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Abstract—Load forecasting is usually made by constructing mod-
els on relative information, such as climate and previous load de-
mand data. In 2001 EUNITE network organized a competition
aiming at mid-term load forecasting (predicting daily maximum
load of the next 31 days). During the competition we proposed
a support vector machine (SVM) model, which was the winning
entry, to solve the problem. In this paper, we discuss in detail
how SVM, a new learning technique, is successfully applied to
load forecasting. In addition, motivated by the competition results
and the approaches by other participants, more experiments and
deeper analyses are conducted and presented here. Some impor-
tant conclusions from the results are that temperature (or other
types of climate information) might not be useful in such a mid-
term load forecasting problem and that the introduction of time-
series concept may improve the forecasting.

Index Terms— Load forecasting, Regression, Support vector
machines, Time series.

I. INTRODUCTION

Electricity load forecasting has always been an important is-
sue in the power industry. Load forecasting is usually made
by constructing models on relative information, such as climate
and previous load demand data. Such forecast is usually aimed
at short-term prediction (e.g. [10], [18], [12] and references
therein), like one-day ahead prediction, since longer period pre-
diction (mid-term or long term) may not be reliant due to error
propagation. Mid-term and long-term prediction on load de-
mand, however, may still be very useful in some situations.

In 2001, EUNITE
�

network organized a competition on the
similar problem. The goal is to predict daily load demand of a
month. Given information includes the past two-year load de-
mand data, the previous four-year daily temperature and the lo-
cal holiday events. Dealing with such a mid-term forecast prob-
lem, reliant prediction and error propagation are both competi-
tors’ concern. During the competition, we proposed a model,
which was the winning entry, to solve the problem. Though
the competition has been closed, we find this topic interesting
and useful. Moreover, we would like to figure out the perfor-
mance of mid-term load forecasting with such limited infor-
mation. In this paper, therefore, we present our approach and
discuss more on this problem. The main technique used in our
solution is support vector machine (SVM) [8], a new machine
learning method. To the best of our knowledge, this is the first
work to successfully apply SVM on load forecasting. Some im-
portant conclusions from our experiments are that, temperature
should not be considered and the time-series modeling scheme

�
EUropean Network on Intelligent TEchnologies for Smart Adap-

tive Systems (http://www.eunite.org). The competition page is
http://neuron.tuke.sk/competition/.

is better. For the prediction of a 30-day period during which the
temperature does not vary much, trying to predict the tempera-
ture and incorporate it into the model is not useful.

This paper is organized as follows. In Section II, we describe
the goal of the competition task and the data provided. In addi-
tion, the analysis of data is also presented. Section III demon-
strates the techniques we employed. Experiments and results of
different models are showed in Section IV. Finally, the conclu-
sion of our research and the comparison with other competitors
are in Section V.

II. DATA AND TASK DESCRIPTION

A. Competition Task Description

The organizer of the EUNITE load competition provides
competitors the following data:� Electricity load demand recorded every half hour, from

1997 to 1998.� Average daily temperature, from 1995 to 1998.� Dates of holidays, from 1997 to 1999.
The task of competitors is to supply the prediction of maxi-

mum daily values of electrical loads for January 1999. Evalu-
ation of submissions would mainly depend on the error metric
of the results:

MAPE ������� 	�
��
������������������ �
� � � ����� � (1)

where  � and ! � are the real and the predicted value of max-
imum daily electrical load on the " th day of the year 1999 re-
spectively, and � is the number of days in January 1999. The
goal of the competition is to forecast electrical load with mini-
mum MAPE. #
B. Data Analysis

Before delving further into the solution we proposed, some
observations about the data are examined first. Like many other
literatures working on load forecasting, some relations between
load demand and other information, such as climate or local
events, are also investigated. The following observations are
somehow specific to the competition, yet they can be applied to
general load forecasting.

1) Properties of Load Demand: Load demand data given
are half-hour recorded. Figure 1 gives a simple description of
the maximum daily load demand from 1997 to 1998. By simple
analysis, one can easily observe some properties of the load
demand. First, the demand has some seasonal patterns: high
demand for electricity in the winter while low demand in the
summer. This pattern implies the relation between electricity
usage and weather conditions in different seasons.

