simple and easy-to-use open source package for large linear classification.
Experiments and analysis in Lin et al. (2008), Hsieh et al. (2008) and Keerthi et al. (2008)
conclude that solvers in LIBLINEAR perform well in practice and have good theoretical
properties. LIBLINEAR is still being improved by new research results and suggestions from
users. The ultimate goal is to make easy learning with huge data possible.

References

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.
In COLT, 1992.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST,
2(3):27:1–27:27, 2011.

Leonardo Galli and Chih-Jen Lin. Truncated Newton methods for linear classification.
IEEE Transactions on Neural Networks and Learning Systems, 2021. URL https://

www.csie.ntu.edu.tw/~cjlin/papers/tncg/tncg.pdf. To appear.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In ICML, 2008.

T. Joachims. Training linear SVMs in linear time. In KDD, 2006.

1874

https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/tncg.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/tncg.pdf

LIBLINEAR: A Library for Large Linear Classification

S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual
method for large scale multi-class linear SVMs. In KDD, 2008.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for
large-scale logistic regression. JMLR, 9:627–650, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver
for SVM. In ICML, 2007.

1875

LIBLINEAR: A Library for Large Linear Classification

Acknowledgments

This work was supported in part by the National Science Council of Taiwan via the grant
NSC 95-2221-E-002-205-MY3.

Appendix: Implementation Details and Practical Guide

Appendix A. Formulations

This section briefly describes classifiers supported in LIBLINEAR. Given training vectors
xi ∈ Rn, i = 1, . . . , l in two class, and a vector y ∈ Rl such that yi = {1,−1}, a linear
classifier generates a weight vector w as the model. The decision function is

sgn
(
wTx

)
.

A.1 Some Notes on the Bias Term

Before presenting all formulations, we briefly discuss the issue of the bias term in the model.
Traditionally in classifiers such as SVM, the discriminant function of the classifier includes
a bias term, b. For high-dimensional data it is known that with/without a bias term give
similar performances. Therefore, the default setting of LIBLINEAR does not consider
a bias term in the model.

For users stressing on having a bias term in the model, LIBLINEAR handles this term
by augmenting the vector w and each instance xi with an additional dimension: wT ←
[wT , b],xTi ← [xTi , B], where B is a constant specified by the user. The optimization
problem becomes

min
w,b

1

2
wTw +

1

2
b2 + C

∑l

i=1
ξ(

[
w
b

]
;

[
xi
B

]
, yi). (2)

After version 2.40, for some optimization methods, users can choose not to regularize the
bias term. Then the optimization problem is

min
w,b

1

2
wTw + C

∑l

i=1
ξ(

[
w
b

]
;

[
xi
B

]
, yi). (3)

In the following subsections, we only consider the formulation in which the bias term is
not included.

A.2 L2-regularized L1- and L2-loss Support Vector Classification

L2-regularized L1-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi)),

whereas L2-regularized L2-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

l∑
i=1

(max(0, 1− yiwTxi))
2. (4)

A.1

Fan, Chang, Hsieh, Wang and Lin

Their dual forms are:

min
α

1

2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U, i = 1, . . . , l.

where e is the vector of all ones, Q̄ = Q+D, D is a diagonal matrix, and Qij = yiyjx
T
i xj .

For L1-loss SVC, U = C and Dii = 0, ∀i. For L2-loss SVC, U =∞ and Dii = 1/(2C), ∀i.

A.3 L2-regularized Logistic Regression

L2-regularized LR solves the following unconstrained optimization problem:

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yiw
Txi). (5)

Its dual form is:

min
α

1

2
αTQα+

∑
i:αi>0

αi logαi +
∑

i:αi<C

(C − αi) log(C − αi)−
l∑

i=1

C logC

subject to 0 ≤ αi ≤ C, i = 1, . . . , l.

(6)

A.4 L1-regularized L2-loss Support Vector Classification

L1 regularization generates a sparse solution w. L1-regularized L2-loss SVC solves the
following primal problem:

min
w

‖w‖1 + C

l∑
i=1

(max(0, 1− yiwTxi))
2. (7)

where ‖ · ‖1 denotes the 1-norm.

A.5 L1-regularized Logistic Regression

L1-regularized LR solves the following unconstrained optimization problem:

min
w

‖w‖1 + C

l∑
i=1

log(1 + e−yiw
Txi). (8)

where ‖ · ‖1 denotes the 1-norm.

A.6 L2-regularized L1- and L2-loss Support Vector Regression

Support vector regression (SVR) considers a problem similar to (1), but yi is a real value
instead of +1 or −1. L2-regularized SVR solves the following primal problems:

min
w

1

2
wTw +

{
C
∑l

i=1(max(0, |yi −wTxi| − ε)) if using L1 loss,

C
∑l

i=1(max(0, |yi −wTxi| − ε))2 if using L2 loss,

A.2

LIBLINEAR: A Library for Large Linear Classification

where ε ≥ 0 is a parameter to specify the sensitiveness of the loss.

Their dual forms are:

min
α+,α−

1

2

[
α+ α−

] [Q̄ −Q
−Q Q̄

] [
α+

α−

]
− yT (α+ −α−) + εeT (α+ +α−)

subject to 0 ≤ α+
i , α

−
i ≤ U, i = 1, . . . , l,

(9)

where e is the vector of all ones, Q̄ = Q+D, Q ∈ Rl×l is a matrix with Qij ≡ xTi xj , D is
a diagonal matrix,

Dii =

{
0
1

2C

, and U =

{
C if using L1-loss SVR,

∞ if using L2-loss SVR.

Rather than (9), in LIBLINEAR, we consider the following problem.

min
β

1

2
βT Q̄β − yTβ + ε‖β‖1

subject to − U ≤ βi ≤ U, i = 1, . . . , l,

(10)

where β ∈ Rl and ‖ · ‖1 denotes the 1-norm. It can be shown that an optimal solution of
(10) leads to the following optimal solution of (9).

α+
i ≡ max(βi, 0) and α−i ≡ max(−βi, 0).

Appendix B. L2-regularized L1- and L2-loss SVM (Solving Dual)

See Hsieh et al. (2008) for details of a dual coordinate descent method.

Appendix C. L2-regularized Logistic Regression (Solving Primal)

From versions 1.0 to 2.30, a trust region Newton method was considered. Some details are
as follows.

� The main algorithm was developed in Lin et al. (2008).

� After version 2.11, the trust-region update rule is improved by the setting proposed
in Hsia et al. (2017).

� After version 2.20, the convergence of conjugate gradient method is improved by
applying a preconditioning technique proposed in Hsia et al. (2018).

After version 2.40, the trust-region Newton method is replaced by a line-search Newton
method. Details are in Galli and Lin (2021) and the release notes of LIBLINEAR 2.40 (Galli
and Lin, 2020).

A.3

Fan, Chang, Hsieh, Wang and Lin

Appendix D. L2-regularized L2-loss SVM (Solving Primal)

The algorithm is the same as the Newton methods for logistic regression (trust-region New-
ton in Lin et al. (2008) before version 2.30 and line-search Newton in Galli and Lin (2021)
after version 2.40). The only difference is the formulas of gradient and Hessian-vector
products. We list them here.

