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Abstract

In many machine learning problems such as the dual form of SVM, the objective function
to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining
the complexity of some commonly used optimization algorithms. In this paper, we proved
the global linear convergence on a wide range of algorithms when they are applied to
some non-strongly convex problems. In particular, we are the first to prove O(log(1/ε))
time complexity of cyclic coordinate descent methods on dual problems of support vector
classification and regression.
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1. Introduction

We consider the following convex optimization problem

min
x∈X

f(x), where f(x) ≡ g(Ex) + b>x, (1)

where g(t) is a strongly convex function with Lipschitz continuous gradient, E is a constant
matrix, and X is a polyhedral set. Many popular machine learning problems are of this
type. For example, given training label-instance pairs (yi, zi), i = 1, . . . , l, the dual form of
L1-loss linear SVM (Boser et al., 1992) is1

min
α

1

2
w>w − 1Tα

subject to w = Eα, 0 ≤ αi ≤ C, i = 1, . . . , l,
(2)

where E =
[
y1z1, . . . , ylzl

]
, 1 is the vector of ones, and C is a given upper bound. Although

w>w/2 is strongly convex in w, the objective function of (2) may not be strongly convex
in α. Common optimization approaches for these machine learning problems include cyclic
coordinate descent and others. Unfortunately, most existing results prove only local linear

1. Note that we omit the bias term in the SVM formulation.
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convergence, so the number of total iterations cannot be calculated. One of the main diffi-
culties is that f(x) may not be strongly convex. In this work, we establish the global linear
convergence for a wide range of algorithms for problem (1). In particular, we are the first
to prove that the popularly used cyclic coordinate descent methods for dual SVM problems
converge linearly since the beginning. Many researchers have stated the importance of such
convergence-rate analysis. For example, Nesterov (2012) said that it is “almost impossible
to estimate the rate of convergence” for general cases. Saha and Tewari (2013) also agreed
that “little is known about the non-asymptotic convergence” for cyclic coordinate descent
methods and they felt “this gap in the literature needs to be filled urgently.”

Luo and Tseng (1992a) are among the first to establish the asymptotic linear convergence
to a non-strongly convex problem related to (1). If X is a box (possibly unbounded)
and a cyclic coordinate descent method is applied, they proved ε-optimality in O(r0 +
log(1/ε)) time, where r0 is an unknown number. Subsequently, Luo and Tseng (1993)
considered a class of feasible descent methods that broadly covers coordinate descent and
gradient projection methods. For problems including (1), they proved the asymptotic linear
convergence. The key concept in their analysis is a local error bound, which states how close
the current solution is to the solution set compared with the norm of projected gradient
∇+f(x).

min
x∗∈X ∗

‖xr − x∗‖ ≤ κ‖∇+f(xr)‖, ∀r ≥ r0, (3)

where r0 is the above-mentioned unknown iteration index, X ∗ is the solution set of problem
(1), κ is a positive constant, and xr is the solution produced after the r-th iteration. Because
r0 is unknown, we call (3) a local error bound, which only holds near the solution set. Local
error bounds have been used in other works for convergence analysis such as Luo and Tseng
(1992b). If r0 = 0, we call (3) a global error bound from the beginning, and it may help
to obtain a global convergence rate. If f(x) is strongly convex and X is a polyhedral set,
a global error bound has been established by Pang (1987, Theorem 3.1). One of the main
contributions of our work is to prove a global error bound of the possibly non-strongly convex
problem (1). Then we are able to establish the global linear convergence and O(log(1/ε))
time complexity for the feasible descent methods.

We briefly discuss some related works, which differ from ours in certain aspects. Chang
et al. (2008) applied an (inexact) cyclic coordinate descent method for the primal problem
of L2-loss SVM. Because the objective function is strongly convex, they are able to prove
the linear convergence since the first iteration. Further, Beck and Tetruashvili (2013) estab-
lished global linear convergence for block coordinate gradient descent methods on general
smooth and strongly convex objective functions. Tseng and Yun (2009) applied a greedy
version of block coordinate descent methods on the non-smooth separable problems cov-
ering the dual form of SVM. However, they proved only asymptotic linear convergence
and O(1/ε) complexity. Moreover, for large-scale linear SVM (i.e., kernels are not used),
cyclic rather than greedy coordinate descent methods are more commonly used in practice.2

Wright (2012) considered the same non-smooth separable problems in Tseng and Yun (2009)
and introduced a reduced-Newton acceleration that has asymptotic quadratic convergence.