Moreover, if scrutinizing the data further, another load pat-
tern could also be observed: a load periodicity exists in every
$
Originally in the competition there are two error metrics used. One is

MAPE, and the other one, finally not really used, is the “maximal error”:

Maximal error %'&)(+*-, .0/2143.0/5, 6�7�%98:6<;=;<;<6?>@8
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Fig. 1. Maximum Daily Load

week. Load demand in weekend is usually lower than that of
weekdays (Monday through Friday). In addition, electricity de-
mand on Saturday is a little higher than that on Sunday.

Further detailed examination of load data, such as daily pat-
terns, can also be found since the dataset contains more details
(half-hour recorded). However, since the aim of the competi-
tion is maximum values of daily load demand, this paper would,
without loss of generosity, focus on the maximum values only.

2) Climate Influence: In load forecasting, climate condi-
tions have always played an important role. Previous works
on short-term load forecasting [10], [18], [12] also indicate
the relation between climate and load demand. Climate condi-
tions considered may include temperature, humidity, illumina-
tion, and some special events like typhoon or sleet occurrences.
These considerations may be regarded on different levels due to
different localities. However, while forecasting load demand,
more climate information usually give predictions more confi-
dence.

Taking our data for example, as we mentioned earlier, the
load data have some seasonal variation, which indicates a great
influence of climate conditions. A negative correlation between
load demand and daily temperature can be easily observed in
Figure 2. The correlation coefficient between the maximum
load and the temperature is -0.868. In our dataset, it is clear to
see that because of the heating use, higher temperature causes
lower demands. Yet, unfortunately the only climate information
provided in the competition is daily temperature. Such informa-
tion limitation also affects solutions to such a problem.

There is another interesting observation: the temperature at
December 31st, 1998 is the lowest from 1997 to 1998. This
might imply the high uncertainty of the temperature and load of
the incoming January 1999, and thus increase the difficulty of
the load prediction.
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Fig. 2. Correlation between the maximum load and the temperature

3) Holiday Effects: Local events, including holidays and
festivities, also affect the load demand. These events may lead
to higher demand for extra usage of electricity, or otherwise.
Influences of these events are usually local and highly depend
on the customs of the area. From the two-year load data, it is
easy to find out that the load usually lowers down on holidays.
With further scrutiny, the load also depends on what holiday it
is. On some major holidays such as Christmas or New Year,
the demand for electricity may be affected more compared with
other holidays.

III. METHODS

Fig. 3. Support Vector Regression

Support vector machine (SVM) is a new and promising tech-
nique for data classification and regression [23]. In this section
we briefly introduce support vector regression (SVR) which can
be used for time series prediction. Given training data A�B � �=C �ED ,
. . . , AFBHG �=C G D , where B � are input vectors and C � are the associ-
ated output value of B � , the support vector regression solves an
optimization problem:

IKJ�LMON P5N QEN Q:R
�SUT�V�TXWXY

GZ �[
�� A�\ � W]\ �� D (2)

subject to C �U^ AFT V`_ AFB �?D Wba Ddc�e W]\ � �
AFT�V _ AFB �fD Wba DO^ C �`c�e W]\ �� �\ � � \ ��Kg � � " �h� �ji�ijiE�+k<�

where B � is mapped to a higher dimensional space by the func-
tion _ , \ � is the upper training error ( \ �� is the lower) subject to
the

e
-insensitive tube

� C ^ AFT V _ AFB D Wla D � cme . The parameters
which control the regression quality are the cost of error Y , the
width of the tube

e
, and the mapping function _ .

The constraints of (2) imply that we would like to put most
data B � in the tube

� C ^ A�T V _ AFB D Wna D � cXe . This can be clearly
seen from Figure 3. If B � is not in the tube, there is an error \ �
or \ �� which we would like to minimize in the objective func-
tion. SVR avoids underfitting and overfitting the training data
by minimizing the training error Y 	 G �[
�� AF\ � W�\ �� D as well as
the regularization term

�
o T V T . For traditional least-square re-

gression
e

is always zero and data are not mapped into higher
dimensional spaces. Hence SVR is a more general and flexi-
ble treatment on regression problems. For experiments in this
paper, we use the software LIBSVM [6], which is a library for
support vector machines.
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IV. EXPERIMENTS

Though the competition has been closed, the problem still
presents an interesting issue in load forecasting. In order to
study mid-term load forecasting more, we conducted some ex-
periments on the competition problem. In this section, these
experiments and results would be described.