The objective function is in (4). Its gradient is

w + 2CXT
I,:(XI,:w − yI), (11)

where I ≡ {i | 1− yiwTxi > 0} is an index set, y = [y1, . . . , yl]
T , and X =

x
T
1
...
xTl

.

Eq. (4) is differentiable but not twice differentiable. To apply the Newton method, we
consider the following generalized Hessian of (4):

I + 2CXTDX = I + 2CXT
I,:DI,IXI,:, (12)

where I is the identity matrix and D is a diagonal matrix with the following diagonal
elements:

Dii =

{
1 if i ∈ I,
0 if i /∈ I.

The Hessian-vector product between the generalized Hessian and a vector s is:

s+ 2CXT
I,: (DI,I (XI,:s)) . (13)

Appendix E. Multi-class SVM by Crammer and Singer

Keerthi et al. (2008) extend the coordinate descent method to a sequential dual method
for a multi-class SVM formulation by Crammer and Singer. However, our implementation
is slightly different from the one in Keerthi et al. (2008). In the following sections, we
describe the formulation and the implementation details, including the stopping condition
(Appendix E.4) and the shrinking strategy (Appendix E.5).

E.1 Formulations

Given a set of instance-label pairs (xi, yi), i = 1, . . . , l,xi ∈ Rn, yi ∈ {1, . . . , k}, Crammer
and Singer (2000) proposed a multi-class approach by solving the following optimization
problem:

min
wm,ξi

1

2

k∑
m=1

wT
mwm + C

l∑
i=1

ξi

subject to wT
yixi −w

T
mxi ≥ emi − ξi, i = 1, . . . , l, (14)

where

emi =

{
0 if yi = m,

1 if yi 6= m.

A.4

LIBLINEAR: A Library for Large Linear Classification

The decision function is

arg max
m=1,...,k

wT
mx.

The dual of (14) is:

min
α

1

2

k∑
m=1

‖wm‖2 +

l∑
i=1

k∑
m=1

emi α
m
i

subject to

k∑
m=1

αmi = 0,∀i = 1, . . . , l (15)

αmi ≤ Cmyi ,∀i = 1, . . . , l,m = 1, . . . , k,

where

wm =

l∑
i=1

αmi xi, ∀m, α = [α1
1, . . . , α

k
1 , . . . , α

1
l , . . . , α

k
l]
T . (16)

and

Cmyi =

{
0 if yi 6= m,

C if yi = m.
(17)

Keerthi et al. (2008) proposed a sequential dual method to efficiently solve (15). Our
implementation is based on this paper. The main differences are the sub-problem solver
and the shrinking strategy.

E.2 The Sequential Dual Method for (15)

The optimization problem (15) has kl variables, which are very large. Therefore, we extend
the coordinate descent method to decomposes α into blocks [ᾱ1, . . . , ᾱl], where

ᾱi = [α1
i , . . . , α

k
i]
T , i = 1, . . . , l.

Each time we select an index i and aim at minimizing the following sub-problem formed by
ᾱi:

min
ᾱi

k∑
m=1

1

2
A(αmi)2 +Bmα

m
i

subject to

k∑
m=1

αmi = 0,

αmi ≤ Cmyi ,m = {1, . . . , k},

where

A = xTi xi and Bm = wT
mxi + emi −Aαmi . (18)

In (18), A and Bm are constants obtained using α of the previous iteration..

A.5

Fan, Chang, Hsieh, Wang and Lin

Algorithm 1 The coordinate descent method for (15)

� Given α and the corresponding wm

� While α is not optimal, (outer iteration)

1. Randomly permute {1, . . . , l} to {π(1), . . . , π(l)}
2. For i = π(1), . . . , π(l), (inner iteration)

If ᾱi is active and xTi xi 6= 0 (i.e., A 6= 0)

– Solve a |Ui|-variable sub-problem (19)

– Maintain wm for all m by (20)

Since bounded variables (i.e., αmi = Cmyi , ∀m /∈ Ui) can be shrunken during training, we

minimize with respect to a sub-vector ᾱUi
i , where Ui ⊂ {1, . . . , k} is an index set. That is,

we solve the following |Ui|-variable sub-problem while fixing other variables:

min
ᾱ

Ui
i

∑
m∈Ui

1

2
A(αmi)2 +Bmα

m
i

subject to
∑
m∈Ui

αmi = −
∑
m/∈Ui

αmi , (19)

αmi ≤ Cmyi ,m ∈ Ui.

Notice that there are two situations that we do not solve the sub-problem of index i. First,
if |Ui| < 2, then the whole ᾱi is fixed by the equality constraint in (19). So we can shrink
the whole vector ᾱi while training. Second, if A = 0, then xi = 0 and (16) shows that
the value of αmi does not affect wm for all m. So the value of ᾱi is independent of other
variables and does not affect the final model. Thus we do not need to solve ᾱi for those
xi = 0.

Similar to Hsieh et al. (2008), we consider a random permutation heuristic. That
is, instead of solving sub-problems in the order of ᾱ1, . . . ᾱl, we permute {1, . . . l} to
{π(1), . . . π(l)}, and solve sub-problems in the order of ᾱπ(1), . . . , ᾱπ(l). Past results show
that such a heuristic gives faster convergence.

We discuss our sub-problem solver in Appendix E.3. After solving the sub-problem, if
α̂mi is the old value and αmi is the value after updating, we maintain wm, defined in (16),
by

wm ← wm + (αmi − α̂mi)yixi. (20)

To save the computational time, we collect elements satisfying αmi 6= α̂mi before doing (20).
The procedure is described in Algorithm 1.

E.3 Solving the sub-problem (19)

We adopt the algorithm in Crammer and Singer (2000) but use a rather simple way as in
Lee and Lin (2013) to illustrate it. The KKT conditions of (19) indicate that there are

A.6

LIBLINEAR: A Library for Large Linear Classification

Algorithm 2 Solving the sub-problem

� Given A, B

� Compute D by (27)

� Sort D in decreasing order; assume D has elements D1, D2, . . . , D|Ui|

� r ← 2, β ← D1 −AC

� While r ≤ |Ui| and β/(r − 1) < Dr

1. β ← β +Dr

2. r ← r + 1

� β ← β/(r − 1)

� αmi ← min(Cmyi , (β −Bm)/A), ∀m

scalars β, ρm,m ∈ Ui such that ∑
m∈Ui

αmi = −
∑
m/∈Ui

Cmyi , (21)

αmi ≤ Cmyi ,∀m ∈ Ui, (22)

ρm(Cmyi − α
m
i) = 0, ρm ≥ 0,∀m ∈ Ui, (23)

Aαmi +Bm − β = −ρm,∀m ∈ Ui. (24)

Using (22), equations (23) and (24) are equivalent to

Aαmi +Bm − β = 0, if αmi < Cmyi , ∀m ∈ Ui, (25)

Aαmi +Bm − β = ACmyi +Bm − β ≤ 0, if αmi = Cmyi ,∀m ∈ Ui. (26)

Now KKT conditions become (21)-(22), and (25)-(26). For simplicity, we define

Dm = Bm +ACmyi ,m = 1, . . . , k. (27)

If β is known, then we can show that

αmi ≡ min(Cmyi ,
β −Bm
A

) (28)

satisfies all KKT conditions except (21). Clearly, the way to get αmi in (28) gives αmi ≤
Cmyi ,∀m ∈ Ui, so (22) holds. From (28), when

β −Bm
A

< Cmyi , which is equivalent to β < Dm, (29)

we have

αmi =
β −Bm
A

< Cmyi , which implies β −Bm = Aαmi .

