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Deep learning involves a difficult non-convex optimization problem, which is often solved by stochastic
gradient (SG) methods. While SG is usually effective, it may not be robust in some situations. Recently, Newton
methods have been investigated as an alternative optimization technique, but most existing studies consider
only fully-connected feedforward neural networks. These studies do not investigate some more commonly
used networks such as Convolutional Neural Networks (CNN). One reason is that Newton methods for CNN
involve complicated operations, and so far no works have conducted a thorough investigation. In this work, we
give details of all building blocks including the evaluation of function, gradient, Jacobian, and Gauss-Newton
matrix-vector products. These basic components are very important not only for practical implementation but
also for developing variants of Newton methods for CNN. We show that an efficient MATLAB implementation
can be done in just several hundred lines of code. Preliminary experiments indicate that Newton methods are
less sensitive to parameters than the stochastic gradient approach.

CCS Concepts: • Computing methodologies → Supervised learning by classification; Neural net-
works; • Software and its engineering→ Software libraries and repositories.

Additional Key Words and Phrases: Convolution Neural Networks, Newton methods, Large-scale classification,
Subsampled Hessian

1 INTRODUCTION
Deep learning is now widely used in many applications. To apply this technique, a difficult non-
convex optimization problem must be solved. Currently, stochastic gradient (SG) methods and their
variants are the major optimization technique used for deep learning (e.g., [11, 25]). This situation
is different from some application domains, where other types of optimization methods are more
frequently used. One interesting research question is thus to study if other optimization methods
can be extended to be viable alternatives for deep learning. In this work, we aim to address this
issue by developing a practical Newton method for deep learning.

Some past works have studied Newton methods for training deep neural networks (e.g., [1, 7, 9,
20, 28–30]). Almost all of them consider fully-connected feedforward neural networks and some
have shown the potential of Newton methods for being more robust than SG. Unfortunately, these
works have not fully established Newton methods as a practical technique for deep learning because
other types of networks such as Convolutional Neural Networks (CNN) are more commonly used
in deep-learning applications. One important reason why CNN was not considered is because of
the very complicated operations in implementing Newton methods. Up to now no works have
shown details of all the building blocks including the evaluation of function, gradient, Jacobian,
and Hessian-vector products. In particular, because interpreter-type languages such as Python or
MATLAB have been popular for deep learning, how to easily implement efficient operations by
these languages is an important research issue.
In this work, we aim at a thorough investigation on the implementation of Newton methods

for CNN. We focus on basic components because without them none of any recent improvement
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of Newton methods for fully-connected networks can be even tried. Our work will enable many
further developments of Newton methods for CNN and maybe even other types of networks.

In experiments, we compare SG and Newton methods for CNN in several aspects. Results show
that for SG under suitable parameters, it converges faster than Newton. However, SG is more
sensitive to parameters and requires a careful parameter-selection procedure. Therefore, if we take
the cross-validation procedure into consideration, the overall running time of Newton methods
may be competitive.

This paper is organized as follows. In Section 2, we introduce CNN. In Section 3, Newton methods
for CNN are investigated and the detailed mathematical formulations of all operations are derived.
In Section 4, we discuss related works of Newton methods for training neural networks. The
analysis of memory usage and computational complexity is in Section 5. Preliminary experiments
to demonstrate the viability of Newton methods for CNN are in Section 6. Section 7 concludes this
work.

A simple and efficientMATLAB implementation in just a few hundred lines of code is available at
https://www.github.com/cjlin1/simpleNN

Programs used for experiments in this paper and supplementary materials (including a list of
symbols and implementation details) can be found at

https://www.csie.ntu.edu.tw/~cjlin/simpleNN

2 OPTIMIZATION PROBLEM OF CONVOLUTIONAL NEURAL NETWORKS
Consider a K-class problem, where the training data set consists of l input pairs (yi ,Z 1,i ), i =
1, . . . , l . Here Z 1,i is the ith input image with dimension a1 × b1 × d1, where a1 denotes the height
of the input images, b1 represents the width of the input images, and d1 is the number of color
channels. If Z 1,i belongs to the kth class, then the label vector is

yi = [0, . . . , 0︸  ︷︷  ︸
k−1

, 1, 0, . . . , 0]T ∈ RK .

A CNN [13] utilizes a stack of convolutional layers followed by fully-connected layers to predict
the target vector. Let Lc be the number of convolutional layers, and Lf be the number of fully-
connected layers. The number of layers is

L = Lc + Lf .

Images
Z 1,i , i = 1, . . . , l

are input to the first layer, while the last (the Lth) layer outputs a predicted label vector

ŷi , i = 1, . . . , l .

A hallmark of CNN is that both input and output of convolutional layers are explicitly assumed to
be images.

2.1 Convolutional Layer
In a convolutional layer, besides the main convolutional operations, two optional steps are padding
and pooling, each of which can also be considered as a layer with input/output images. To easily
describe all these operations in a unified setting, for the ith instance, we assume the input image of
the current layer is

Z in,i
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containing d in channels of ain × b in images:
zi1,1,1 zi1,b in,1

. . .

zi
ain,1,1 zi

ain,b in,1

 . . .


zi1,1,d in zi1,b in,d in

. . .

zi
ain,1,d in zi

ain,b in,d in

 . (1)

The goal is to generate an output image
Z out,i

of dout channels of aout × bout images.
Now we describe details of convolutional operations. To generate the output, we consider dout

filters, each of which is a 3-D weight matrix of size

h × h × d in.

Specifically, the jth filter includes the following matrices
w j

1,1,1 w j
1,h,1

. . .

w j
h,1,1 w j

h,h,1

 , . . . ,

w j

1,1,d in w j
1,h,d in

. . .

w j
h,1,d in w j

h,h,d in


and a bias term bj .

The main idea of CNN is to extract local information by convolutional operations, each of which
is the inner product between a small sub-image and a filter. For the jth filter, we scan the entire
input image to obtain small regions of size (h,h) and calculate the inner product between each
region and the filter. For example, if we start from the upper left corner of the input image, the first
sub-image of channel d is 

zi1,1,d . . . zi1,h,d
. . .

zih,1,d . . . zih,h,d

 .
We then calculate the following value.

d in∑
d=1

〈
zi1,1,d . . . zi1,h,d

. . .

zih,1,d . . . zih,h,d

 ,

w j

1,1,d . . . w j
1,h,d

. . .

w j
h,1,d . . . w j

h,h,d


〉
+ bj , (2)

where ⟨·, ·⟩ means the sum of component-wise products between two matrices. This value becomes
the (1, 1) position of the channel j of the output image.

Next, we must obtain other sub-images to produce values in other positions of the output image.
We specify the stride s for sliding the filter. That is, we move s pixels vertically or horizontally to
get sub-images. For the (2, 1) position of the output image, we move down s pixels vertically to
obtain the following sub-image: 

zi1+s ,1,d . . . zi1+s ,h,d
. . .

zih+s ,1,d . . . zih+s ,h,d

 .
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Then the (2, 1) position of the channel j of the output image is

d in∑
d=1

〈
zi1+s ,1,d . . . zi1+s ,h,d

. . .

zih+s ,1,d . . . zih+s ,h,d

 ,

w j

1,1,d . . . w j
1,h,d

. . .

w j
h,1,d . . . w j

h,h,d


〉
+ bj . (3)

Assume that vertically and horizontally we can move the filter aout and bout times, respectively.
Therefore,

aout = ⌊
ain − h

s
⌋ + 1, bout = ⌊

b in − h

s
⌋ + 1. (4)

For efficient implementations, we can conduct all operations including (2) and (3) by matrix
operations. To begin, we concatenate the matrices of the different channels in (1) to

Z in,i =


zi1,1,1 . . . zi

ain,1,1 zi1,2,1 . . . zi
ain,b in,1

...
. . .

...
...

. . .
...

zi1,1,d in . . . zi
ain,1,d in zi1,2,d in . . . zi

ain,b in,d in

 , i = 1, . . . , l . (5)

We note that (2) is the inner product between the following two vectors[
w j

1,1,1 . . . w j
h,1,1 w j

1,2,1 . . . w j
h,h,1 . . . w j

h,h,d in bj
]T

and [
zi1,1,1 . . . zih,1,1 zi1,2,1 . . . zih,h,1 . . . zi

h,h,d in 1
]T
.

Based on [27], we define the following two operators

vec(M) =


M:,1
...