2. It is now well known that greedy coordinate descent methods such as SMO (Platt, 1998) are less suitable
for linear SVM; see some detailed discussion in Hsieh et al. (2008, Section 4.1).
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For L1-regularized problems, Saha and Tewari (2013) proved O(1/ε) complexity for cyclic
coordinate descent methods under a restrictive isotonic assumption.

Although this work focuses on deterministic algorithms, we briefly review past studies
on stochastic (randomized) methods. An interesting fact is that there are more studies
on the complexity of randomized rather than deterministic coordinate descent methods.
Shalev-Shwartz and Tewari (2009) considered L1-regularized problems, and their stochastic
coordinate descent method converges in O(1/ε) iterations in expectation. Nesterov (2012)
extended the settings to general convex objective functions and improved the iteration
bound to O(1/

√
ε) by proposing an accelerated method. For strongly convex function, he

proved that the randomized coordinate descent method converges linearly in expectation.
Shalev-Shwartz and Zhang (2013a) provided a sub-linear convergence rate for a stochastic
coordinate ascent method, but they focused on the duality gap. Their work is interesting
because it bounds the primal objective values. Shalev-Shwartz and Zhang (2013b) refined
the sub-linear convergence to be O(min(1/ε, 1/

√
ε)). Richtárik and Takáč (2014) studied

randomized block coordinate descent methods for non-smooth convex problems and had sub-
linear convergence on non-strongly convex functions. If the objective function is strongly
convex and separable, they obtained linear convergence. Tappenden et al. (2013) extended
the methods to inexact settings and had similar convergence rates to those in Richtárik and
Takáč (2014).

Our main contribution is a global error bound for the non-strongly convex problem
(1), which ensures the global linear convergence of feasible descent methods. The main
theorems are presented in Section 2, followed by examples in Section 3. The global error
bound is discussed in Section 4, and the proof of global linear convergence of feasible descent
methods is given in Section 5. We conclude in Section 6 while leaving properties of projected
gradients in Appendix A.

2. Main Results

Consider the general convex optimization problem

min
x∈X

f(x), (4)

where f(x) is proper convex and X is nonempty, closed, and convex. We will prove global
linear convergence for a class of optimization algorithms if problem (4) satisfies one of the
following assumptions.

Assumption 2.1 f(x) is σ strongly convex and its gradient is ρ Lipschitz continuous.
That is, there are constants σ > 0 and ρ such that

σ‖x1 − x2‖2 ≤ (∇f(x1)−∇f(x2))
>(x1 − x2), ∀x1,x2 ∈ X

and
‖∇f(x1)−∇f(x2)‖ ≤ ρ‖x1 − x2‖, ∀x1,x2 ∈ X .

Assumption 2.2 X = {x | Ax ≤ d} is a polyhedral set, the optimal solution set X ∗ is
non-empty, and

f(x) = g(Ex) + b>x, (5)
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where g(t) is σg strongly convex and ∇f(x) is ρ Lipschitz continuous. This assumption
corresponds to problem (1) that motivates this work.

The optimal set X ∗ under Assumption 2.1 is non-empty following Weierstrass extreme value
theorem.3 Subsequently, we make several definitions before presenting the main theorem.

Definition 2.3 (Convex Projection Operator)

[x]+X ≡ arg min
y∈X
‖x− y‖.

From Weierstrass extreme value theorem and the strong convexity of ‖x − y‖2 to y, the
unique [x]+X exists for any X that is closed, convex, and non-empty.

Definition 2.4 (Nearest Optimal Solution)

x̄ ≡ [x]+X ∗ .

With this definition, minx∗∈X ∗ ‖x− x∗‖ could be simplified to ‖x− x̄‖.

Definition 2.5 (Projected Gradient)

∇+f(x) ≡ x− [x−∇f(x)]+X .

As shown in Lemma A.6, the projected gradient is zero if and only if x is an optimal
solution. Therefore, it can be used to check the optimality. Further, we can employ the
projected gradient to define an error bound, which measures the distance between x and
the optimal set; see the following definition.