A.7

Fan, Chang, Hsieh, Wang and Lin

Thus, (25) is satisfied. Otherwise, β ≥ Dm and αmi = Cmyi satisfies (26).
The remaining task is how to find β such that (21) holds. From (21) and (25) we obtain∑

m:m∈Ui
αm
i <C

m
yi

(β −Bm) = −(
∑

m:m/∈Ui

ACmyi +
∑

m:m∈Ui
α=Cm

yi

ACmyi).

Then, ∑
m:m∈Ui
αm
i <C

m
yi

β =
∑

m:m∈Ui
αm
i <C

m
yi

Dm −
k∑

m=1

ACmyi

=
∑

m:m∈Ui
αm
i <C

m
yi

Dm −AC.

Hence,

β =

∑
m∈Ui,αm

i <C
m
yi
Dm −AC

|{m | m ∈ Ui, αmi < Cmyi }|
. (30)

Combining (30) and (26), we begin with a set Φ = φ, and then sequentially add one
index m to Φ by the decreasing order of Dm, m = 1, . . . , k,m 6= yi until

h =

∑
m∈Φ

Dm −AC

|Φ|
≥ max

m/∈Φ
Dm. (31)

Let β = h when (31) is satisfied. Algorithm 2 lists the details for solving the sub-problem
(19). To prove (21), it is sufficient to show that β and αmi ,∀m ∈ Ui obtained by Algorithm
2 satisfy (30). This is equivalent to showing that the final Φ satisfies

Φ = {m | m ∈ Ui, αmi < Cmyi }.

From (28) and (29), we prove the following equivalent result.

β < Dm, ∀m ∈ Φ and β ≥ Dm, ∀m /∈ Φ. (32)

The second inequality immediately follows from (31). For the first, assume t is the last
element added to Φ. When it is considered, (31) is not satisfied yet, so∑

m∈Φ\{t}

Dm −AC

|Φ| − 1
< Dt. (33)

Using (33) and the fact that elements in Φ are added in the decreasing order of Dm,∑
m∈Φ

Dm −AC =
∑

m∈Φ\{t}

Dm +Dt −AC

< (|Φ| − 1)Dt +Dt = |Φ|Dt

≤ |Φ|Ds, ∀s ∈ Φ.

Thus, we have the first inequality in (32).
With all KKT conditions satisfied, Algorithm 2 obtains an optimal solution of (19).

A.8

LIBLINEAR: A Library for Large Linear Classification

E.4 Stopping Condition

The KKT optimality conditions of (15) imply that there are b1, . . . , bl ∈ R such that for all
i = 1, . . . , l, m = 1, . . . , k,

wT
mxi + emi − bi = 0 if αmi < Cmi ,

wT
mxi + emi − bi ≤ 0 if αmi = Cmi .

Let

Gmi =
∂f(α)

∂αmi
= wT

mxi + emi , ∀i,m,

the optimality of α holds if and only if

max
m

Gmi − min
m:αm

i <C
m
i

Gmi = 0,∀i. (34)

At each inner iteration, we first compute Gmi and define:

minG ≡ min
m:αm

i <C
m
i

Gmi ,maxG ≡ max
m

Gmi , Si = maxG−minG.

Then the stopping condition for a tolerance ε > 0 can be checked by

max
i
Si < ε. (35)

Note that maxG and minG are calculated based on the latest α (i.e., α after each inner
iteration).

E.5 Shrinking Strategy

The shrinking technique reduces the size of the problem without considering some bounded
variables. Eq. (34) suggests that we can shrink αmi out if αmi satisfies the following condition:

αmi = Cmyi and Gmi < minG. (36)

Then we solve a |Ui|-variable sub-problem (19). To implement this strategy, we maintain an
l× k index array alpha index and an l array activesize i, such that activesize i[i] =
|Ui|. We let the first activesize i[i] elements in alpha index[i] are active indices, and
others are shrunken indices. Moreover, we need to maintain an l-variable array y index,
such that

alphaindex[i][y index[i]] = yi. (37)

When we shrink a index alpha index[i][m] out, we first find the largest m̄ such that m̄ <
activesize i[i] and alpha index[i][m̄] does not satisfy the shrinking condition (36), then
swap the two elements and decrease activesize i[i] by 1. Note that if we swap index yi, we
need to maintain y index[i] to ensure (37). For the instance level shrinking and random
permutation, we also maintain a index array index and a variable activesize similar to
alpha index and activesize i, respectively. We let the first activesize elements of
index be active indices, while others be shrunken indices. When |Ui|, the active size of ᾱi,

A.9

Fan, Chang, Hsieh, Wang and Lin

Algorithm 3 Shrinking strategy

� Given ε

� Begin with εshrink ← max(1, 10ε), start from all← True

� While

1. For all active ᾱi

(a) Do shrinking and calculate Si

(b) stopping← max(stopping, Si)

(c) Optimize over active variables in ᾱi

2. If stopping < εshrink

(a) If stopping < ε and start from all is True, BREAK

(b) Take all shrunken variables back

(c) start from all← True

(d) εshrink ← max(ε, εshrink/2)

Else

(a) start from all← False

is less than 2 (activesize i[i] < 2), we swap this index with the last active element in
index, and decrease activesize by 1.

However, experiments show that (36) is too aggressive. There are too many wrongly
shrunken variables. To deal with this problem, we use an ε-cooling strategy. Given a
pre-specified stopping tolerance ε, we begin with

εshrink = max(1, 10ε)

and decrease it by a factor of 2 in each graded step until εshrink ≤ ε.
The program ends if the stopping condition (35) is satisfied. But we can exactly compute

(35) only when there are no shrunken variables. Thus the process stops under the following
two conditions:

1. None of the instances is shrunken in the beginning of the loop.

2. (35) is satisfied.

Our shrinking strategy is in Algorithm 3.
Regarding the random permutation, we permute the first activesize elements of index

at each outer iteration, and then sequentially solve the sub-problems.

Appendix F. L1-regularized L2-loss Support Vector Machines

In this section, we describe details of a coordinate descent method for L1-regularized L2-loss
support vector machines. The problem formulation is in (7). Our procedure is similar to

A.10

LIBLINEAR: A Library for Large Linear Classification

Chang et al. (2008) for L2-regularized L2-loss SVM, but we make certain modifications to
handle the non-differentiability due to the L1 regularization. It is also related to Tseng and
Yun (2009). See detailed discussions of theoretical properties in Yuan et al. (2010).

Define

bi(w) ≡ 1− yiwTxi and I(w) ≡ {i | bi(w) > 0}.