M:,b

 ∈ R
ab×1, whereM ∈ Ra×b , (6)

mat(v)a×b =


v1 v(b−1)a+1
... · · ·

...
va vba

 ∈ R
a×b , wherev ∈ Rab×1. (7)

There exists a 0/1 matrix

Pϕ ∈ R
hhd inaoutbout×d inainb in

so that a linear operator

ϕ : Rd
in×ainb in

→ Rhhd
in×aoutbout

defined as

ϕ(Z in,i ) ≡ mat
(
Pϕvec(Z in,i )

)
hhd in×aoutbout

, ∀i, (8)
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collects all sub-images in Z in,i . Specifically, ϕ(Z in,i ) is

zi1,1,1 . . . zi1+(aout−1)×s ,1,1 zi1,1+s ,1 . . . zi1+(aout−1)×s ,1+(bout−1)×s ,1
zi2,1,1 . . . zi2+(aout−1)×s ,1,1 zi2,1+s ,1 . . . zi2+(aout−1)×s ,1+(bout−1)×s ,1
...

. . .
...

...
. . .

...
zih,h,1 . . . zih+(aout−1)×s ,h,1 zih,h+s ,1 . . . zih+(aout−1)×s ,h+(bout−1)×s ,1
...

. . .
...

...
. . .

...
zi1,1,d in . . . zi1+(aout−1)×s ,1,d in zi1,1+s ,d in . . . zi1+(aout−1)×s ,1+(bout−1)×s ,d in

...
. . .

...
...

. . .
...

zi
h,h,d in . . . zi

h+(aout−1)×s ,h,d in zi
h,h+s ,d in . . . zi

h+(aout−1)×s ,h+(bout−1)×s ,d in



∈ Rhhd
in×aoutbout

.

(9)
By considering

W =


w1

1,1,1 w1
2,1,1 . . . w1

h,h,d in

...
...

. . .
...

wdout

1,1,1 wdout

2,1,1 . . . wdout

h,h,d in

 ∈ R
dout×hhd in

and b =


b1
...

bdout

 ∈ R
dout×1, (10)

all convolutional operations can be combined as

Sout,i =Wϕ(Z in,i ) + b1Taoutbout ∈ R
dout×aoutbout

, (11)

where

Sout,i =


si1,1,1 . . . siaout,1,1 si1,2,1 . . . siaout,bout,1
...

. . .
...

...
. . .

...
si1,1,dout . . . siaout,1,dout si1,2,dout . . . siaout,bout,dout

 and 1aoutbout =


1
...
1

 ∈ R
aoutbout×1.

Next, an activation function scales each element of Sout,i to obtain the output matrix Z out,i .

Z out,i = σ (Sout,i ) ∈ Rd
out×aoutbout

. (12)

For CNN, commonly the following RELU activation function

σ (x) = max(x, 0) (13)

is used.1
Note that by the matrix representation, the storage is increased from

d in × ainb in

in (1) to
(hhd in) × aoutbout

in (9). From (4), roughly (
h

s

)2
folds increase of the memory occurs. However, we gain efficiency by using fast matrix-matrix
multiplications in optimized BLAS [4].

1To use Newton methods, σ (x ) should be twice differentiable, but the RELU function is not. For simplicity, we follow
[11] to assume σ ′(x ) = 1 if x > 0 and 0 otherwise. It is possible to use a differentiable approximation of the RELU function,
though we leave this issue for future investigation.
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An input

image

0 · · · 0
...

0 · · · 0

...
...

· · ·

· · ·

0 · · · 0
...

0 · · · 0

0· · ·0
...

0· · ·0

0· · ·0
...

0· · ·0 ain

b in

Fig. 1. An illustration of the padding operation to have zeros around the border.


2 3 6 8
5 4 9 7
1 2 6 0
4 3 2 1

 →
[
5 9
4 6

]
(a) Image A


3 2 3 6
4 5 4 9
2 1 2 6
3 4 3 2

 →
[
5 9
4 6

]
(b) Image B

Fig. 2. An illustration of max pooling to extract translational invariance features. The image B is derived from
shifting A by 1 pixel in the horizontal direction.

2.1.1 Zero-padding. To better control the size of the output image, before the convolutional
operation we may enlarge the input image to have zero values around the border. This technique is
called zero-padding in CNN training. See an illustration in Figure 1.

To specify the mathematical operation we can treat the padding operation as a layer of mapping
an input Z in,i to an output Z out,i . Let

dout = d in.

There exists a 0/1 matrix
Ppad ∈ R

doutaoutbout×d inainb in

so that the padding operation can be represented by

Z out,i ≡ mat(Ppadvec(Z in,i ))dout×aoutbout . (14)

2.1.2 Pooling Operations. For CNN, to reduce the computational cost, a dimension reduction is
often applied by a pooling step after convolutional operations. Usually we consider an operation
that can (approximately) extract rotational or translational invariance features. Among the various
types of pooling methods such as average pooling, max pooling, and stochastic pooling, we consider
max pooling as an illustration because it is the most used setting for CNN. We show an example
of max pooling by considering two 4 × 4 images, A and B, in Figure 2. The image B is derived by
shifting A by 1 pixel in the horizontal direction. We split two images into four 2 × 2 sub-images
and choose the max value from every sub-image. In each sub-image because only some elements
are changed, the maximal value is likely the same or similar. This is called translational invariance
and for our example the two output images from A and B are the same.
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Now we derive the mathematical representation. Similar to Section 2.1.1, we consider the op-
eration as a separate layer for the easy description though in our implementation pooling is just
an operation at the end of the convolutional layer. Assume Z in,i is an input image. We partition
every channel of Z in,i into non-overlapping sub-regions by h × h filters with the stride s = h.2
This partition step is a special case of how we generate sub-images in convolutional operations.
Therefore, by the same definition as (8) we can generate the matrix

ϕ(Z in,i ) = mat(Pϕvec(Z in,i ))hh×doutaoutbout, (15)

where

aout = ⌊
ain

h
⌋, bout = ⌊

b in

h
⌋, dout = d in. (16)

If for example max pooling is considered, to select the largest element of each sub-region, there
exists a matrix

M i ∈ Rd
outaoutbout×hhdoutaoutbout

so that each row ofM i selects a single element from vec(ϕ(Z in,i )). Therefore,

Z out,i = mat
(
M ivec(ϕ(Z in,i ))

)
dout×aoutbout

. (17)

A comparison with (11) shows thatM i is in a similar role to the weight matrixW .
By combining (15) and (17), we have

Z out,i = mat
(
P ipoolvec(Z

in,i )
)
dout×aoutbout

, (18)

where
P ipool = M iPϕ ∈ R

doutaoutbout×d inainb in
. (19)

Note that this derivation is not limited to max pooling. It is valid for any pooling operation that
can be represented in a form of (17).

2.1.3 Summary of a Convolutional Layer. For the practical implementation, we find it is more
suitable to consider padding and pooling as part of the convolutional layers. Here we discuss
details of considering all operations together. The whole convolutional layer involves the following
procedure:

Zm,i → padding by (14)→ convolutional operations by (11), (12)

→ pooling by (18)→ Zm+1,i , (20)

where Zm,i and Zm+1,i are input and output of themth layer, respectively.
We use the following symbols to denote image sizes at different stages of the convolutional layer.

am, bm : size in the beginning
ampad, b

m
pad : size after padding

amconv, b
m
conv : size after convolution.

Table 1 indicates how these values are ain,b in,d in and aout,bout,dout at different stages. We further
denote the filter size, mapping matrices and weight matrices at themth layer as

hm, Pmpad, P
m
ϕ , P

m,i
pool, W

m, bm .

Then from (11), (12), (14), (18), and Table 1, all operations can be summarized as

Sm,i =Wmmat(Pmϕ Pmpadvec(Z
m,i ))hmhmdm×amconvbmconv + b

m1Tamconvbmconv
,

2Because of the disjoint sub-regions, the stride s for sliding the filters is equal to h.
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Table 1. Detailed information of operations at a convolutional layer.