A. Data Preparation

In Section III, we have described the SVM technique. We
next need to prepare datasets to build SVM models. While
preparing the datasets, we need to encode useful information
into the data entries (i.e. B � in (2)). Also, different data en-
codings affect the selection of modeling schemes. Here we will
discuss these issues in detail.

1) Feature selection: Each component of the training data
is called a feature (attribute). Here, we consider what kind of
information should be included. Assuming that C � is the load of
the " th day, in general we incorporate information at the same
day or earlier as features of B � . There are a few choices for the
feature:

Basic information: calendar attributes. In Section II-B,
we discuss the weekly periodicity of the load demand. Also,
as we pointed out earlier, the load demand on holidays is lower
than that on non-holidays. Therefore, encoding these informa-
tion (weekdays and holidays) in the training entries might be
useful to model the problem. Actually, among literatures of
load forecasting, many works (e.g. [12] and [21]) have used the
calendar information (time, dates or holidays) to model the load
forecasting problem.

Temperature. Another possible feature is the temperature
data. This is quite a straightforward choice, since load demand
and temperature have a causal relation in between. In most
short-term load forecasting (STLF) works, meteorological in-
formation which includes temperature, wind speed, sky cover
and etc., has also been used to predict the load demand. How-
ever, to include the temperature in the training entries, there is
one difficulty: in this competition, the real temperature data of
January 1999 are not provided. In other words, for such mid-
term load forecasting, temperature several weeks away are gen-
erally not available by weather forecasting. If we want to en-
code the temperature in our training entries, we will also need
to predict or estimate the temperature of January 1999. Yet,
temperature forecast is not easy, especially with such limited
data. The use of temperature, therefore, would be a dilemma.

Time series style or not. Besides the weekdays, holidays
and temperature, there is another information we consider to
encode as the attributes: the past load demand. That is to in-
troduce the concept of time-series into our models. To be more
precise, if C � is the target value for prediction, the vector B �
includes several previous target values C � � � ��ijijij�5C � �0p as at-
tributes. In the training phase all C � are known but for future
prediction, C � � � ��iji�iE�5C � �0p can be values from previous predic-
tions. For example, after obtaining an approximate load of Jan-
uary 1, 1999, if q �sr , it is used with loads of December
26-31, 1998 for predicting that of January 2. We continue this
way until finding an approximate load of January 31. An ear-
lier example using SVR for time series prediction is [17]. As

we know, the past load demand could affect and imply the fu-
ture load demand. Therefore, considering to include such an
information in the models might help forecast the load demand.
In fact, in some load forecasting works, time series models have
been explored ([1], [18]).

2) Data segmentation: Besides the features choices, Sec-
tion II-B also shows the seasonal pattern for load demand. Pre-
vious works [10], [18], [21] on load forecasting also propose
models built on data of different seasons. This inspires us to do
some analyses for the data segmentation.

Usually people model time-series data by using the formula-
tion,

Cut �wv A�B t D �<x0y � q �ji�i�i[�+k<�
where B t � A C t � � �=C t � o �ji�i[i C t �0p D , and q is the embedding di-
mension. However, this formulation is not suitable for non-
stationary time series, because the characteristic of the time se-
ries may change with time. For such time series which alternate
in time, we can consider a mixture model where

Cut �wv �Fz tF{ AFB t D ��x|y � q ��i[i�i��=k<i
Note that the formulation allows different characteristic func-
tions in different time. Given the series C�t}�=y �~� �ji�ijiE�+k , the
task is to identify all "}A y D . We call this unsupervised segmen-
tation where earlier work can be found in, for example, [19].
In other words, the method breaks the series into different seg-
ments where points in the same segment can be modeled by the
same v � . Recently, [7] states a similar framework using SVR
with different parameters tuning. At any time point y , these
methods consider different weights representing the probability
that C t belongs to corresponding functions. The sum of weight
at any given time point y is always fixed to one. The weights
are iteratively updated until one weight is close to one but oth-
ers are close to zero. That means eventually C�t is associated to
one particular time series.
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Fig. 4. Unsupervise segmentation for EUNITE data