The one-variable sub-problem for the jth variable is a function of z:

f(w + zej)− f(w)

= |wj + z| − |wj |+ C
∑

i∈I(w+zej)

bi(w + zej)
2 − C

∑
i∈I(w)

bi(w)2

= |wj + z|+ Lj(z;w) + constant

≈ |wj + z|+ L′j(0;w)z +
1

2
L′′j (0;w)z2 + constant, (38)

where

ej = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0]T ∈ Rn, (39)

Lj(z;w) ≡ C
∑

i∈I(w+zej)

bi(w + zej)
2,

L′j(0;w) = −2C
∑
i∈I(w)

yixijbi(w),

and

L′′j (0;w) = max(2C
∑
i∈I(w)

x2
ij , 10−12). (40)

Note that Lj(z;w) is differentiable but not twice differentiable, so 2C
∑

i∈I(w) x
2
ij in (40)

is a generalized second derivative (Chang et al., 2008) at z = 0. This value may be zero
if xij = 0, ∀i ∈ I(w), so we further make it strictly positive. The Newton direction from
minimizing (38) is

d =


−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

See the derivation in (Yuan et al., 2010, Appendix B). We then conduct a line search
procedure to check if d, βd, β2d, . . . , satisfy the following sufficient decrease condition:

|wj + βtd| − |wj |+ C
∑

i∈I(w+βtdej)

bi(w + βtdej)
2 − C

∑
i∈I(w)

bi(w)2

≤ σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
,

(41)

A.11

Fan, Chang, Hsieh, Wang and Lin

where t = 0, 1, 2, . . . , β ∈ (0, 1), and σ ∈ (0, 1). From Chang et al. (2008, Lemma 5),

C
∑

i∈I(w+dej)

bi(w + dej)
2 − C

∑
i∈I(w)

bi(w)2 ≤ C(
l∑

i=1

x2
ij)d

2 + L′j(0;w)d.

We can precompute
∑l

i=1 x
2
ij and check

|wj + βtd| − |wj |+ C(
l∑

i=1

x2
ij)(β

td)2 + L′j(0;w)βtd

≤ σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
,

(42)

before (41). Note that checking (42) is very cheap. The main cost in checking (41) is on
calculating bi(w + βtdej), ∀i. To save the number of operations, if bi(w) is available, one
can use

bi(w + βtdej) = bi(w)− (βtd)yixij . (43)

Therefore, we store and maintain bi(w) in an array. Since bi(w) is used in every line
search step, we cannot override its contents. After the line search procedure, we must
run (43) again to update bi(w). That is, the same operation (43) is run twice, where the
first is for checking the sufficient decrease condition and the second is for updating bi(w).
Alternatively, one can use another array to store bi(w+βtdej) and copy its contents to the
array for bi(w) in the end of the line search procedure. We propose the following trick to
use only one array and avoid the duplicated computation of (43). From

bi(w + dej) = bi(w)− dyixij ,
bi(w + βdej) = bi(w + dej) + (d− βd)yixij ,

bi(w + β2dej) = bi(w + βdej) + (βd− β2d)yixij ,

...

(44)

at each line search step, we obtain bi(w+βtdej) from bi(w+βt−1dej) in order to check the
sufficient decrease condition (41). If the condition is satisfied, then the bi array already has
values needed for the next sub-problem. If the condition is not satisfied, using bi(w+βtdej)
on the right-hand side of the equality (44), we can obtain bi(w+ βt+1dej) for the next line
search step. Therefore, we can simultaneously check the sufficient decrease condition and
update the bi array. A summary of the procedure is in Algorithm 4.

The stopping condition is by checking the optimality condition. An optimal wj satisfies
L′j(0;w) + 1 = 0 if wj > 0,

L′j(0;w)− 1 = 0 if wj < 0,

−1 ≤ L′j(0;w) ≤ 1 if wj = 0.

(45)

We calculate

vj ≡


|L′j(0;w) + 1| if wj > 0,

|L′j(0;w)− 1| if wj < 0,

max
(
L′j(0;w)− 1, −1− L′j(0;w), 0

)
if wj = 0,

A.12

LIBLINEAR: A Library for Large Linear Classification

to measure how the optimality condition is violated. The procedure stops if

n∑
j=1

(vj at the current iteration)

≤ 0.01× min(#pos,#neg)

l
×

n∑
j=1

(vj at the 1st iteration) ,

where #pos and #neg indicate the numbers of positive and negative labels in a data set,
respectively.

Due to the sparsity of the optimal solution, some wj become zeros in the middle of
the optimization procedure and are not changed subsequently. We can shrink these wj
components to reduce the number of variables. From (45), an optimal wj satisfies that

−1 < L′j(0;w) < 1 implies wj = 0.

If at one iteration, wj = 0 and

−1 +M ≤ L′j(0;w) ≤ 1−M,

where

M ≡ maxj (vj at the previous iteration)

l
,

we conjecture that wj will not be changed in subsequent iterations. We then remove this
wj from the optimization problem.

Appendix G. L1-regularized Logistic Regression

In LIBLINEAR (after version 1.8), we implement an improved GLMNET, called newGLMNET,
for solving L1-regularized logistic regression. GLMNET was proposed by Friedman et al.
(2010), while details of newGLMNET can be found in Yuan et al. (2012). Here, we provide
implementation details not mentioned in Yuan et al. (2012).

The problem formulation is in (8). To avoid handling yi in e−yiw
Txi , we reformulate

f(w) as

f(w) = ‖w‖1 + C

 l∑
i=1

log(1 + e−w
Txi) +

∑
i:yi=−1

wTxi

 .

We define

L(w) ≡ C

 l∑
i=1

log(1 + e−w
Txi) +

∑
i:yi=−1

wTxi

 .

The gradient and Hessian of ∇L(w) can be written as

∇jL(w) = C

 l∑
i=1

−xij
1 + ewTxi

+
∑

i:yi=−1

xij

 , and

∇2
jjL(w) = C

(
l∑

i=1

(
xij

1 + ewTxi

)2

ew
Txi

)
.

(46)

A.13

Fan, Chang, Hsieh, Wang and Lin

For line search, we use the following form of the sufficient decrease condition:

f(w + βtd)− f(w)

= ‖w + βtd‖1 − ‖w‖1 + C

 l∑
i=1

log

(
1 + e−(w+βtd)Txi

1 + e−wTxi

)
+ βt

∑
i:yi=−1

dTxi


= ‖w + βtd‖1 − ‖w‖1 + C

 l∑
i=1

log

(
e(w+βtd)Txi + 1

e(w+βtd)Txi + eβtdTxi

)
+ βt

∑
i:yi=−1

dTxi


≤ σβt

(
∇L(w)Td+ ‖w + d‖1 − ‖w‖1

)
, (47)

where d is the search direction, β ∈ (0, 1) and σ ∈ (0, 1). From (46) and (47), all we need

is to maintain dTxi and ew
Txi ,∀i. We update ew

Txi by

e(w+λd)Txi = ew
Txi · eλdTxi , ∀i.

Appendix H. Implementation of L1-regularized Logistic Regression in
LIBLINEAR Versions 1.4–1.7

In the earlier versions of LIBLINEAR (versions 1.4–1.7), a coordinate descent method is
implemented for L1-regularized logistic regression. It is similar to the method for L1-
regularized L2-loss SVM in Appendix F.