Operation ain, b in, d in aout, bout, dout Input Output
Padding: (14) am, bm, dm ampad, b

m
pad, d

m Zm,i pad(Zm,i )

Convolution: (11) ampad, b
m
pad, d

m amconv, b
m
conv, d

m+1 pad(Zm,i ) Sm,i

Convolution: (12) amconv, b
m
conv, d

m+1 amconv, b
m
conv, d

m+1 Sm,i σ (Sm,i )

Pooling: (18) amconv, b
m
conv, d

m+1 am+1, bm+1, dm+1 σ (Sm,i ) Zm+1,i

=Wmϕ(pad(Zm,i ))hmhmdm×amconvbmconv + b
m1Tamconvbmconv

, (21)

and
Zm+1,i = mat(Pm,i

poolvec(σ (S
m,i )))dm+1×am+1bm+1 . (22)

2.2 Fully-Connected Layer
After passing through the convolutional layers, we concatenate columns in the matrix in (22) to
form the input vector of the first fully-connected layer.

zm,i = vec(Zm,i ), i = 1, . . . , l, m = Lc + 1.

In the fully-connected layers (Lc < m ≤ L), we consider the following weight matrix and bias
vector between layersm andm + 1.

Wm ∈ Rnm+1×nm and bm ∈ Rnm+1×1, (23)

where nm and nm+1 are the numbers of neurons in layersm andm + 1, respectively.3 If zm,i ∈ Rnm is
the input vector, the following operations are applied to generate the output vector zm+1,i ∈ Rnm+1 .

sm,i =Wmzm,i + bm, (24)

zm+1,i = σ (sm,i ). (25)

2.3 The Overall Optimization Problem
We can collect all model parameters such as filters of convolutional layers in (10) and weights/biases
in (23) for fully-connected layers into a long vector θ ∈ Rn , where n becomes the total number of
variables. From the discussion in this section,

n =
Lc∑
m=1

dm+1 × (hm × hm × dm + 1) +
L∑

m=Lc+1
nm+1 × (nm + 1).

The output zL+1,i of the last layer is a function of θ . We can apply a loss function ξ (zL+1;y,Z 1)

to check how close zL+1,i is to the label vector yi . For example, if the squared loss is considered,
then

ξ (zL+1;y,Z 1) = | |zL+1 −y | |2. (26)
The optimization problem to train a CNN is

min
θ

f (θ ), where f (θ ) =
1
2C

θTθ +
1
l

l∑
i=1

ξ (zL+1,i ;yi ,Z 1,i ). (27)

The first term with the parameterC > 0 avoids overfitting by regularization, while the second term
is the average training loss.

3nLc+1 = dL
c+1aL

c+1bL
c+1 and nL+1 = K is the number of classes.
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3 HESSIAN-FREE NEWTONMETHODS FOR TRAINING CNN
To solve an unconstrained minimization problem such as (27), a Newton method iteratively finds a
search direction d by solving the following second-order approximation.

min
d
∇f (θ )Td +

1
2
dT∇2 f (θ )d, (28)

where ∇f (θ ) and ∇2 f (θ ) are the gradient vector and the Hessian matrix, respectively. In this
section we present details of applying a Newton method to solve the CNN problem (27).

3.1 Procedure of the Newton Method
For problem (27), the gradient is

∇f (θ ) =
1
C
θ +

1
l

l∑
i=1
(J i )T∇zL+1,i ξ (z

L+1,i ;yi ,Z 1,i ), (29)

where

J i =


∂zL+1,i1
∂θ1

· · ·
∂zL+1,i1
∂θn

...
...

...
∂zL+1,inL+1
∂θ1

· · ·
∂zL+1,inL+1
∂θn

nL+1×n
, i = 1, . . . , l, (30)

is the Jacobian of zL+1,i . The Hessian matrix of f (θ ) is

∇2 f (θ ) =
1
C
I +

1
l

l∑
i=1
(J i )TBi J i

+
1
l

l∑
i=1

nL+1∑
j=1

∂ξ (zL+1,i ;yi ,Z 1,i )

∂zL+1,ij


∂2zL+1,ij
∂θ1∂θ1

· · ·
∂2zL+1,ij
∂θ1∂θn

...
. . .

...
∂2zL+1,ij
∂θn∂θ1

· · ·
∂2zL+1,ij
∂θn∂θn


, (31)

where I is the identity matrix and Bi is the Hessian of ξ (·) with respect to zL+1,i :

Bits =
∂2ξ (zL+1,i ;yi ,Z 1,i )

∂zL+1,it ∂zL+1,is
, t = 1, . . . ,nL+1, s = 1, . . . ,nL+1. (32)

From now on for simplicity we let

ξi ≡ ξ (zL+1,i ;yi ,Z 1,i ).

In general (31) is not positive semi-definite, so f (θ ) is non-convex for deep learning. The sub-
problem (28) is difficult to solve and the resulting direction may not lead to the decrease of the
function value. Following past works [20, 29], we consider the following Gauss-Newton approxi-
mation [24]

G =
1
C
I +

1
l

l∑
i=1
(J i )TBi J i ≈ ∇2 f (θ ). (33)

If ξ (zL+1;y,Z 1) is convex in zL+1, then Bi is positive semi-definite. Then G is positive definite and
(28) becomes the same as solving the following linear system.

Gd = −∇f (θ ). (34)
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After a Newton direction d is obtained, to ensure the convergence, we update θ by

θ ← θ + αd,

where α is the largest element in an exponentially decreased sequence like {1, 12 ,
1
4 , . . .} satisfying

the following sufficient decrease condition.

f (θ + αd) ≤ f (θ ) + ηα∇f (θ )Td . (35)

In (35), η ∈ (0, 1) is a pre-defined constant. The procedure to find α is called a backtracking line
search.

Past works (e.g., [20, 30]) have shown that sometimes (34) is too aggressive, so a direction closer
to the negative gradient is better. To this end, in recent works of applying Newton methods on
fully-connected networks [21, 30], the Levenberg-Marquardt method [17, 19] is used to solve the
following linear system rather than (34).

(G + λI)d = −∇f (θ ), (36)

where λ is a parameter decided by how good the function reduction is. Specifically, if θ + d is the
next iterate after line search, we define

ρ =
f (θ + d) − f (θ )

∇f (θ )Td + 1
2d

TGd

as the ratio between the actual function reduction and the predicted reduction. By using ρ, the
parameter λnext for the next iteration is decided by

λnext =


λ × drop ρ > ρupper,

λ ρlower ≤ ρ ≤ ρupper,

λ × boost otherwise,
(37)

where (drop,boost) with drop < 1 and boost > 1 are given constants. From (37) we can clearly see
that if the function-value reduction is not satisfactory, then λ is enlarged and the resulting direction
is closer to the negative gradient. Therefore, depending on the function reduction, λ decides if
a more aggressive setting (i.e., direction closer to Newton) or a more conservative setting (i.e.,
direction closer to negative gradient) is considered.

Next, we discuss how to solve the linear system (36). When the number of variables n is large, the
memory cost of the matrix G is O(n2), which is prohibitive.4 To address this memory difficulty, for
some optimization problems including neural networks, it has been shown that without explicitly
storing G we can still calculate the product betweenG and any vectorv [12, 20, 30]. For example,
from (33),

(G + λI)v = (
1
C
+ λ)v +

1
l

l∑
i=1

(
(J i )T

(
Bi (J iv)

) )
. (38)

If the product between J i and a vector can be easily calculated, we can apply the conjugate gradient
(CG) method [8] to solve (34) by a sequence of matrix-vector products. BecauseG is not explicitly
formed, this technique is called Hessian-free methods in optimization. Details of CG methods in a
Hessian-free Newton framework can be found in, for example, Algorithm 2 of [18].

Because (38) involves a summation over all instances, the memory as well as computational cost
may still be very high. Subsampled Hessian Newton methods have been proposed [2, 20, 29] to
reduce the cost by taking the property that the second term in (33) is the average training loss. If the

4Consider the five layers network structure in Section 6 and double precision. For CIFAR10, the memory cost of the
matrix G will take about 208GB.
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ALGORITHM 1: A subsampled Hessian Newton method for CNN.
Given initial θ . Calculate f (θ );
while ∇f (θ ) , 0 do

Choose a set S ⊂ {1, . . . , l};
Compute ∇f (θ ) and the needed information for Gauss Newton matrix-vector products;
Approximately solve the linear system in (36) by CG to obtain a direction d ;
α = 1;
while true do

Compute f (θ + αd);
if (35) is satisfied then

break;
end
α ← α/2;

end
Update λ based on (37);
θ ← θ + αd ;

end

large number of data points are assumed to be from the same distribution, (33) can be reasonably
approximated by selecting a subset S ⊂ {1, . . . , l} and having

GS =
1
C
I +

1
|S |

∑
i ∈S

(J i )TBi J i ≈ G .