Definition 2.6 An optimization problem admits a global error bound if there is a con-
stant κ such that

‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x ∈ X . (6)

A relaxed condition called global error bound from the beginning if the above inequality
holds only for x satisfying

x ∈ X and f(x)− f(x̄) ≤M,

where M is a constant. Usually, we have

M ≡ f(x0)− f∗,

where x0 is the start point of an optimization algorithm and f∗ is the optimal function
value. Therefore, we called this as a bound “from the beginning.”

3. The strong convexity in Assumption 2.1 implies that the sublevel set is bounded (Vial, 1983). Then
Weierstrass extreme value theorem can be applied.
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The global error bound is a property of the optimization problem and is independent from
the algorithms. If a bound holds,4 then using Lemmas A.5, A.6, and (6) we can obtain

1

2 + ρ
‖∇+f(x)‖ ≤ ‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x ∈ X .

This property indicates that ‖∇+f(x)‖ is useful to estimate the distance to the optimum.
We will show that a global error bound enables the proof of global linear convergence of
some optimization algorithms. The bound under Assumption 2.1, which requires strong
convexity, was already proved in Pang (1987) with

κ =
1 + ρ

σ
.

However, for problems under Assumption 2.2 such as the dual form of L1-loss SVM, the
objective function is not strongly convex, so a new error bound is required. We prove the
bound in Section 4 with

κ = θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M) + 2θ‖∇f(x̄)‖, (7)

where t∗ is a constant vector that equals Ex∗, ∀x∗ ∈ X ∗ and θ is the constant from
Hoffman’s bound (Hoffman, 1952; Li, 1994).

θ ≡ sup
u,v


∥∥∥∥uv
∥∥∥∥
∣∣∣∣∣∣∣
‖A>u+

(
E
b>
)>
v‖ = 1, u ≥ 0.

The corresponding rows of A, E to u, v’s

non-zero elements are linearly independent.

 .

Specially, when b = 0 or X = Rl, the constant could be simplified to

κ = θ2
1 + ρ

σg
. (8)

Now we define a class of optimization algorithms called the feasible descent methods for
solving (4).

Definition 2.7 (Feasible Descent Methods) A sequence {xr} is generated by a feasible
descent method if for every iteration index r, {xr} satisfies

xr+1 = [xr − ωr∇f(xr) + er]+X , (9)

‖er‖ ≤ β‖xr − xr+1‖ , (10)

f(xr)− f(xr+1) ≥ γ‖xr − xr+1‖2, (11)

where infr ωr > 0, β > 0, and γ > 0.

4. Note that not all problems have a global error bound. An example is minx∈R x4.
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The framework of feasible descent methods broadly covers many algorithms that use the
first-order information. For example, the projected gradient descent, the cyclic coordinate
descent, the proximal point minimization, the extragradient descent, and matrix splitting
algorithms are all feasible descent methods (Luo and Tseng, 1993). With the global error
bound under Assumption 2.1 or Assumption 2.2, in the following theorem we prove the
global linear convergence for all algorithms that fit into the feasible descent methods.

Theorem 2.8 (Global Linear Convergence) If an optimization problem satisfies As-
sumption 2.1 or 2.2, then any feasible descent method on it has global linear convergence.
To be specific, the method converges Q-linearly with

f(xr+1)− f∗ ≤ φ

φ+ γ
(f(xr)− f∗), ∀r ≥ 0,

where κ is the error bound constant in (6),

φ = (ρ+
1 + β

ω
)(1 + κ

1 + β

ω
), and ω ≡ min(1, inf

r
ωr).

This theorem enables global linear convergence in many machine learning problems. The
proof is given in Section 5. In Section 3, we discuss examples on cyclic coordinate descent
methods.

3. Examples: Cyclic Coordinate Descent Methods

Cyclic coordinate descent methods are now widely used for machine learning problems
because of its efficiency and simplicity (solving a one-variable sub-problem at a time). Luo
and Tseng (1992a) proved the asymptotic linear convergence if sub-problems are solved
exactly, and here we further show the global linear convergence.

3.1 Exact Cyclic Coordinate Descent Methods for Dual SVM Problems

In the following algorithm, each one-variable sub-problem is exactly solved.