The problem formulation is in (8). To avoid handling yi in e−yiw
Txi , we reformulate

f(w) as

f(w) = ‖w‖1 + C

 l∑
i=1

log(1 + e−w
Txi) +

∑
i:yi=−1

wTxi

 .

At each iteration, we select an index j and minimize the following one-variable function of
z:

f(w + zej)− f(w)

= |wj + z| − |wj |+ C

 l∑
i=1

log(1 + e−(w+zej)Txi) +
∑

i:yi=−1

(w + zej)
Txi


− C

 l∑
i=1

log(1 + e−w
Txi) +

∑
i:yi=−1

wTxi


= |wj + z|+ Lj(z;w) + constant

≈ |wj + z|+ L′j(0;w)z +
1

2
L′′j (0;w)z2 + constant, (48)

A.14

LIBLINEAR: A Library for Large Linear Classification

where ej is defined in (39),

Lj(z;w) ≡ C

 l∑
i=1

log(1 + e−(w+zej)Txi) +
∑

i:yi=−1

(w + zej)
Txi

 ,

L′j(0;w) = C

 l∑
i=1

−xij
ewTxi + 1

+
∑

i:yi=−1

xij

 , and

L′′j (0;w) = C

(
l∑

i=1

(
xij

ewTxi + 1

)2

ew
Txi

)
.

The optimal solution d of minimizing (48) is:

d =


−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

We then conduct a line search procedure to check if d, βd, β2d, . . . , satisfy the following
sufficient decrease condition:

f(w + βtdej)− f(w)

= C

 ∑
i:xij 6=0

log

(
1 + e−(w+βtdej)Txi

1 + e−wTxi

)
+ βtd

∑
i:yi=−1

xij

+ |wj + βtd| − |wj |

=
l∑

i:xij 6=0

C log

(
e(w+βtdej)Txi + 1

e(w+βtdej)Txi + eβ
tdxij

)
+ βtd

∑
i:yi=−1

Cxij + |wj + βtd| − |wj | (49)

≤ σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
, (50)

where t = 0, 1, 2, . . . , β ∈ (0, 1), and σ ∈ (0, 1).

As the computation of (49) is expensive, similar to (42) for L2-loss SVM, we derive an
upper bound for (49). If

x∗j ≡ max
i
xij ≥ 0,

A.15

Fan, Chang, Hsieh, Wang and Lin

then

∑
i:xij 6=0

C log

(
e(w+dej)Txi + 1

e(w+dej)Txi + edxij

)
=

∑
i:xij 6=0

C log

(
ew

Txi + e−dxij

ewTxi + 1

)

≤ (
∑

i:xij 6=0

C) log


∑

i:xij 6=0C
ew

T xi+e−dxij

ew
T xi+1∑

i:xij 6=0C

 (51)

= (
∑

i:xij 6=0

C) log

1 +

∑
i:xij 6=0C

(
1

ew
T xi+1

(e−dxij − 1)
)

∑
i:xij 6=0C



≤ (
∑

i:xij 6=0

C) log

1 +

∑
i:xij 6=0C

(
1

ew
T xi+1

(
xije

−dx∗j

x∗j
+

x∗j−xij
x∗j
− 1)

)
∑

i:xij 6=0C

 (52)

= (
∑

i:xij 6=0

C) log

1 +
(e−dx

∗
j − 1)

∑
i:xij 6=0

Cxij

ew
T xi+1

x∗j
∑

i:xij 6=0C

 , (53)

where (51) is from Jensen’s inequality and (52) is from the convexity of the exponential
function:

e−dxij ≤ xij
x∗j
e−dx

∗
j +

x∗j − xij
x∗j

e0 if xij ≥ 0. (54)

As f(w) can also be represented as

f(w) = ‖w‖1 + C

 l∑
i=1

log(1 + ew
Txi)−

∑
i:yi=1

wTxi

 ,

we can derive another similar bound

∑
i:xij 6=0

C log

(
1 + e(w+dej)Txi

1 + ewTxi

)

≤ (
∑

i:xij 6=0

C) log

1 +
(edx

∗
j − 1)

∑
i:xij 6=0

Cxije
wT xi

ew
T xi+1

x∗j
∑

i:xij 6=0C

 . (55)

Therefore, before checking the sufficient decrease condition (50), we check if

min
(
(55)− βtd

∑
i:yi=1

Cxij + |wj + βtd| − |wj |,

(53) + βtd
∑

i:yi=−1

Cxij + |wj + βtd| − |wj |
)

≤ σβt
(
L′j(0;w)d+ |wj + d| − |wj |

)
.

(56)

A.16

LIBLINEAR: A Library for Large Linear Classification

Note that checking (56) is very cheap since we already have∑
i:xij 6=0

Cxij

ewTxi + 1
and

∑
i:xij 6=0

Cxije
wTxi

ewTxi + 1

in calculating L′j(0;w) and L′′j (0;w). However, to apply (56) we need that the data set
satisfies xij ≥ 0, ∀i,∀j. This condition is used in (54).

The main cost in checking (49) is on calculating e(w+βtdej)Txi , ∀i. To save the number

of operations, if ew
Txi is available, one can use

e(w+βtdej)Txi = ew
Txie(βtd)xij .

Therefore, we store and maintain ew
Txi in an array. The setting is similar to the array

1 − yiwTxi for L2-loss SVM in Appendix F, so one faces the same problem of not being
able to check the sufficient decrease condition (50) and update the ew

Txi array together. We
can apply the same trick in Appendix F, but the implementation is more complicated. In
our implementation, we allocate another array to store e(w+βtdej)Txi and copy its contents
for updating the ew

Txi array in the end of the line search procedure. A summary of the
procedure is in Algorithm 5.

The stopping condition and the shrinking implementation to remove some wj compo-
nents are similar to those for L2-loss support vector machines (see Appendix F).

Appendix I. L2-regularized Logistic Regression (Solving Dual)

See Yu et al. (2011) for details of a dual coordinate descent method.

Appendix J. L2-regularized Logistic Regression (Solving Dual)

See Yu et al. (2011) for details of a dual coordinate descent method.

Appendix K. L2-regularized Support Vector Regression

LIBLINEAR solves both the primal and the dual of L2-loss SVR, but only the dual of L1-loss
SVR. The dual SVR is solved by a coordinate descent, and the primal SVR is solved by a
trust region Newton method. See Ho and Lin (2012) for details of them. In Appendix C,
we mentioned that the trust region Newton method is improved in version 2.11 and 2.20
(See details in Hsia et al. (2017) and Hsia et al. (2018)). Both modifications are applicable
to the primal SVR solver.

We mentioned in Appendix C that after version 2.40, the trust-region Newton method
is replaced by a line-search Newton method (Galli and Lin, 2021). This new setting is now
used for the primal SVR solver.

Appendix L. Probability Outputs

Currently we support probability outputs for logistic regression only. Although it is possible
to apply techniques in LIBSVM to obtain probabilities for SVM, we decide not to implement
it for code simplicity.