Then (38) becomes

(GS + λI)v = (
1
C
+ λ)v +

1
|S |

∑
i ∈S

(
(J i )T

(
Bi (J iv)

) )
≈ (G + λI)v . (39)

A summary of the subsampled Newton method is in Algorithm 1.

3.2 Gradient Evaluation
In order to solve (34), ∇f (θ ) is needed. It can be obtained by (29) if the Jacobian matrices J i , i =
1, . . . , l are available. From (38), it seems that J i ,∀i are also needed for the matrix-vector product
in CG. However, as mentioned in Section 3.1, in practice a sub-sampled Hessian method is used, so
from (39) only a subset of J i ,∀i are needed.5 Therefore we present a backward process to calculate
the gradient without using Jacobian.
Consider two layersm andm + 1. The variables between them areWm and bm , so we aim to

calculate the following gradient components.

∂ f

∂Wm =
1
C
Wm +

1
l

l∑
i=1

∂ξi
∂Wm , (40)

∂ f

∂bm
=

1
C
bm +

1
l

l∑
i=1

∂ξi
∂bm
. (41)

Because (40) is in a matrix form, following past developments such as [27], it is easier to transform
them to a vector form for the derivation. To begin, we list the following properties of the vec(·)

5Further, we do not need to explicitly store J i for matrix-vector products; see Sections 3.3 and 3.4.
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function, in which ⊗ is the Kronecker product.

vec(AB) = (I ⊗ A)vec(B), (42)

= (BT ⊗ I)vec(A), (43)

vec(AB)T = vec(B)T (I ⊗ AT ), (44)

= vec(A)T (B ⊗ I). (45)

We further define

∂y

∂(x)T
=


∂y1
∂x1

. . .
∂y1
∂x |x |

...
. . .

...
∂y |y |
∂x1

. . .
∂y |y |
∂x |x |

 ,
where x and y are column vectors.

For the convolutional layers, from (11) and Table 1, we have

vec(Sm,i ) = vec(Wmϕ(pad(Zm,i ))) + vec(bm1Tamconvbmconv )

=
(
Iamconvbmconv ⊗W

m )
vec(ϕ(pad(Zm,i ))) + (1amconvbmconv ⊗ Idm+1 )b

m (46)

=
(
ϕ(pad(Zm,i ))T ⊗ Idm+1

)
vec(Wm) + (1amconvbmconv ⊗ Idm+1 )b

m, (47)

where (46) and (47) are from (42) and (43), respectively.
For the fully-connected layers, from (24), we have

sm,i =Wmzm,i + bm

= (I1 ⊗W
m)zm,i + (11 ⊗ Inm+1 )b

m (48)

=
(
(zm,i )T ⊗ Inm+1

)
vec(Wm) + (11 ⊗ Inm+1 )b

m, (49)

where (48) and (49) are from (42) and (43), respectively.
An advantage of using (46) and (48) is that they are in the same form. Further, if for fully-connected

layers we define
ϕ(pad(zm,i )) = Inmz

m,i , Lc < m ≤ L + 1,

then (47) and (49) are in the same form. Thus we can derive the gradient of convolutional and
fully-connected layers together. We begin with calculating the gradient for convolutional layers.
From (47), we derive

∂ξi

∂vec(Wm)T
=

∂ξi

∂vec(Sm,i )
T
∂vec(Sm,i )

∂vec(Wm)T

=
∂ξi

∂vec(Sm,i )
T

(
ϕ(pad(Zm,i ))T ⊗ Idm+1

)
= vec

(
∂ξi
∂Sm,i ϕ(pad(Z

m,i ))T
)T

(50)

and
∂ξi

∂(bm)T
=

∂ξi

∂vec(Sm,i )
T
∂vec(Sm,i )

∂(bm)T

=
∂ξi

∂vec(Sm,i )
T

(
1amconvbmconv ⊗ Idm+1

)
= vec

(
∂ξi
∂Sm,i 1a

m
convbmconv

)T
, (51)
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where (50) and (51) are from (45). To calculate (50), ϕ(pad(Zm,i )) has been available from the
forward process of calculating the function value. In (50) and (51), ∂ξi/∂Sm,i is also needed and
can be obtained by the following backward process.

By assuming that ∂ξi/∂Zm+1,i is available, we show details of calculating ∂ξi/∂Sm,i and ∂ξi/∂Zm,i

for layerm. From (20), the workflow is as follows.

Zm,i ← padding← convolution← σ (Sm,i ) ← pooling← Zm+1,i . (52)

We have
∂ξi

∂vec(Sm,i )T
=

∂ξi
∂vec(Zm+1,i )T

∂vec(Zm+1,i )

∂vec(σ (Sm,i ))
T
∂vec(σ (Sm,i ))

∂vec(Sm,i )T
(53)

=

(
∂ξi

∂vec(Zm+1,i )T
Pm,i
pool

)
∂vec(σ (Sm,i ))

∂vec(Sm,i )T
(54)

where (54) is from (22).
For the special case if σ (·) can be reduced to a scalar function with

σ (Sm,i )(p,q) = σ (sm,i
p,q ), (55)

then
∂vec(σ (Sm,i ))

∂vec(Sm,i )T

is a diagonal matrix.6 We can rewrite (54) into(
∂ξi

∂vec(Zm+1,i )T
Pm,i
pool

)
⊙ vec(σ ′(Sm,i ))T , (56)

where ⊙ is Hadamard product (i.e., element-wise products) and

σ ′(Sm,i )(p,q) = σ ′(sm,i
p,q ).

Next, we must calculate ∂ξi/∂Zm,i and pass it to the previous layer.

∂ξi

∂vec(Zm,i )
T =

∂ξi

∂vec(Sm,i )
T

∂vec(Sm,i )

∂vec(ϕ(pad(Zm,i )))
T

∂vec(ϕ(pad(Zm,i )))

∂vec(pad(Zm,i ))T

∂vec(pad(Zm,i ))

∂vec(Zm,i )
T

=
∂ξi

∂vec(Sm,i )
T

(
Iamconvbmconv ⊗W

m )
Pmϕ Pmpad (57)

=vec
(
(Wm)T

∂ξi
∂Sm,i

)T
Pmϕ Pmpad, (58)

where (57) is from (8), (14) and (46), and (58) is from (44).
For fully-connected layers, by the same form in (48), (49), (46) and (47), we immediately get the

following results from (50), (51), (54) and (58).

∂ξi

∂vec(Wm)T
= vec

(
∂ξi
∂sm,i (z

m,i )T
)T
, (59)

∂ξi

∂(bm)T
=

∂ξi

∂(sm,i )
T , (60)

∂ξi

∂(zm,i )
T =

(
(Wm)T

∂ξi
∂(sm,i )

)T
Inm =

(
(Wm)T

∂ξi
∂(sm,i )

)T
, (61)

6For example, the RELU function in (13) satisfies such a property.
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where
∂ξi

∂(sm,i )
T =

∂ξi

∂(zm+1,i )T
∂σ (sm,i )

∂(sm,i )
T . (62)

If σ (·) can be reduced to a scalar function as in (55), then from (56), (62) can be simplified to

∂ξi
∂(sm,i )T

=
∂ξi

∂(zm+1,i )T
⊙ σ ′(sm,i )T .

3.3 Jacobian Evaluation
For the matrix-vector product (33), the Jacobian matrix is needed. We note that it can be partitioned
into L blocks according to layers.

J i =
[
J 1,i J 2,i . . . JL,i

]
, m = 1, . . . , L, i = 1, . . . , l, (63)

where

Jm,i =

[
∂zL+1,i

∂vec(Wm)T
∂zL+1,i

∂(bm)T

]
.