Definition 3.1 A cyclic coordinate descent method on a box X = X1 × · · · × Xl is defined
by the update rule

xr+1
i = arg min

xi∈Xi

f(xr+1
1 , . . . , xr+1

i−1 , xi, x
r
i+1, . . . , x

r
l ), for i = 1, . . . , l, (12)

where Xi is the region under box constraints for coordinate i.

The following lemma shows that coordinate descent methods are special cases of the feasible
descent methods.

Lemma 3.2 The cyclic coordinate descent method is a feasible descent method with

ωr = 1, ∀r, β = 1 + ρ
√
l,

and

γ =

{
σ
2 if Assumption 2.1 holds,
1
2 mini ‖Ei‖2 if Assumption 2.2 holds with ‖Ei‖ > 0, ∀i,

where Ei is the ith column of E.
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Proof This lemma can be directly obtained using Proposition 3.4 of Luo and Tseng (1993).
Our assumptions correspond to cases (a) and (c) in Theorem 2.1 of Luo and Tseng (1993),
which fulfill conditions needed by their Proposition 3.4.

For faster convergence, we may randomly permute all variables before each cycle of updating
them (e.g., Hsieh et al., 2008). This setting does not affect the proof of Lemma 3.2.

Theorem 2.8 and Lemma 3.2 immediately imply the following corollary.

Corollary 3.3 The cyclic coordinate descent methods have global linear convergence if As-
sumption 2.1 is satisfied or Assumption 2.2 is satisfied with ‖Ei‖ > 0, ∀i.

Next, we analyze the cyclic coordinate descent method to solve dual SVM problems. The
method can be traced back to Hildreth (1957) for quadratic programming problems and
has recently been widely used following the work by Hsieh et al. (2008). For L1-loss SVM,
we have shown in (2) that the objective function can be written in the form of (1) by a
strongly convex function g(w) = w>w/2 and Ei = yizi for all label-instance pair (yi, zi).
Hsieh et al. (2008) pointed out that ‖Ei‖ = 0 implies the optimal α∗i is C, which can be
obtained at the first iteration and is never changed. Therefore, we need not consider such
variables at all. With all conditions satisfied, Corollary 3.3 implies that cyclic coordinate
descent method for dual L1-loss SVM has global linear convergence. For dual L2-loss SVM,
the objective function is

1

2
α>Qα− 1>α+

1

2C
α>α, (13)

where Qt,j = ytyjz
>
t zj ,∀1 ≤ t, j ≤ l and 1 is the vector of ones. Eq. (13) is strongly convex

and its gradient is Lipschitz continuous, so Assumption 2.1 and Corollary 3.3 imply the
global linear convergence.

We move on to check the dual problems of support vector regression (SVR). Given value-
instance pairs (yi, zi), i = 1, . . . , l, the dual form of L1-loss m-insensitive SVR (Vapnik,
1995) is

min
α

1

2
α>
[
Q −Q
−Q Q

]
α+

[
m1− y
m1 + y

]>
α (14)

subject to 0 ≤ αi ≤ C, i = 1, . . . , 2l,

where Qt,j = z>t zj , ∀1 ≤ t, j ≤ l, and m and C are given parameters. Similar to the case
of classification, we can also perform cyclic coordinate descent methods; see Ho and Lin
(2012, Section 3.2). Note that Assumption 2.2 must be used here because for any Q, the
Hessian in (14) is only positive semi-definite rather than positive definite. In contrast, for
classification, if Q is positive definite, the objective function in (2) is strongly convex and
Assumption 2.1 can be applied. To represent (14) in the form of (1), let

Ei = zi, i = 1, . . . , l and Ei = −zi, i = l + 1, . . . , 2l.

Then g(w) = w>w/2 with w = Eα is a strongly convex function to w. Similar to the
situation in classification, if ‖Ei‖ = 0, then the optimal α∗i is bounded and can be obtained
at the first iteration. Without considering these variables, Corollary 3.3 implies the global
linear convergence.
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3.2 Inexact Cyclic Coordinate Descent Methods for Primal SVM Problems

In some situations the sub-problems (12) of cyclic coordinate descent methods cannot be
easily solved. For example, in Chang et al. (2008) to solve the primal form of L2-loss SVM,

min
w

f(w), where f(w) ≡ 1

2
w>w + C

l∑
i=1

max(1− yiw>zi, 0)2, (15)

each sub-problem does not have a closed-form solution, and they approximately solve the
sub-problem until a sufficient decrease condition is satisfied. They have established the
global linear convergence, but we further show that their method can be included in our
framework.