Now, we can consider the loads as a time series. First we
linearly scale all load data to � � � �j� . Then we can get time series
style data by incorporating load of last seven days and weekday
information to attributes. After that we follow the framework
of [7] to analyze the data. We consider two possible time series
so at each time point there are two weights. The experimental
result is in Figure 4. The x-axis indicates days from January
1997 to December 1998 and the y-axis indicates the weights
of two time series. Interestingly, “winter” and “summer” data
are automatic separated without any seasonal information. The
figure shows that the loads in the summer and in the winter have
different characteristics.
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Unsupervised data segmentation has been very useful for
time series prediction (e.g. [19]). If the training data are associ-
ated with different time series, it is better to consider only data
segments related to the same series of the last segment. Now
the objective of the competition is to predict the load demand
of January 1999, so we consider to use only the winter segment
for training. Here, we choose January to March, and October
to December to be our “winter” period, as the analytical result
indicates. That is, the “winter” dataset would contain half of the
data in 1997 and 1998. Also, we further extract data of January
and February to form another possible training dataset. This
dataset is much smaller than the “winter” one, and it would fo-
cus more on the load pattern in the period of our target concern.

3) Data Representation: After selecting useful information
and proper data segments for encoding, we can prepare several
combinations of training datasets. In these datasets, we encode
a training entry (i.e. B � in (2)) for the particular " th day, as
follows:

(calendar, temperature (optional), past load (optional))

Here we use seven binaries to encode calendar information
which includes weekdays, weekends and holidays, where six
are for weekdays and weekends, and the other one for holidays.
The six binaries stand for Monday to Saturday respectively and
Sunday is represented as all six attributes are set to zero. Also,
one numerical attribute is used for normalized temperature data,
if the temperature is encoded. As for the past load, if encoded,
we use seven numerics for the past seven daily maximum loads.
The reason for using “seven” instead of other numbers is the
complexity of model selection. We will elaborate more on this
later. And finally, for such an entry, its target value ( C � in (2)) is
assigned to the maximum load demand of the " th day.

Yet, for the models built with temperature information, the
lack of temperature of January 1999 will pose a problem in the
predicting phase. As we mentioned before, this may lead us
to the prediction or estimation of the temperature in 1999 and
that will be a more difficult problem, especially with only daily
temperature of the past four years (1995-1998). A straightfor-
ward idea is to use the average of the past temperature data for
the estimation. That is, the temperature of each day in January
1999 is estimated by averaging the past January daily temper-
ature data (from 1995 to 1998). Competitors like [9], [5] and
[13] used the averaged temperature in their models. Also [14]
uses temperature of the other cities close to Slovakia for the
estimation. In their report, the temperature for January 1999
was calculated through a linear combination of that of the other
three cities. This is a kind of cheating as we are supposed to
do the prediction at December 31, 1998 so temperature infor-
mation of January, 1999 at any place is not available. For ex-
periments here, these two estimations for temperature will be
employed in the predicting phase, provided the temperature is
encoded in our training datasets.

There is one remark about the testing data of January 1999.
In this period, there are two holidays, January 1 and 6. How-
ever, in the data entries prepared for the prediction, we remove
the holiday flag of these two entries. In other words, we treat
them as non-holidays. The reason is that our models cannot
learn well about the load demand on holidays. The number

TABLE IV.1
MAPE USING DIFFERENT DATA PREPARATION

(seg., TS style) W/out TW/ avg. TW/ 3c TW/ real T
(Winter, yes) 1.95% 3.14% 2.71% 2.70%
(Jan-Feb, yes) 2.54% 3.21% 2.93% 2.96%
(Winter, no) 2.86% 3.48% 2.97% 3.10%

of holidays in the training data are too few to provide enough
information. Moreover, for the time-series-based approach, in-
accurate prediction at one day could affect the succeeding fore-
casting.

B. Implementation and Results

With different schemes of model construction, a series of ex-
periments are conducted. MAPEs of different model schemes
are the main concern of our comparison.

Upon the datasets we prepare, SVM models are built for load
forecasting. When training an SVM model, there are some pa-
rameters to choose. They would influence the performance of
an SVM model. Therefore, in order to get a “good” model,
these parameters need to be selected properly. Some important
ones are

1) cost of error Y ,
2) the width of the

e
-insensitive tube,

3) the mapping function _ , and
4) load of how many previous days included for one training

data.
In our experiments, as we mentioned earlier, for each train-

ing data we simply include the maximum load of the previous
seven days. In addition, we consider only the Radial Basis
Function (RBF) function, which is one of the most commonly
used mapping functions. The RBF function has the property
that _ A�B ��D V _ AFB�� D ��� �0�2�f� � �0���j�?� . Note that � is a parameter
associated with the RBF function which has to be tuned. Also,
we fix

e ��� i�� which is the default of LIBSVM [6]. Thus, pa-
rameters left are Y and � . Choosing parameters can be time
consuming so in practice we decide some of them by using
knowledge or simply guessing. Then, the search space is re-
duced.