The calculation is very similar to that for the gradient. For the convolutional layers, from (50)
and (51), we have

[
∂zL+1,i

∂vec(Wm)T
∂zL+1,i

∂(bm)T

]
=


∂zL+1,i1

∂vec(Wm )T
∂zL+1,i1
∂(bm )T

...
∂zL+1,inL+1

∂vec(Wm )T

∂zL+1,inL+1
∂(bm )T


=


vec( ∂z

L+1,i
1

∂Sm,i ϕ(pad(Zm,i ))T )T vec( ∂z
L+1,i
1

∂Sm,i 1amconvbmconv )
T

...

vec(
∂zL+1,inL+1
∂Sm,i ϕ(pad(Zm,i ))T )T vec(

∂zL+1,inL+1
∂Sm,i 1amconvbmconv )

T


=


vec

(
∂zL+1,i1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )T
...

vec
(
∂zL+1,inL+1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )T

. (64)

Clearly, each row in (64) involves the product of twomatrices. Following [30] to take this property
for fully-connected networks, we explain that explicitly forming Jm,i is not needed. Instead, if

∂zL+1,i1
∂Sm,i , · · · ,

∂zL+1,inL+1

∂Sm,i , and
[
ϕ(pad(Zm,i ))T 1amconvbmconv

]
,∀i (65)

are available, then we are able to conduct the matrix-vector product in (38); see more details in
Section 3.4. For the two types of matrices in (65), the latter has been obtained in the forward process
of calculating the function value. For the former we develop the following backward process to
calculate ∂zL+1,i/∂vec(Sm,i )T , ∀i .
Assume that ∂zL+1,i/∂vec(Zm+1,i )T are available. From (54), we have

∂zL+1,ij

∂vec(Sm,i )T
=

(
∂zL+1,ij

∂vec(Zm+1,i )T
Pm,i
pool

)
∂vec(σ (Sm,i ))

∂vec(Sm,i )
T , j = 1, . . . ,nL+1.
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These vectors can be written together as

∂zL+1,i

∂vec(Sm,i )
T =

(
∂zL+1,i

∂vec(Zm+1,i )T
Pm,i
pool

)
∂vec(σ (Sm,i ))

∂vec(Sm,i )
T . (66)

If σ (·) can be reduced to a scalar function as in (55), from (56), we have

∂zL+1,i

∂vec(Sm,i )T
=

(
∂zL+1,i

∂vec(Zm+1,i )T
Pm,i
pool

)
⊙

(
1nL+1vec(σ

′(Sm,i ))T
)
. (67)

We then generate ∂zL+1,i/∂vec(Zm,i )T and pass it to the previous layer. From (58), we derive

∂zL+1,i

∂vec(Zm,i )T
=


∂zL+1,i1

∂vec(Zm,i )T

...
∂zL+1,inL+1

∂vec(Zm,i )T


=


vec

(
(Wm)T

∂zL+1,i1
∂Sm,i

)T
Pmϕ Pmpad

...

vec
(
(Wm)T

∂zL+1,inL+1
∂Sm,i

)T
Pmϕ Pmpad


. (68)

For the fully-connected layers, we follow the same derivation of gradient to have

∂zL+1,i

∂vec(Wm)T
=

[
vec

(
∂zL+1,i1
∂sm,i (z

m,i )T

)
. . . vec

(
∂zL+1,inL+1

∂sm,i (z
m,i )T

)]T
, (69)

∂zL+1,i

∂(bm)T
=
∂zL+1,i

∂(sm,i )T
, (70)

∂zL+1,i

∂(sm,i )T
=
∂zL+1,i

∂(zm+1,i )T
∂σ (sm,i )

∂(sm,i )
T , (71)

∂zL+1,i

∂(zm,i )T
=
∂zL+1,i

∂(sm,i )T
Wm . (72)

Note that if σ (·) can be reduced to a scalar function as in (55), (71) can be rewritten as

∂zL+1,i

∂(sm,i )T
=
∂zL+1,i

∂(zm+1,i )T
⊙

(
1nL+1σ

′(zm+1,i )T
)
.

3.4 Gauss-Newton Matrix-Vector Products
As mentioned in Section 3.1, conjugate gradient (CG) methods are used to solve the linear system
in (34). The main operation at each CG step is the Gauss-Newton matrix-vector product in (38) or
(39) depending on whether the subsampled setting is applied. Here we derive details for calculating
the product.

From (63), we rearrange (33) to

G =
1
C
I +

1
l

l∑
i=1


(J 1,i )T

...
(JL,i )T

 B
i [

J 1,i . . . JL,i
]

(73)

and the Gauss-Newton matrix vector product becomes

Gv =
1
C
v +

1
l

l∑
i=1


(J 1,i )T

...
(JL,i )T

 B
i [

J 1,i . . . JL,i
] 

v1

...
vL


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=
1
C
v +

1
l

l∑
i=1


(J 1,i )T

...
(JL,i )T


(
Bi

L∑
m=1

Jm,ivm

)
, wherev =


v1

...
vL

 , (74)

and eachvm,m = 1, . . . , L has the same length as the number of variables (including bias) at the
mth layer.

For the convolutional layers, from (64) and (74), we have

Jm,ivm =


vec

(
∂zL+1,i1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )T
vm

...

vec
(
∂zL+1,inL+1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )T
vm


. (75)

To simplify (75), we use the following property

vec(AB)T vec(C) = vec(A)T vec(CBT )

to have that for example, the first element in (75) is

vec

(
∂zL+1,i1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )T
vm

=
∂zL+1,i1

∂vec(Sm,i )T
vec

(
mat(vm)dm+1×(hmhmdm+1)

[
ϕ(pad(Zm,i ))

1Tamconvbmconv

] )
.

Therefore,

Jm,ivm =
∂zL+1,i

∂vec(Sm,i )T
vec

(
mat(vm)dm+1×(hmhmdm+1)

[
ϕ(pad(Zm,i ))

1Tamconvbmconv

] )
. (76)

By (76) and the discussion around (65), we can calculate Jm,ivm without explicitly forming Jm,i .
Next, from (74), we sum results of all layers

L∑
m=1

Jm,ivm (77)

and then calculate

qi = Bi (
L∑

m=1
Jm,ivm). (78)

From the definition in (32), Bi is easy to calculate if the loss function is not complicated. For example,
if the squared loss in (26) is used, from (32),

Bits =
∂2ξ i

∂zL+1,it ∂zL+1,is
=
∂2(

∑nL+1
j=1 (z

L+1,i
j − yij )

2)

∂zL+1,it ∂zL+1,is
=

{
2 if t = s,
0 otherwise.

(79)

After deriving (78), from (64) and (74), we calculate

(Jm,i )Tqi

=

[
vec

(
∂zL+1,i1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )
· · · vec

(
∂zL+1,inL+1
∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )]
qi

16



=

nL+1∑
j=1

qijvec

(
∂zL+1,ij

∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] )
= vec

(
nL+1∑
j=1

qij

(
∂zL+1,ij

∂Sm,i

[
ϕ(pad(Zm,i ))T 1amconvbmconv

] ))
= vec

((
nL+1∑
j=1

qij
∂zL+1,ij

∂Sm,i

) [
ϕ(pad(Zm,i ))T 1amconvbmconv

] )
= vec ©­«mat

((
∂zL+1,i

∂vec(Sm,i )T

)T
qi

)
dm+1×amconvbmconv

[
ϕ(pad(Zm,i ))T 1amconvbmconv

]ª®¬ . (80)

Similar to the results of the convolutional layers, for the fully-connected layers we have

Jm,ivm =
∂zL+1,i

∂(sm,i )T
mat(vm)nm+1×(nm+1)

[
zm,i

11

]
, (81)

(Jm,i )Tqi = vec

((
∂zL+1,i

∂(sm,i )T

)T
qi

[
(zm,i )T 11

] )
. (82)

3.5 Mini-Batch Function and Gradient Evaluation
Later in Section 5.1 to discuss the memory usage, one important conclusion is that the memory
consumption is proportional to the number of data in several places of the Newton method. This
fact causes difficulties in handling large data sets, so here we discuss some effective settings to
reduce the memory usage.
In the subsampled Newton method discussed in Section 3.1, a subset S of the training data is

used to derive the subsampled Gauss-Newton matrix for approximating the Hessian matrix. While
a motivation of this technique is to trade a slightly less accurate direction for shorter running
time per iteration, it also effectively reduces the memory consumption. For example, at themth
convolutional layer, we only need to store the following matrices

∂zL+1,i

∂vec(Sm,i )T
, ∀i ∈ S (83)

for the Gauss-Newton matrix-vector products.
However, in function and gradient evaluations we still need the whole training data. Fortunately,

both operations involve the summation of independent results over all instances, so we follow
[30] to have a mini-batch setting. By splitting the index set {1, . . . , l} of data to, for example, R
equal-sized subsets S1, . . . , SR , we sequentially calculate the result corresponding to each subset and
accumulate them for the final output. For example, to have Zm,i needed in the backward process for
calculating the gradient, we must store them after the forward process for function evaluation. By
using a subset, only Zm,i with i in this subset are stored, so the memory usage can be dramatically
reduced.
For the Gauss-Newton matrix-vector product, to calculate (83) under the subsampled scheme,

we have a set S and use Zm,i , ∀i ∈ S . However, under the mini-batch setting, the needed values
may not be kept in the process of function and gradient evaluations. A simple solution is to let
the last subset SR be the same subset used for the sub-sampled Hessian. Then we can preserve the
needed Zm,i for Gauss-Newton matrix-vector products.
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3.6 Some Notes on Practical Implementations
We discuss some implementation tricks if
• max pooling, and
• RELU activation function

are considered. In (56), from (13), σ ′(Sm,i ) is now

σ ′(Sm,i )(p,q) = I [Zm+1,i ](p,q) =

{
1 if zm+1,i

(p,q) > 0,
0 otherwise,

where I is the indicator function.
Recall that to calculate (50),

Zm,i , ∀m

must be stored after the forward process. However, we also need Sm,i in (56). To avoid storing both
Zm,i and Sm,i , we can replace (56) with the following calculation.