A.17

Fan, Chang, Hsieh, Wang and Lin

The probability model of logistic regression is

P (y|x) =
1

1 + e−ywTx
, where y = ±1,

so probabilities for two-class classification are immediately available. For a k-class problem,
we need to couple k probabilities

1 vs. not 1: P (y = 1|x) = 1/(1 + e−w
T
1 x)

...

k vs. not k: P (y = k|x) = 1/(1 + e−w
T
k x)

together, where w1, . . . ,wk are k model vectors obtained after the one-vs-the-rest strategy.
Note that the sum of the above k values is not one. A procedure to couple them can be
found in Section 4.1 of Huang et al. (2006), but for simplicity, we implement the following
heuristic:

P (y|x) =
1/(1 + e−w

T
y x)∑k

m=1 1/(1 + e−wT
mx)

.

Appendix M. Automatic and Efficient Parameter Selection

See Chu et al. (2015); Hsia and Lin (2020) for details of the procedure and Section N.5 for
the practical use.

A.18

LIBLINEAR: A Library for Large Linear Classification

Algorithm 4 A coordinate descent algorithm for L1-regularized L2-loss SVC

� Choose β = 0.5 and σ = 0.01. Given initial w ∈ Rn.

� Calculate
bi ← 1− yiwTxi, i = 1, . . . , l.

� While w is not optimal

For j = 1, 2, . . . , n

1. Find the Newton direction by solving

min
z

|wj + z|+ L′j(0;w)z +
1

2
L′′j (0;w)z2.

The solution is

d =


−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

2. d̄← 0; ∆← L′j(0;w)d+ |wj + d| − |wj |.
3. While t = 0, 1, 2, . . .

(a) If

|wj + d| − |wj |+ C(

l∑
i=1

x2
ij)d

2 + L′j(0;w)d ≤ σ∆,

then
bi ← bi + (d̄− d)yixij , ∀i and BREAK.

(b) If t = 0, calculate

Lj,0 ← C
∑
i∈I(w)

b2i .

(c) bi ← bi + (d̄− d)yixij , ∀i.
(d) If

|wj + d| − |wj |+ C
∑

i∈I(w+dej)

b2i − Lj,0 ≤ σ∆,

then

BREAK.

Else
d̄← d; d← βd; ∆← β∆.

4. Update wj ← wj + d.

A.19

Fan, Chang, Hsieh, Wang and Lin

Algorithm 5 A coordinate descent algorithm for L1-regularized logistic regression

� Choose β = 0.5 and σ = 0.01. Given initial w ∈ Rn.

� Calculate
bi ← ew

Txi , i = 1, . . . , l.

� While w is not optimal

For j = 1, 2, . . . , n

1. Find the Newton direction by solving

min
z

|wj + z|+ L′j(0;w)z +
1

2
L′′j (0;w)z2.

The solution is

d =


−L′j(0;w)+1

L′′j (0;w)
if L′j(0;w) + 1 ≤ L′′j (0;w)wj ,

−L′j(0;w)−1

L′′j (0;w)
if L′j(0;w)− 1 ≥ L′′j (0;w)wj ,

−wj otherwise.

2. ∆← L′j(0;w)d+ |wj + d| − |wj |.
3. While

(a) If mini,j xij ≥ 0 and

min
(
(55)− d

∑
i:yi=1

Cxij + |wj + d| − |wj |,

(53) + d
∑

i:yi=−1

Cxij + |wj + d| − |wj |
)

≤ σ∆,

then
bi ← bi × edxij , ∀i and BREAK.

(b) b̄i ← bi × edxij , ∀i.
(c) If

∑
i:xij 6=0

C log

(
b̄i + 1

b̄i + edxij

)
+ d

∑
i:yi=−1

Cxij + |wj + d| − |wj | ≤ σ∆,

then
bi ← b̄i, ∀i and BREAK.

Else
d← βd; ∆← β∆.

4. Update wj ← wj + d.

A.20

LIBLINEAR: A Library for Large Linear Classification

A Practical Guide to LIBLINEAR
Appendix N.

In this section, we present a practical guide for LIBLINEAR users. For instructions of using
LIBLINEAR and additional information, see the README file included in the package and the
LIBLINEAR FAQ, respectively.

N.1 When to Use Linear (e.g., LIBLINEAR) Rather Then Nonlinear (e.g.,
LIBSVM)?

Please see the discussion in Appendix C of Hsu et al. (2003).

N.2 Data Preparation (In Particular, Document Data)

LIBLINEAR can be applied to general problems, but it is particularly useful for document
data. We discuss how to transform documents to the input format of LIBLINEAR.

A data instance of a classification problem is often represented in the following form.

label feature 1, feature 2, . . ., feature n

The most popular method to represent a document is the “bag-of-words” model (Harris,
1954), which considers each word as a feature. Assume a document contains the following
two sentences

This is a simple sentence.
This is another sentence.

We can transfer this document to the following Euclidean vector:

a an · · · another · · · is · · · this · · ·
1 0 · · · 1 · · · 2 · · · 2 · · ·

The feature “is” has a value 2 because “is” appears twice in the document. This type of
data often has the following two properties.

1. The number of features is large.

2. Each instance is sparse because most feature values are zero.

Let us consider a 20-class data set news20 at libsvmtools.6 The first instance is

1 197:2 321:3 399:1 561:1 575:1 587:1 917:1 1563:1 1628:3 1893:1 3246:1 4754:2

6053:1 6820:1 6959:1 7571:1 7854:2 8407:1 11271:1 12886:1 13580:1 13588:1

13601:2 13916:1 14413:1 14641:1 15950:1 20506:1 20507:1

Each (index:value) pair indicates a word’s “term frequency” (TF). In practice, additional
steps such as removing stop words or stemming (i.e., using only root words) may be applied,
although we do not discuss details here.

Existing methods to generate document feature vectors include

6. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#news20

A.21

http://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#news20

Fan, Chang, Hsieh, Wang and Lin

1. TF: term frequency.

2. TF-IDF (term frequency, inverse document frequency); see Salton and Yang (1973)
and any information retrieval book.

3. binary: each feature indicates if a word appears in the document or not.

For example, the binary-feature vector of the news20 instance is

1 197:1 321:3 399:1 561:1 575:1 587:1 917:1 1563:1 1628:3 1893:1 3246:1 4754:1

6053:1 6820:1 6959:1 7571:1 7854:1 8407:1 11271:1 12886:1 13580:1 13588:1

13601:1 13916:1 14413:1 14641:1 15950:1 20506:1 20507:1

Our past experiences indicate that binary and TF-IDF are generally useful if normalization
has been properly applied (see the next section).

N.3 Normalization

In classification, large values in data may cause the following problems.

1. Features in larger numeric ranges may dominate those in smaller ranges.

2. Optimization methods for training may take longer time.

The typical remedy is to scale data feature-wisely. This is suggested in the popular SVM
guide by Hsu et al. (2003).7 However, for document data, often a simple instance-wise
normalization is enough. Each instance becomes a unit vector; see the following normalized
news20 instance.