As searching for the proper parameters, we need to access
the performance of models. With their performance, then the
suitable parameters are chosen. To do this, usually we divide
the training data into two sets. One of them is used to train
a model while the other, called the validation set, is used for
evaluating the model. According to their performance on the
validation set, we try to infer the proper values of Y and � .
Here, due to the different characteristics of the data encoding
schemes, we employ two procedures for the validation.

For time-series-based approaches, we respectively extract the
data entries of January 1997 and 1998 to form the validation set
and evaluate the models on them. The performance is decided
by averaging the errors of these two validations. As for the non-
time-series models, we simply conduct 10-fold cross validation
to infer the parameters. That is, we randomly divide the training
sets into 10 sets. Using each set as a validation set, we then train
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a model on the rest. The performance of a model would be the
average of the 10 validating predictions.

With this procedure, proper Y and � are selected to build a
model for the future prediction. We then evaluate its perfor-
mance by forecasting the load demand for January 1999.

Now we are ready to present experimental results. Table IV.1
shows the prediction errors generated by different data encod-
ings and segmentations. In the table, the first column shows the
data segments used and if the past load demand is encoded.
Then the next four columns indicate the predictions with or
without the temperature (T): “avg. T” for average temperature,
“3c T” for the estimation derived from the three other cities’
data, and “real T” for the real temperature of the January, 1999.

1) Time-series Models with Winter Data: In Table IV.1, it
can be observed that using the “winter” data along with the past
loads (time-series information), the model built without tem-
perature outperforms all others. In fact, the winning entry in
the competition is generated by such a model � . The MAPE
using the temperature of three other cities is smaller than that
using the average temperature. Moreover, after the competition
is closed, we get the real temperature data of January 1999. We
employ the temperature-incorporated models on datasets with
the real temperature. The result is shown in the last column
of Table IV.1. Its performance, compared with those two us-
ing different temperature estimations, is not better. That means,
even assuming the real temperature is known, the forecasting
result is still not satisfactory.

2) Time-series Models with Jan-Feb Data: With the train-
ing set containing only data of January and February, the model
built without temperature also performs better than all others
built with temperature. This is the same as using the “winter”
data segment. Again, the prediction error with temperature es-
timation coming from the other three cities’ data is smaller than
that with the other estimation or even that with the real temper-
ature.

3) Non-time-series Models with Winter Data: Besides time-
series-based approaches, we build models without taking the
past load demand as attributes. The training set of these mod-
els is limited to the “winter” segment. In Table IV.1, we show
the test errors of the forecast with or without temperature in-
formation. Just like the aforementioned experimental results,
the MAPE of prediction on the dataset without temperature is
better than that with. Actually as one can see in Figure 8, the
forecast generated by the model using only calendar attributes
is the same weekly. That is because besides the calendar at-
tributes, the dataset does not provide any other information for
the model. Using the temperature estimation derived from lin-
ear combination of the three cities’ temperature data is again
better than using the real temperature or the average estimation.

4) Remarks: From the results, an interesting observation
can be made: models built without the temperature generally
perform better than those built with. This renders the issue
about the usage of temperature information. As we mentioned
earlier, temperature information is important for load forecast-
ing. However, models constructed with such information may�

During the competition, our validation procedure is different from what we
employ in this paper. Thus, the actual parameters that generate the winning
entry is not the same as those we present here. However, the modeling scheme
is the same.

be really sensitive to the temperature and thus the estimation for
the temperature in 1999 would surely affect the performance of
the models.

In Figure 5, the real temperature data and the two estimations
are shown. Figures 6-8 plot the predicted values as well as the
real load demand of January 1999. Observing these figures, we
can find that the higher the temperature is, indeed, the lower the
demand is. That is, the models we build do catch the causal
relation between the load demand and the temperature. Never-
theless, using real temperature cannot predict the load demand
more precisely than using the estimation coming from the data
of the three other cities. This result somehow implies the in-
appropriateness of incorporation of the temperature. In fact, as
we compute the correlation coefficient between the maximum
load and the temperature for each month instead of the whole
two year, we find they are variant (ranging from -0.64 to 0.32).
This also indicates the fuzzy correlation between the load and
the temperature in a shorter period.
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Fig. 5. Estimates and real temperature in Jan. 1999

Models built on data segments of January and February per-
form not as well as those built on the “winter” segments. We
think the main reason is that, with the limited data given (only
two years), such data segments cannot provide enough informa-
tion for models compared with the “winter” segments that con-
tains more entries. Therefore, though dataset containing data
only from January and February may represent the period of
the prediction better, due to the limited data, models built on
such segments are somehow not as competitive as those built
with more information.