∂ξi

∂vec(Sm,i )
T =

(
∂ξi

∂vec(Zm+1,i )T
⊙ vec(I [Zm+1,i ])T

)
Pm,i
pool. (84)

The reason is that, for (56),
∂ξi

∂vec(Zm+1,i )T
× Pm,i

pool (85)

generates a large zero vector and puts values of ∂ξi/∂vec(Zm+1,i )T into positions selected earlier
in the max pooling operation. Then, element-wise multiplications of (85) and vec(I [Zm+1,i ])T are
conducted. Because positions not selected in the max pooling procedure are zeros after (85) and
they are still zeros after the Hadamard product between (85) and vec(I [Zm+1,i ])T , (56) and (84) give
the same results.

Similar to (84), for the Jacobian evaluations, we replace (67) with

∂zL+1,i

∂vec(Sm,i )
T =

(
∂zL+1,i

∂vec(Zm+1,i )T
⊙

(
1nL+1vec(I [Z

m+1,i ])T
))

Pm,i
pool.

3.7 Implementation Details
See Section II of supplementary materials.

4 RELATEDWORKS OF NEWTONMETHODS FOR TRAINING NEURAL NETWORKS
Some past works of applying Newton methods on neural networks are summarized in Table 2.
Among those works, LeCun et al. [15] investigated several second-order optimization methods
and discuss some tricks for training fully-connected neural networks. Martens [20] successfully
applied a Newton method with the Hessian-free approach for training autoencoders. Martens and
Sutskever [21] discussed some techniques about practical Hessian-free approaches, including the
R operator, several damping mechanisms, preconditioning, analysis of mini-batch gradient and
Hessian information, etc., on fully-connected and recurrent networks. Based on [21], Kiros [9]
considered subsampled gradient by selecting a subset at each Newton iteration. Then a further
subset is chosen to construct subsampled Hessian for the Newton method to train autoencoders and
fully-connected neural networks. Wang et al. [29] improved upon subsampled Newton methods by
combining the previous direction and the current Newton direction as the search direction. Wang
et al. [30] extended the same idea to large-scale fully-connected neural networks in a distributed
environment. Botev et al. [1] considered a block diagonal approximation of the Gauss-Newton
matrix in a Newton method for training autoencoders.
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Table 2. Previous studies of Newton methods on different types of neural networks, sorted in chronological
order.

Types of Neural Networks
LeCun et al. [15] Fully-connected
Martens [20] Autoencoder
Martens and Sutskever [21] Fully-connected, Recurrent
Kiros [9] Fully-connected, Autoencoder
Wang et al. [29, 30] Fully-connected
Botev et al. [1] Autoencoder

There are other works such as Quasi-Newton method [3, 12], Krylov subspace descent [28] and
Kronecker-Factorization approximate curvature [5]. Some of these works investigate the use of
second-order optimization methods for training CNN, but their settings are different from the
Newton method considered here.

5 COST ANALYSIS OF NEWTONMETHODS FOR CNN
In this section, we analyze the memory and computational cost per iteration. We consider that all
training instances are used. If the subsampled Hessian in Section 3 is considered, then in the Jacobian
calculation and the Gauss-Newton matrix vector products, the number of instances l should be
replaced by the subset size |S |. Furthermore, if mini-batch function and gradient evaluation in
Section 3.5 is applied, the number of instance l in the function and gradient evaluation can also be
replaced by the size of each batch.
In this discussion we exclude the padding and the pooling operations because first they are

optional steps and second they are not the bottleneck. Depending on the type of the activation
function, the cost may vary. Here we assume that the RELU activation function is used, so from
Section 3.6, σ ′(Sm,i ) does not have to be stored. In addition, for simplicity, the bias term is not
considered.

5.1 Memory Requirement
(1) Weight matrix: For every layer, we must store

Wm, m = 1, . . . , L.

From (10) and (23), the memory usage is

Lc∑
m=1

(
dm+1hmhmdm

)
+

L∑
m=Lc+1

(nm+1nm) .

(2) Gradient vector: For (40), the following matrix must be stored.

∂ f

∂vec(Wm)T
, m = 1, . . . , L.

Therefore, the memory usage is

Lc∑
m=1

(
dm+1hmhmdm

)
+

L∑
m=Lc+1

(nm+1nm) .
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(3) Pmϕ : We store row indices of non-zero positions of the 0/1 matrix Pmϕ for constructing ϕ(Zm,i ).
The memory usage is

Lc∑
m=1

(
hmhmdmamconvb

m
conv

)
.

(4) Function evaluation: From Section 2, we store

Zm,i , m = 1, . . . , L + 1, ∀i .

Therefore, the memory usage is

l ×

(
Lc∑
m=1

dmambm +
L+1∑

m=Lc+1
nm

)
. (86)

The reason why Zm,i ,∀m, i must be stored is because they are used later in the backward
process for calculating the gradient; see (50).

(5) Gradient evaluation: To obtain the gradient in each layerm, we need the matrix
∂ξi

∂vec(Sm,i )T
,∀i

for calculating
∂ξi

∂vec(Sm−1,i )T
,∀i

in the backward process. Note that there is no need to keep the matrices of all layers. All we
have to store is the matrices for two adjacent layers. Thus, the memory usage is

l × max
m=1, ...,Lc

(
dmamconvb

m
conv + d

m+1am+1convb
m+1
conv

)
for the convolutional layers and

l × max
m=Lc+1, ...,L

(nm + nm+1) .

for the fully-connected layers. This is much smaller than (86).
(6) Jacobian evaluation and Gauss-Newton matrix-vector products: At each CG procedure, several

Gauss-Newtonmatrix-vector products are conducted, sowe shouldmaintain certain information.
BesidesWm and Zm,i , from (76), (80), (81) and (82), we must store

∂zL+1,i

∂vec(Sm,i )T
, m = 1, . . . , L, ∀i .

Thus, the memory usage is7

l × nL+1 ×

(
Lc∑
m=1

dm+1amconvb
m
conv +

L∑
m=Lc+1

nm+1

)
. (87)

(7) In (21), ϕ(pad(Zm,i )) is needed. We discuss it in a separate item because ϕ(pad(Zm,i )) is also
used in (50), (76), and (80) for gradient evaluation and Gauss-Newton matrix-vector products.
Because Pmϕ and Zm,i are stored, ϕ(pad(Zm,i )) can be calculated when needed. However, the
matrix must be temporarily stored. Thus the peak memory usage is

l × max
m=1, ...,Lc

(
hmhmdmamconvb

m
conv

)
.

7Note that the dimension of sm,i in fully-connected layers is nm+1.
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This cost is smaller than that in (86) for storing Zm,i . On the other hand, using Pmϕ and Zm,i to
calculate ϕ(pad(Zm,i )) is computationally expensive. If enough memory is available, we may
store all ϕ(pad(Zm,i )) after calculating them in the function evaluation. The memory usage is

l ×
Lc∑
m=1

(
hmhmdmamconvb

m
conv

)
, (88)

which becomes higher than (86) for Zm,i .
From the above discussion, (86) or (88) dominates the memory usage in the function and gradient

evaluation depending on whether ϕ(pad(Zm,i )) is stored or not. On the other hand, (87) is the main
cost for the Jacobian evaluation and Gauss-Newton matrix-vector products. To reduce the memory
consumption, as mentioned, the sub-sampled Hessian technique in Section 3 reduces the usage
in (87), while for (86) or (88) we use the mini-batch function and gradient evaluation technique
described in Section 3.5.

5.2 Computational Cost
We show the computational cost for themth convolutional/fully-connected layer.
(1) Function evaluation:
• Convolutional layers: From (8), (11), (12) and (21), the computational cost is

O(l × hmhmdmdm+1amconvb
m
conv),

where the bottleneck is on calculating

Wmϕ(pad(Zm,i )).