To see that Chang et al. (2008)’s method is a feasible descent method, it is sufficient
to prove that (9)-(11) hold. First, we notice that their sufficient decrease condition for
updating each variable can be accumulated. Thus, for one cycle of updating all variables,
we have

f(wr)− f(wr+1) ≥ γ‖wr −wr+1‖2,

where γ > 0 is a constant. Next, because (15) is unconstrained, if zi ∈ Rn,∀i, we can make

X = Rn and er = wr+1 −wr +∇f(wr)

such that

wr+1 = [wr −∇f(wr) + er]+X .

Finally, from Appendix A.3 of Chang et al. (2008),

‖er‖ ≤ ‖wr −wr+1‖+ ‖∇f(wr)‖ ≤ β‖wr −wr+1‖,

where β > 0 is a constant. Therefore, all conditions (9)-(11) hold. Note that (15) is strongly
convex because of the w>w term and ∇f(w) is Lipschitz continuous from (Lin et al., 2008,
Section 6.1), so Assumption 2.1 is satisfied. With Theorem 2.8, the method by Chang et al.
(2008) has global linear convergence.

3.3 Gauss-Seidel Methods for Solving Linear Systems

Gauss-Seidel (Seidel, 1874) is a classic iterative method to solve a linear system

Qα = b. (16)

Gauss-Seidel iterations take the following form.

αr+1
i =

bi −
∑i−1

j=1Qijα
r+1
j −

∑l
j=i+1Qijα

r
j

Qii
. (17)

If Q is symmetric positive semi-definite and (16) has at least one solution, then the following
optimization problem

min
α∈Rl

1

2
α>Qα− b>α (18)
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has the same solution set as (16). Further, αr+1
i in (17) is the solution of minimizing

(18) over αi while fixing αr+1
1 , . . . , αr+1

i−1 , α
r
i+1, . . . , α

r
l . Therefore, Gauss-Seidel method is a

special case of coordinate descent methods.

Clearly, we need Qii > 0,∀i so that (17) is well defined. This condition also implies that

Q = E>E, where E has no zero column. (19)

Otherwise, ‖Ei‖ = 0 leads to Qii = 0 so the Qii > 0 assumption is violated. Note that
because Q is symmetric positive semi-definite, its orthogonal diagonalization UTDU exists
and we choose E =

√
DU . Using (19) and Lemma 3.2, Gauss-Seidel method is a feasible

descent method. By Assumption 2.2 and our main Theorem 2.8, we have the following
convergence result.

Corollary 3.4 If

1. Q is symmetric positive semi-definite and Qii > 0, ∀i, and

2. The linear system (16) has at least a solution,

then the Gauss-Seidel method has global linear convergence.

This corollary covers some well-known results of the Gauss-Seidel method, which were
previously proved by other ways. For example, in most numerical linear algebra textbooks
(e.g., Golub and Van Loan, 1996), it is proved that if Q is strictly diagonally dominant
(i.e., Qii >

∑
j 6=i |Qij |, ∀i), then the Gauss-Seidel method converges linearly. We show in

Lemma C.1 that a strictly diagonally dominant matrix is positive definite, so Corollary 3.4
immediately implies global linear convergence.

3.4 Quantity of the Convergence Rate

To demonstrate the relationship between problem parameters (e.g., number of instances
and features) and the convergence rate constants, we analyze the constants κ and φ for
two problems. The first example is the exact cyclic coordinate descent method for the dual
problem (2) of L1-loss SVM. For simplicity, we assume ‖Ei‖ = 1, ∀i, where Ei denotes the
ith column of E. We have

σg = 1 (20)

by g(t) = t>t/2. Observe the following primal formulation of L1-loss SVM.

min
w

P (w), where P (w) ≡ 1

2
w>w + C

l∑
i=1

max(1− yiw>zi, 0).