For comparison, models without time-series information are
also built. The performance of such models is less competitive.
This shows that models built without the past loads may not be
able to learn the tendency of the load demand. Moreover, if the
temperature is used to built the model, it would be the main at-
tribute that affects the predicted values. Due to the limited data
and the fuzzy correlation between the temperature and the load
demand, such incorporation of temperature information could
introduce higher variance into the model and result in unreli-
able prediction. That is why even using the real temperature,
the error is higher than that of using only calendar information.

Recall that the temperature of last day in 1998 is the lowest of
the whole dataset, but the load is not extremely high. Moreover,
the correlation coefficient between the load and the temperature
in December 1998 is 0.092. Therefore, we suspect the behavior
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of the load demand in January 1999 and in the end of Decem-
ber 1998 is abnormal. But despite the possible abnormality,
with the time-series information, the model could at least catch
the load tendency, and thus give reasonable predictions follow-
ing the trend of December 1998. That is why the load demand
predicted by time-series-based models is generally lower than
that predicted by non-time-series-based ones.
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Fig. 6. Estimates and real electricity load in Jan. 1999, with “winter” data
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Fig. 7. Estimates and real electricity load in Jan. 1999, with January-February
data

V. DISCUSSIONS AND CONCLUSIONS

A. Comparisons

In the competition, many groups have proposed different
methods to solve the problem. Model schemes also differ
among them.

First, the data segments used for training are different among
the competitors. In our method, we select half year, i.e. the
winter segment, as our training base. Some competitors like [9],
[15], [20] and [4], also select particular segments rather than the
whole two-year data. [9] even uses only January and February
as such a choice could focus on the target period. Comparing all
these competition entries, we find the selection of data segments
may improve performance of models, since the load demand
appears to have different distribution in different seasons. On
the other hand, including the whole two-year data, though with
more information, could generate noise for the trained models.

As for choosing the features for models, the causal relation
between temperature and load demand is most used. Many
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Fig. 8. Estimates and real electricity load in Jan. 1999, with non-time-series
model

competitors use the temperature, along with some other infor-
mation, to build causal models while some also incorporate
with time-series analysis (e.g. [20], [22] and [3]). For the
causal models, most competitors use neural networks ([15], [5],
[25] and [13]). Others use adaptive logic network ([9]), fuzzy
rule-based models ([24]), self-organizing maps combined with
ARIMA models ([11]), clustering ([2]), and etc. However, the
use of causal relation between temperature and load demand,
although straightforward, might need further consideration. Be-
cause, as we pointed out earlier, the temperature of January
1999 is not given during the competition, adopting temperature
information in models would need future weather forecast.

In fact, some competitors do try to predict or infer the
weather condition of January 1999 ([16], [15] and [14]), yet,
with the limited data, forecasting the temperature may even be
a more difficult problem. Without good forecast for the temper-
ature, the model might end up with imprecise prediction, even
though it may perform well in the training phase,

Holiday is another issue. For most competitors, load fore-
casting on holidays is not easy to handle. The difficulty is
that the historical load data on holidays is not enough, and thus
make the behavior of load demand on these special days hard to
model. In our works, we do include holiday information in the
training phase. However, while predicting the load in 1999, we
remove the holiday flags on January 1 and 6. Other competitors
treat some holidays as Saturday or Sunday ([15], [9]), build an-
other model for holidays ([5]), or manually adjust the predicted
result ([20]).

B. Conclusion

Among these different proposed solutions, we find that
choosing appropriate data segments seems to enhance the
model performance. Furthermore, models built with temper-
ature information require the estimation of the future tempera-
ture, which is very difficult and may lead to inaccurate predic-
tion. In other words, including unprecise information causes
higher variance on prediction so a conservative approach us-
ing only available correct information is recommended for such
mid-term load forecasting. As the experimental results show,
the introduction of the time-series attributes also gives models
better information to forecast load demand more precisely. Ac-
tually, these considerations are what we were upon to propose



the time-series based, winter-data only, without temperature in-
formation, model which generated the winning entry.
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