• Fully-connected layers: From (24) and (25), the computational cost is

O(l × nm+1nm)

(2) Gradient evaluation:
• Convolutional layers: For (50), the computational cost is on a matrix-matrix product:

O(l × hmhmdmdm+1amconvb
m
conv).

For (56), because it is replaced by (84), the computational cost is on Hadamard products.

O(l × dm+1am+1bm+1).

For (58), the computational cost is

O(l × hmhmdmdm+1amconvb
m
conv),

which mainly comes from calculating

(Wm)T
∂ξi
∂Sm,i ,∀i .

Therefore, the total computational cost for the gradient evaluation is

O(l × hmhmdmdm+1amconvb
m
conv).

• Fully-connected layers: From (59) and (61), the computational cost is

O(l × nm+1nm).

For (62), the cost is smaller. Therefore, the total computational cost is

O(l × nm+1nm).

(3) Jacobian evaluation:
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• Convolutional layers: The main computational cost is from calculating

(Wm)T
∂zL+1,ij

∂Sm,i , j = 1, . . . ,nL+1,∀i

in (68):
O

(
l × nL+1 × h

mhmdmdm+1amconvb
m
conv

)
,

while others are less significant.
• Fully-connected layers: From (72), the computational cost is

O(l × nL+1 × nm+1nm).

(4) CG: The computational cost is the number of CG iterations (#CG) times the cost of a Gauss-
Newton matrix-vector product.
• Convolutional layers: The main computational cost is from (76) and (80):

O
(
#CG × l × dm+1hmhmdmamconvb

m
conv

)
,

while the cost of (32) is insignificant.
• Fully-connected layers: Similarly, the main computational cost is from (81) and (82):

O (#CG × l × nm+1nm) .

(5) line search: The computational cost is on multiple function evaluations.
• Convolutional layers:

O
(
#line search × l × dm+1hmhmdmamconvb

m
conv

)
.

• Fully-connected layers:

O(#line search × l × nm+1nm).

We summarize the cost in a convolutional layer. Clearly, the cost is proportional to the number
of instances, l . After omitting the term O

(
hmhmdmdm+1amconvb

m
conv

)
in all operations, the cost of

different components can be compared in the following way.

l︸︷︷︸
function/gradient

l × nL+1︸   ︷︷   ︸
Jacobian

#CG × l︸   ︷︷   ︸
CG

#line search × l︸             ︷︷             ︸
line search

.

In general, the number of line search steps is small, so the CG procedure is often the bottleneck.
However, if the sub-sampled Hessian Newton method is applied, l is replaced by the size of the
subset, |S |, for the cost in the Jacobian evaluation and CG. Then the bottleneck may be shifted
to function/gradient evaluations. Note that the mini-batch setting in Section 3.5 for function and
gradient evaluation reduces only memory consumption but not running time.
The discussion for the fully-connected layers is omitted because the result is similar to the

convolutional layers.

6 EXPERIMENTS
The goal is to compare SG methods with the proposed subsampled Newton method for CNN. We
consider a mini-batch SG with momentum [23] shown in Algorithm 2. Though other variants of
SG methods such as AdaGrad and Adam have been proposed, it has been shown [e.g., 26, 31] that
the mini-batch SG with momentum is a strong baseline.
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Table 3. Summary of the data sets, where a1 × b1 × d1 represents the (height, width, channel) of the input
image, l is the number of training data, lt is the number of test data, and nL+1 is the number of classes.

Data set a1 × b1 × d1 l lt nL+1
MNIST 28 × 28 × 1 60, 000 10, 000 10
SVHN 32 × 32 × 3 73, 257 26, 032 10
CIFAR10 32 × 32 × 3 50, 000 10, 000 10

smallNORB 32 × 32 × 2 24, 300 24, 300 5

6.1 Data Sets and Experimental Settings
We choose the following image data sets for experiments. All the data sets are publicly available8
and the summary is in Table 3.
• MNIST: This data set, containing hand-written digits, is a widely used benchmark for data
classification [14].
• SVHN: This data set consists of the colored images of house numbers [22].
• CIFAR10: This data set, containing colored images, is a commonly used classification benchmark
[10].
• smallNORB: This data set is built for 3D object recognition [16]. The original dimension is
96 × 96 × 2 because every object is taken two 96 × 96 grayscale images from the different angles.
These two images are then placed in two channels. To reduce the training time, we downsample
each channel of every object with the max pooling (h = 3, s = 3) to the dimension 32 × 32.
All the data sets were pre-processed by the following procedure.

(1) Min-max normalization. That is, for each pixel of every image Z 1,i , we have

Z 1,i
a,b ,d ←

Z 1,i
a,b ,d −min
max−min

,

where max/min is the maximum/minimum value of all pixels in Z 1,i .
(2) Zero-centering. This is commonly applied before training CNN [11, 32]. That is, for every pixel

in image Z 1,i , we have
Z 1,i
a,b ,d ← Z 1,i

a,b ,d −mean(Z 1,:
a,b ,d ),

where mean(Z 1,:
a,b ,d ) is the per-pixel mean value across all the training images.

We consider two simple CNN structures shown in Table 4. For the initialization, we follow [6] to
set the weight values by multiplying random values from the N(0, 1) distribution and√

2
nmin
, where nmin =

{
dm × hm × hm ifm ≤ Lc ,

nm otherwise.

The bias vector in each layer is set to 0. In addition, to avoid the shrinkage of the output image in
each convolutional layer, we do zero-padding to ensure

amconv = am . (89)

To determine the padding size for fulfilling (89), by substituting ampad and a
m
conv into ain and aout in

(4), we have

amconv = ⌊
ampad − h

s
⌋ + 1.

8See https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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ALGORITHM 2: Mini-batch stochastic gradient methods with momentum.
Given a regularization parameterC > 0, a learning rate η ← η0, a momentum coefficient α , a decay factor
γ , and an updating vectorv ← 0.
for t = 1, . . . , do

Choose a mini batch S ⊂ {1, . . . , l};

v ← αv − η
(
θ
C +

1
|S |∇θ

∑
i :i ∈S ξ (z

L+1,i ;yi ,Z 1,i )
)
;

θ ← θ +v ;
η ←

η0
1+tγ ;

end

If the padding size p indicates the number of zeros added on each side of the image, we have

ampad = am + 2p.

With (89),

am = ⌊
2p + am − h

s
⌋ + 1.

Because s = 1 in Table 4, we can let the padding size be

p =
h − 1
2

so that (89) holds.
For convolutional layers, max pooling is used. Following [21], we consider the squared loss

function shown in (26). For the activation function, the linear activation function at the last layer

σ (x) = x

is considered, while for all other layers (convolutional and fully-connected layers), the RELU
activation function is used.
We use MATLAB to implement both Newton and stochastic gradient methods.9 Because main

operations are matrix-based and MATLAB is optimized for such operations, our implementation
should be sufficiently efficient. We run the subsampled Newton method on a machine with 8 cores
of Intel Core i7-6900K CPUs and 128GB memory. For SG, we use the same machine for timing
comparisons, but use a GPU (Nvidia GeForce GTX 1080 Ti) otherwise to save the running time.

6.2 Test Accuracy and Convergence Speed
We begin with discussing parameters used. The value of C in (27) is set to 0.01l .

For the Newton method, the CG procedure terminates if the following relative stopping condition
holds or the number of CG iterations reaches a maximal number of iterations (denoted as CGmax).

| |(G + λI)d + ∇f (θ )| | ≤ σ | |∇f (θ )| |, (90)

where σ = 0.1 and CGmax = 250. For the implementation of the Levenberg-Marquardt method, we
set the initial λ = 1 and (drop, boost, ρupper, ρlower) constants in (37) are (2/3, 3/2, 0.75, 0.25). In
addition, the sampling rate for the Gauss-Newton matrix is set to 5%. We terminate the Newton
method after 100 iterations.

9See https://github.com/cjlin1/simpleNN.
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Table 4. Structure of convolutional neural networks. “conv” indicates a convolutional layer, “pool” indicates a
pooling layer, and “full” indicates a fully-connected layer.