1 197:0.185695 321:0.185695 399:0.185695 561:0.185695 575:0.185695 587:0.185695

917:0.185695 1563:0.185695 1628:0.185695 1893:0.185695 3246:0.185695 4754:0.185695

6053:0.185695 6820:0.185695 6959:0.185695 7571:0.185695 7854:0.185695 8407:0.185695

11271:0.185695 12886:0.185695 13580:0.185695 13588:0.185695 13601:0.185695

13916:0.185695 14413:0.185695 14641:0.185695 15950:0.185695 20506:0.185695 20507:0.185695

There are 29 non-zero features, so each one has the value 1/
√

29. We run LIBLINEAR to
find five-fold cross-validation (CV) accuracy on the news20 data.8 For the original data
using TF features, we have

$ time ./train -v 5 news20

Cross Validation Accuracy = 80.433%

23.709s

During the computation, the following warning message appears many times to indicate
certain difficulties.

WARNING: reaching max number of iterations

7. For sparse data, scaling each feature to [0, 1] is more suitable than [−1, 1] because the latter makes the
problem has many non-zero elements.

8. Experiments in this guide were run on a 64-bit machine with Intel Xeon E5-2620 2.00GHz CPU and
LIBLINEAR 2.42 was used.

A.22

LIBLINEAR: A Library for Large Linear Classification

Table 1: Current solvers in LIBLINEAR for L2-regularized problems.

Dual-based solvers (coordinate de-
scent methods)

Primal-based solvers (Newton-
type methods)

Property Extremely fast in some situations,
but may be very slow in some oth-
ers

Moderately fast in most situa-
tions

When to use
it

1. Large sparse data (e.g., docu-
ments) under suitable scaling and C
is not too large
2. Data with # instances � # fea-
tures

Others

If data is transformed to binary and then normalized, we have

$ time ./train -v 5 news20.scale

Cross Validation Accuracy = 84.7129%

5.213s

Clearly, the running time for the normalized data is much shorter and no warning message
appears.

Another example is in Lewis et al. (2004), which normalizes each log-transformed TF-
IDF feature vector to have unit length.

N.4 Selection of Solvers

Appendix A lists many LIBLINEAR’s solvers. Users may wonder how to choose them.
Fortunately, these solvers usually give similar performances. Some in fact generate the
same model because they differ in only solving the primal or dual optimization problems.
For example, -s 1 solves dual L2-regularized L2-loss SVM, while -s 2 solves primal.

$./train -s 1 -e 0.0001 news20.scale

(skipped)

Objective value = -576.922614

nSV = 3540

$./train -s 2 -e 0.0001 news20.scale

(skipped)

iter 8 f 5.769e+02 |g| 4.126e-02 CG 4 step_size 1.00e+00

iter 9 f 5.769e+02 |g| 6.076e-03 CG 7 step_size 1.00e+00

Each run trains 20 two-class models, so we only show objective values of the last one.
Clearly, the dual objective value -576.922614 coincides with the primal value 5.769e+02.
We use the option -e to impose a smaller stopping tolerance, so optimization problems are
solved more accurately.

While LIBLINEAR’s solvers give similar performances, their training time may be differ-
ent. For current solvers for L2-regularized problems, a rough guideline is in Table 1. We
recommend users

A.23

Fan, Chang, Hsieh, Wang and Lin

1. Try the default dual-based solver first.

2. If it is slow, check primal-based solvers.

For L1-regularized problems, the choice is limited because currently we only offer primal-
based solvers.

To choose between using L1 and L2 regularization, we recommend trying L2 first unless
users need a sparse model. In most cases, L1 regularization does not give higher accuracy
but may be slightly slower in training; see a comparison in Section D of the supplementary
materials of Yuan et al. (2010).

After version 2.42, we automatically switch from a dual-based solver to a primal one if
the dual solver failed to converge after a pre-specified maximal number of iterations. For
example, if -s 1 is used to solve the dual problem of L2-regularized L2-loss SVM, we have

$ time ./train news20

(skipped)

WARNING: reaching max number of iterations

Switching to use -s 2

init f 3.516e+02 |g| 4.552e+02

iter 1 f 3.299e+02 |g| 9.844e+01 CG 4 step_size 1.00e+00

iter 2 f 3.284e+02 |g| 8.542e+01 CG 7 step_size 1.00e+00

iter 3 f 3.280e+02 |g| 2.699e+01 CG 2 step_size 1.00e+00

(skipped)

The coordinate descent method employed by -s 1 converges slowly for this problem. LIBLINEAR
then automatically switch to -s 2, which is a primal Newton method for the same opti-
mization problem. Clearly we see that after switching the solver, the training procedure
finishes in just a few iterations.

N.5 Parameter Selection for Classification and Regression

For linear classification, the only parameter is C in Eq. (1). We summarize some properties
below.

1. Solvers in LIBLINEAR is not very sensitive to C. Once C is larger than certain value,
the obtained models have similar performances. A theoretical proof of this kind of
results is in Theorem 3 of Keerthi and Lin (2003).

2. Using a larger C value usually causes longer training time. Users should avoid trying
such values.

We conduct the following experiments to illustrate these properties. To begin, we show in
Figure 2 the relationship between C and CV accuracy. Clearly, CV rates are similar after
C is large enough. For running time, we compare the results using C = 1 and C = 100.

$ time ./train -c 1 news20.scale

2.109s

$ time ./train -c 100 news20.scale

8.304s

A.24

LIBLINEAR: A Library for Large Linear Classification

log2C

CV

-15 -10 -5 0 5 10

70

75

80

85

Figure 2: CV accuracy versus log2C.

We can see that a larger C leads to longer training time. Here a dual-based coordinate
descent method is used. For primal-based solvers using Newton methods, the running time
is usually less affected by the change of C.

$ time ./train -c 1 -s 2 news20.scale

5.013s

$ time ./train -c 100 -s 2 news20.scale

5.448s

While users can try a few C values by themselves, LIBLINEAR (after version 2.0) provides
an easy solution to find a suitable parameter. If primal-based classification solvers are used
(-s 0 or -s 2), the -C option efficiently conducts cross validation several times and finds
the best parameter automatically.

$./train -C -s 2 news20.scale

Doing parameter search with 5-fold cross validation.

log2c= -15.00 rate=69.0806

log2c= -14.00 rate=69.3505

(skipped)

log2c= 9.00 rate=83.8406

log2c= 10.00 rate=83.8406

WARNING: maximum C reached.

Best C = 1 CV accuracy = 84.738%

Users do not need to specify the range of C to explore because LIBLINEAR finds a reasonable
range automatically. Note that users can still use the -c option to specify the smallest C
value of the search range. For example,

$./train -C -s 2 -c 0.5 -e 0.0001 news20.scale

Doing parameter search with 5-fold cross validation.

log2c= -1.00 rate=84.5623

A.25

Fan, Chang, Hsieh, Wang and Lin

log2c= 0.00 rate=84.7254

(skipped)

log2c= 9.00 rate=83.6586

log2c= 10.00 rate=83.6398

WARNING: maximum C reached.

Best C = 1 CV accuracy = 84.7254%

This option is useful when users want to rerun the parameter selection procedure from a
specified C under a different setting, such as a stricter stopping tolerance -e 0.0001 in the
above example.