Let w∗ and α∗ be any optimal solution of the primal and the dual problems, respectively.
By KKT optimality condition, we have w∗ = Eα∗. Consider α0 = 0 as the initial feasible
solution. With the duality and the strictly decreasing property of {f(αr)},

f(αr)− f(α∗) ≤ f(0)− f(α∗) = f(0) + P (w∗) ≤ f(0) + P (0) ≤ 0 + Cl ≡M. (21)
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Besides,

1

2
w∗>w∗ ≤ P (w∗) ≤ P (0) ≤ Cl implies ‖w∗‖ = ‖Eα∗‖ ≤

√
2Cl. (22)

From (22),

‖∇f(ᾱ)‖ ≤ ‖E‖‖Eα∗‖+ ‖1‖ ≤
√

Σi‖Ei‖2‖Eα∗‖+ ‖1‖ ≤
√

2Cl +
√
l. (23)

To conclude, by (7), (20), (21), (22), (23), and ∇g(w∗) = w∗,

κ = θ2(1 + ρ)(
1 + 2‖∇g(w∗)‖2

σg
+ 4M) + 2θ‖∇f(ᾱ)‖

≤ θ2(1 + ρ)((1 + 4Cl) + 4Cl) + 2θ(
√

2Cl +
√
l)

= O(ρθ2Cl).

Now we examine the rate φ for linear convergence. From Theorem 2.8, we have

φ = (ρ+
1 + β

ω
)(1 + κ

1 + β

ω
)

= (ρ+ 2 + ρ
√
l)(1 + κ(2 + ρ

√
l))

= O(ρ3θ2Cl2),

where

ω = 1, β = 1 + ρ
√
l, γ =

1

2
(24)

are from Lemma 3.2 and the assumption that ‖Ei‖ = 1, ∀i. To conclude, we have κ =
O(ρθ2Cl) and φ = O(ρ3θ2Cl2) for the exact cyclic coordinate descent method for the dual
problem of L1-loss SVM.

Next we consider the Gauss-Seidel method for solving linear systems in Section 3.3 by
assuming ‖Q‖ = 1 and Qii > 0, ∀i, where ‖Q‖ denotes the spectral norm of Q. Similar to
(20), we have σg = 1 by g(t) = t>t/2. Further, ρ = 1 from

‖∇f(α1)−∇f(α2)‖ ≤ ‖Q‖‖α1 −α2‖ = ‖α1 −α2‖.

Because the optimization problem is unconstrained, by (8) we have

κ = θ2
1 + ρ

σg
= 2θ2, (25)

where θ is defined as

θ ≡ sup
v

‖v‖
∣∣∣∣∣∣∣
‖E>v‖ = 1.

The corresponding rows of E to v’s

non-zero elements are linearly independent.

 , (26)

and E =
√
DU is from the orthogonal diagonalization of Q in (19). To have that the

corresponding rows of E to v’s non-zero elements are linearly independent, we need

vi = 0 if Dii = 0.
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Therefore, problem (26) becomes to select vi with Dii > 0 such that E>v = 1 and ‖v‖ is
maximized. Because U ’s rows are orthogonal vectors and any Dii > 0 is an eigen-value of
Q, the maximum occurs if we choose ν = ei as the indicator vector corresponding to the
smallest non-zero eigen-value σmin -nnz. Then,

the solution v in (26) is
ν

√
σmin -nnz

and θ2 =
1

σmin -nnz
. (27)

From Lemma 3.2, ω, β, and γ of the Gauss-Seidel method are the same as (24). Thus,
Theorem 2.8, (24), (25), and (27) give the convergence rate constant

φ = (3 +
√
l)(1 + κ(2 +

√
l)) = (3 +

√
l)(1 +

4 + 2
√
l

σmin -nnz
). (28)

With (24), (28), and Theorem 2.8, the Gauss-Seidel method on solving linear systems has
linear convergence with

f(αr+1)− f∗ ≤ (1− σmin -nnz

4(6 + 5
√
l + l) + (7 + 2

√
l)σmin -nnz)

)(f(αr)− f∗), ∀r ≥ 0.

We discuss some related results. A similar rate of linear convergence appears in Beck and
Tetruashvili (2013). They assumed f is σmin strongly convex and the optimization problem
is unconstrained. By considering a block coordinate descent method with a conservative
rule of selecting the step size, they showed

f(αr+1)− f∗ ≤ (1− σmin

2(1 + l)
)(f(αr)− f∗), ∀r ≥ 0.