3-layer CNN 5-layer CNN
filter size #filters stride filter size #filters stride(hm×hm×dm ) (dm+1) (hm×hm×dm ) (dm+1)

conv 1 5 × 5 × 3 32 1 5 × 5 × 3 32 1
pool 1 2 × 2 - 2 2 × 2 - 2
conv 2 3 × 3 × 32 64 1 3 × 3 × 32 32 1
pool 2 2 × 2 - 2 - - -
conv 3 3 × 3 × 64 64 1 3 × 3 × 32 64 1
pool 3 2 × 2 - 2 2 × 2 - 2
conv 4 - - - 3 × 3 × 64 64 1
pool 4 - - - - - -
conv 5 - - - 3 × 3 × 64 128 1
pool 5 - - - 2 × 2 - 2
full 1 - - - - - -

Table 5. Test accuracy by Newton and SG methods. We use five random seeds and report the mean test
accuracy. The value within the parenthesis is the initial learning rate for SG, selected from a cross validation
procedure on the training set.

3-layer CNN 5-layer CNN
Newton SG Newton SG

MNIST 99.27% 99.17% (0.003) 99.43% 99.42% (0.001)
SVHN 92.75% 93.06% (0.003) 94.28% 93.75% (0.003)
CIFAR10 78.32% 79.58% (0.003) 80.19% 79.63% (0.0003)
smallNORB 95.05% 95.06% (0.001) 95.30% 94.59% (0.001)

For stochastic gradient methods, we consider Algorithm 2 and select the initial learning rate η0
from {0.003, 0.001, 0.0003, 0.0001} by five-fold cross validation.10 For other parameters, we set

|S | = 128,α = 0.9,γ = 10−6

and terminate the training process after 1, 000 epochs.
To have a fair comparison between SG and subsampled Newton methods, the following settings

are the same for both approaches.
• Initial weights.
• Network structures.
• Objective function.
• Regularization parameter.

The first comparison, shown in Table 5, is on the test accuracy. We see that the test accuracy
of the subsampled Newton method (with the 5% sampling rate) is comparable to that of SG. The
performance of the SG method by using more layers is inferior to that by fewer layers. It seems
overfitting occurs, so a tuning on SG’s termination criterion may be needed.

10We use a stratified split of data in the cross validation procedure.

25



 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000  2500

T
e

s
t 

a
c
c
u

ra
c
y
 (

%
)

Time in seconds

SG-with-momentum

SG-without-momentum

Newton

(a) MNIST

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000  12000  14000

T
e

s
t 

a
c
c
u

ra
c
y
 (

%
)

Time in seconds

SG-with-momentum

SG-without-momentum

Newton

(b) SVHN

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5000  10000  15000  20000

T
e
s
t 
a

c
c
u

ra
c
y
 (

%
)

Time in seconds

SG-with-momentum

SG-without-momentum

Newton

(c) CIFAR10
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Fig. 3. A comparsion on the convergence speed. We present running time (in seconds) versus the test accuracy.

The next experiment is on the convergence speed. We consider the 3-layer CNN structure in
Table 4 and compare the following three settings, where the first two are those used earlier to check
the test accuracy.
• Subsampled Newton.
• SG with momentum.
• SG without momentum: This is the simple stochastic gradient method without using the
momentum and the learning-rate decay.

In Figure 3, we present the result of
running time versus test accuracy.

We can observe that stochastic gradient methods, if under suitable settings (e.g., using the mo-
mentum) is faster than Newton to achieve the final test accuracy. This result is expected because
a higher-order method like the Newton method is more expensive per iteration and those early
iterations do not give good accuracy yet.
The above analysis seems to indicate that the subsampled Newton method is not efficient in

comparison with SG. However, we note that before the training procedure to generate Figure 3, a
cross validation procedure may be needed to select suitable parameters. For our experiments so
far, no validation procedure is conducted for Newton, but we apply it for SG to select the initial
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Table 6. A comparison between Newton and SG on the sensitivity to parameters. Each test accuracy is the
average of five results by using the same initial solutions as in Table 5. For SG, in some situations not all the
five initial weights lead to the convergence.

Sampling rate (Newton) Initial learning rate (SG)
C 10% 5% 1% 0.1 0.03 0.01 0.003 0.001 0.0003 0.0001
0.01l 99.28% 99.27% 99.18% 9.82% 9.96% 10.31% 99.17% 99.22% 99.05% 98.82%
0.1l 99.22% 99.27% 99.06% 9.82% 9.96% 10.31% 99.12% 99.18% 98.91% 98.70%
1l 99.05% 99.15% 99.02% 9.82% 9.96% 10.31% 98.90% 99.03% 98.87% 98.69%

(a) MNIST.

Sampling rate (Newton) Initial learning rate (SG)
C 10% 5% 1% 0.1 0.03 0.01 0.003 0.001 0.0003 0.0001
0.01l 92.79% 92.75% 92.21% 19.59% 19.59% 92.40% 93.06% 92.77% 92.35% 90.68%
0.1l 92.11% 92.29% 91.89% 19.59% 19.59% 90.80% 91.17% 91.63% 91.74% 90.32%
1l 91.20% 91.99% 91.81% 19.59% 19.59% 87.87% 89.81% 91.27% 91.57% 90.23%

(b) SVHN.

Sampling rate (Newton) Initial learning rate (SG)
C 10% 5% 1% 0.1 0.03 0.01 0.003 0.001 0.0003 0.0001
0.01l 78.27% 78.32% 75.46% 10.00% 10.00% 63.10% 79.58% 79.20% 76.94% 71.55%
0.1l 74.19% 74.68% 73.24% 10.00% 10.00% 47.38% 71.29% 73.41% 73.99% 70.24%
1l 72.75% 73.54% 72.61% 10.00% 10.00% 55.45% 67.17% 71.28% 73.03% 69.88%

(c) CIFAR10.

Sampling rate (Newton) Initial learning rate (SG)
C 10% 5% 1% 0.1 0.03 0.01 0.003 0.001 0.0003 0.0001
0.01l 94.94% 95.05% 94.66% 20.00% 64.73% 95.03% 95.08% 95.06% 94.87% 94.38%
0.1l 95.90% 95.41% 94.23% 20.00% 77.45% 95.78% 96.02% 95.64% 95.06% 94.23%
1l 94.89% 94.83% 93.97% 20.00% 47.35% 94.78% 94.88% 94.79% 94.66% 94.07%

(d) smallNORB.

learning rate. If we take the cross-validation procedure into consideration, the overall cost of SG is
higher. Therefore, if we can confirm that SG is more sensitive to parameters, then with the better
robustness, the Newton method can be practically viable. To this end, in Section 6.3 we investigate
the robustness of the two methods.

6.3 Sensitivity of Newton and SG to Their Parameters
We still consider the 3-layer CNN in Table 4. The following parameters are checked.
• The regularization parameter C . This parameter appears in the objective function, so it must
be selected regardless of the optimization method used.
• Size of the set S in the subsampled Newton method. We check different sampling ratios to
select S from the whole training set.
• The initial learning rate for the stochastic gradient method.

Besides these parameters, all other settings are the same as those for generating Table 5. From
results shown in Table 6 we can make the following observations.
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• It is essential to find a suitable range of the initial learning rate for SG. If it is too large, the
SG iterations diverge and give poor test accuracy. On the other hand, if the learning rate is
too small, the convergence is very slow. That is, after 1, 000 epochs, the test accuracy is still
slowly increasing.
Earlier comparisons onNewton and SG for fully-connected networks give similar observations
(e.g., Figure 5 of [30]).
• For the subsampled Newton method, under the same C value, the test accuracy values are
generally similar. However, in some cases, if only 1% data are used, the test accuracy is slightly
worse. The reason is that without sufficient data, more iterations are needed to reach the
final test accuracy.
• Test accuracy under different C values does not change dramatically though a selection
procedure should be conducted to ensure that the chosen model gives the best validation
accuracy.

We can conclude that the subsampled Newton method is less sensitive to parameters than the
stochastic gradient method. First, because each Newton iteration is more expensive, a parameter
change does not significantly affect the number of needed iterations. For example, for the CIFAR10
set, the accuracy reduction of changing the subset S from 5% to 1% of data is less than that of
changing the initial learning rate of SG from 0.0003 to 0.0001. Second, the subsampled Newton
method converges as long as enough iterations have been run. In contrast, a large initial learning
rate can cause SG to diverge and return a useless model.

7 CONCLUSIONS
In this study, we establish all the building blocks of Newton methods for CNN. A simple and
effective MATLAB implementation is developed for public use. Experiments show that Newton
methods are less sensitive to parameters than stochastic gradient methods. Based on our results, it
is possible to further enhance Newton methods for CNN.
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