Note that after finding the best C, users must apply the same solver to train a model
for future prediction. Switching from a primal-based solver to a corresponding dual-based
solver (e.g., from -s 2 to -s 1) is fine because they produce the same model.

Some solvers such as -s 5 or -s 6 are not covered by the -C option.9 We can use a
parameter selection tool grid.py in LIBSVM to find the best C value. For example,

$./grid.py -log2c -14,14,1 -log2g null -svmtrain ./train -s 5 news20.scale

checks the CV rates of C ∈ {2−14, 2−13, . . . , 214}. Note that grid.py should be used only
if -C is not available for the desired solver. The -C option is much faster than grid.py on
a single computer.

For regression, an additional parameter is ε. After version 2.30, the -C option automat-
ically finds the best ε as well. The usage is the same though the -p option can be used to
specify the largest ε value of the search range. For example, we can use

$./train -C -s 11 -c 0.5 -p 2 -e 0.0001 news20.scale

so that the search range consists of C ∈ [0.5,∞) and ε ∈ [0, 2].

References

Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method for large-
scale L2-loss linear SVM. Journal of Machine Learning Research, 9:1369–1398, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.

Bo-Yu Chu, Chia-Hua Ho, Cheng-Hao Tsai, Chieh-Yen Lin, and Chih-Jen Lin. Warm start
for parameter selection of linear classifiers. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2015. URL
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/warm-start.pdf.

Koby Crammer and Yoram Singer. On the learnability and design of output codes for
multiclass problems. In Computational Learning Theory, pages 35–46, 2000.

Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22,
2010.

9. Note that we have explained that for some dual-based solvers you can use -C on their corresponding
primal-based solvers for parameter selection.

A.26

http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/warm-start.pdf

LIBLINEAR: A Library for Large Linear Classification

Leonardo Galli and Chih-Jen Lin. Release note of liblinear 2.40. Technical report, National
Taiwan University, 2020. URL https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/

release240.pdf.

Leonardo Galli and Chih-Jen Lin. Truncated Newton methods for linear classification.
IEEE Transactions on Neural Networks and Learning Systems, 2021. URL https://

www.csie.ntu.edu.tw/~cjlin/papers/tncg/tncg.pdf. To appear.

Zellig S. Harris. Distributional structure. Word, 10:146–162, 1954.

Chia-Hua Ho and Chih-Jen Lin. Large-scale linear support vector regression. Journal of
Machine Learning Research, 13:3323–3348, 2012. URL http://www.csie.ntu.edu.tw/

~cjlin/papers/linear-svr.pdf.

Chih-Yang Hsia, Ya Zhu, and Chih-Jen Lin. A study on trust region update rules in
Newton methods for large-scale linear classification. In Proceedings of the Asian Confer-
ence on Machine Learning (ACML), 2017. URL http://www.csie.ntu.edu.tw/~cjlin/

papers/newtron/newtron.pdf.

Chih-Yang Hsia, Wei-Lin Chiang, and Chih-Jen Lin. Preconditioned conjugate gradient
methods in truncated Newton frameworks for large-scale linear classification. In Pro-
ceedings of the Asian Conference on Machine Learning (ACML), 2018. URL http:

//www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf.

Jui-Yang Hsia and Chih-Jen Lin. Parameter selection for linear support vector regression.
IEEE Transactions on Neural Networks and Learning Systems, 31:5639–5644, 2020. URL
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/svr-param.pdf.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings
of the Twenty Fifth International Conference on Machine Learning (ICML), 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector
classification. Technical report, Department of Computer Science, National Taiwan Uni-
versity, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Tzu-Kuo Huang, Ruby C. Weng, and Chih-Jen Lin. Generalized Bradley-Terry models and
multi-class probability estimates. Journal of Machine Learning Research, 7:85–115, 2006.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/generalBT.pdf.

S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector machines
with Gaussian kernel. Neural Computation, 15(7):1667–1689, 2003.

S. Sathiya Keerthi, Sellamanickam Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-
Jen Lin. A sequential dual method for large scale multi-class linear SVMs. In Proceed-
ings of the Forteenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 408–416, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/

papers/sdm_kdd.pdf.

A.27

https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/release240.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/release240.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/tncg.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/tncg/tncg.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/linear-svr.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/linear-svr.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/newtron/newtron.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/newtron/newtron.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/warm-start/svr-param.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/generalBT.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf

Fan, Chang, Hsieh, Wang and Lin

Ching-Pei Lee and Chih-Jen Lin. A study on L2-loss (squared hinge-loss) multi-class
SVM. Neural Computation, 25(5):1302–1323, 2013. URL http://www.csie.ntu.edu.

tw/~cjlin/papers/l2mcsvm/l2mcsvm.pdf.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark
collection for text categorization research. Journal of Machine Learning Research, 5:
361–397, 2004.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for
large-scale logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.
URL http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

Gerard Salton and Chung-Shu Yang. On the specification of term values in automatic
indexing. Journal of Documentation, 29:351–372, 1973.

Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117:387–423, 2009.

Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate descent methods
for logistic regression and maximum entropy models. Machine Learning, 85(1-2):41–75,
October 2011. URL http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf.

Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of opti-
mization methods and software for large-scale l1-regularized linear classification. Journal
of Machine Learning Research, 11:3183–3234, 2010. URL http://www.csie.ntu.edu.

tw/~cjlin/papers/l1.pdf.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved GLMNET for l1-regularized
logistic regression. Journal of Machine Learning Research, 13:1999–2030, 2012. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf.

A.28

http://www.csie.ntu.edu.tw/~cjlin/papers/l2mcsvm/l2mcsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l2mcsvm/l2mcsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf

	Introduction
	Large Linear Classification (Binary and Multi-class)
	The Software Package
	Practical Usage
	Documentation
	Design

	Comparison
	Conclusions
	Formulations
	Some Notes on the Bias Term
	L2-regularized L1- and L2-loss Support Vector Classification
	L2-regularized Logistic Regression
	L1-regularized L2-loss Support Vector Classification
	L1-regularized Logistic Regression
	L2-regularized L1- and L2-loss Support Vector Regression

	L2-regularized L1- and L2-loss SVM (Solving Dual)
	L2-regularized Logistic Regression (Solving Primal)
	L2-regularized L2-loss SVM (Solving Primal)
	Multi-class SVM by Crammer and Singer
	Formulations
	The Sequential Dual Method for (15)
	Solving the sub-problem (19)
	Stopping Condition
	Shrinking Strategy

	L1-regularized L2-loss Support Vector Machines
	L1-regularized Logistic Regression
	Implementation of L1-regularized Logistic Regression in LIBLINEAR Versions 1.4–1.7
	L2-regularized Logistic Regression (Solving Dual)
	L2-regularized Logistic Regression (Solving Dual)
	L2-regularized Support Vector Regression
	Probability Outputs
	Automatic and Efficient Parameter Selection
	
	When to Use Linear (e.g., LIBLINEAR) Rather Then Nonlinear (e.g., LIBSVM)?
	Data Preparation (In Particular, Document Data)
	Normalization
	Selection of Solvers
	Parameter Selection for Classification and Regression