Our obtained rate is comparable, but is more general to cover singular Q.

4. Proofs of Global Error Bounds

In this section, we prove the global error bound (6) under Assumptions 2.1 or 2.2. The
following theorem proves the global error bound under Assumption 2.1.

Theorem 4.1 (Pang 1987, Theorem 3.1) Under Assumption 2.1,

‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x ∈ X ,

where κ = (1 + ρ)/σ.

Proof Because f(x) is strongly convex, X ∗ has only one element x̄. From Lemmas A.4
and A.6, the result holds immediately.

The rest of this section focuses on proving a global error bound under Assumption 2.2.
We start by sketching the proof. First, observe that the optimal set is a polyhedron by
Lemma 4.2. Then ‖x − x̄‖ is identical to the distance of x to the polyhedron. A known
technique to bound the distance between x and a polyhedron is Hoffman’s bound (Hoffman,
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1952). Because the original work uses L1-norm, we provide in Lemma 4.3 a special version
of Li (1994) that uses L2-norm. With the feasibility of x, there is

‖x− x̄‖ ≤ θ
(
A,
(
E
b>
)) ∥∥∥∥E(x− x̄)

b>(x− x̄)

∥∥∥∥ ,
where θ

(
A,
(
E
b>
))

is a constant related to A, E, and b. Subsequently, we bound ‖E(x−x̄)‖2

and (b>(x − x̄))2 in Lemmas 4.4 and 4.5 by values consisting of ‖∇+f(x)‖ and ‖x − x̄‖.
Such bounds are obtained using properties of the optimization problem such as the strong
convexity of g(·). Finally, we obtain a quadratic inequality involving ‖∇+f(x)‖ and ‖x−x̄‖,
which eventually leads to a global error bound under Assumption 2.2.

We begin the formal proof by expressing the optimal set as a polyhedron.

Lemma 4.2 (Optimal Condition) Under Assumption 2.2, there are unique t∗ and s∗

such that ∀x∗ ∈ X ∗,
Ex∗ = t∗, b>x∗ = s∗, and Ax∗ ≤ d. (29)

Note that A and d are the constants for generating the feasible set X = {x | Ax ≤ d}.
Further,

x∗ satisfies (29)⇔ x∗ ∈ X ∗. (30)

Specially, when b = 0 or X = Rl,5

Ex∗ = t∗, Ax∗ ≤ d⇔ x∗ ∈ X ∗. (31)

Proof First, we prove (29). The proof is similar to Lemma 3.1 in Luo and Tseng (1992a).
For any x∗1,x

∗
2 ∈ X ∗, from the convexity of f(x),

f((x∗1 + x∗2)/2) = (f(x∗1) + f(x∗2))/2.

By the definition of f(x) in Assumption 2.2, we have

g((Ex∗1 + Ex∗2)/2) + b>(x∗1 + x∗2)/2 = (g(Ex∗1) + g(Ex∗2) + b>(x∗1 + x∗2))/2.

Cancel b>(x∗1+x∗2)/2 from both sides. By the strong convexity of g(t), we have Ex∗1 = Ex∗2.
Thus, t∗ ≡ Ex∗ is unique. Similarly, because f(x∗1) = f(x∗2),

g(t∗) + b>x∗1 = g(t∗) + b>x∗2.

Therefore, s∗ ≡ b>x∗ is unique, and Ax∗ ≤ d, ∀x∗ ∈ X ∗ holds naturally by X ∗ ⊆ X .
Further,

f(x∗) = g(t∗) + s∗, ∀x∗ ∈ X ∗. (32)

The result in (29) immediately implies the (⇐) direction of (30). For the (⇒) direction,
for any x∗ satisfying

Ex∗ = t∗, b>x∗ = s∗, Ax∗ ≤ d,

we have f(x∗) = g(t∗) + s∗. From (32), x∗ is an optimal solution.

5. When X = Rl, we can take zero A and d for a trivial linear inequality.
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Now we examine the special cases. If b = 0, we have b>x = 0, ∀x ∈ X . Therefore, (30)
is reduced to (31). On the other hand, if X = Rl, the optimization problem is unconstrained.
Thus,

x∗ is optimal⇔ ∇f(x∗) = 0 = E>∇g(t∗) + b.

As a result, Ex∗ = t∗ is a necessary and sufficient optimality condition.

Because the optimal set is a polyhedron, we will apply the following Hoffman’s bound
in Lemma 4.6 to upper-bound the distance to the optimal set by the violation of the poly-
hedron’s linear inequalities.

Lemma 4.3 (Hoffman’s Bound) Let P be the non-negative orthant and consider a non-
empty polyhedron

{x∗ | Ax∗ ≤ d, Ex∗ = t}.

For any x, there is a feasible point x∗ such that

‖x− x∗‖ ≤ θ(A,E)

∥∥∥∥[Ax− d]+P
Ex− t

∥∥∥∥ , (33)

where

θ(A,E) ≡ sup
u,v


∥∥∥∥uv
∥∥∥∥
∣∣∣∣∣∣∣
‖A>u+ E>v‖ = 1, u ≥ 0.

The corresponding rows of A, E to u, v’s

non-zero elements are linearly independent.

 . (34)

Note that θ(A,E) is independent of x.

The proof of the lemma is given in Appendix B. Before applying Hoffman’s bound, we need
some technical lemmas to bound ‖Ex − t∗‖2 and (b>x − s∗)2, which will appear on the
right-hand side of Hoffman’s bound for the polyhedron of the optimal set.

Lemma 4.4 Under Assumption 2.2, we have constants ρ and σg such that

‖Ex− t∗‖2 ≤ 1 + ρ

σg
‖∇+f(x)‖‖x− x̄‖, ∀x ∈ X .

Proof By Ex̄ = t∗ from Lemma 4.2, the strong convexity of g(t), and the definition of
f(x) in (5), there exists σg such that

σg‖Ex− t∗‖2 ≤ (∇g(Ex)−∇g(Ex̄))>(Ex− Ex̄) = (∇f(x)−∇f(x̄))>(x− x̄).

By Lemma A.3, the above inequality becomes

σg‖Ex− t∗‖2 ≤ (1 + ρ)‖∇+f(x)−∇+f(x̄)‖‖x− x̄‖,

where ρ is the constant for the Lipschitz continuity of ∇f . Because x̄ is an optimal solution,
∇+f(x̄) = 0 by Lemma A.6. Thus, the result holds.

Next we bound (b>x− s∗)2.
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Lemma 4.5 Under Assumption 2.2 and the condition

f(x)− f(x̄) ≤M, (35)

there exists a constant ρ > 0 such that

(b>x− s∗)2

≤ 4(1 + ρ)M‖∇+f(x)‖‖x− x̄‖+ 4‖∇f(x̄)‖2‖∇+f(x)‖2 + 2‖∇g(t∗)‖2‖Ex− t∗‖2.

Proof By b>x̄ = s∗ and Ex̄ = t∗ from Lemma 4.2 and the definition of f(x), we have

b>x− s∗ = ∇f(x̄)>(x− x̄)−∇g(t∗)>(Ex− t∗).

Square both sides of the equality. Then by (a− b)2 ≤ 2a2 + 2b2,

(b>x− s∗)2 ≤ 2(∇f(x̄)>(x− x̄))2 + 2(∇g(t∗)>(Ex− t∗))2. (36)

Consider the right-hand side in (36). The second term can be bounded by 2‖∇g(t∗)‖2‖Ex−
t∗‖2, and the first term is bounded using the inequalities

∇f(x̄)>(x− x̄) ≤ ∇f(x)>(x− x̄)

≤ ∇+f(x)>(x− x̄+∇f(x)−∇+f(x))

≤ ∇+f(x)>(x− x̄+∇f(x)−∇f(x̄) +∇f(x̄))

≤ (1 + ρ)‖∇+f(x)‖‖x− x̄‖+∇+f(x)>∇f(x̄). (37)

The first inequality is by convexity, the second is by Lemma A.1,6 the third is by ‖∇+f(x)‖2 ≥
0, and the last is by the Lipschitz continuity of ∇f . By the optimality of x̄,

∇f(x̄)>([x−∇f(x)]+X − x+ x− x̄) ≥ 0. (38)

Thus, (38), the convexity of f(·), and (35) imply that

∇f(x̄)>∇+f(x) ≤ ∇f(x̄)>(x− x̄) ≤ f(x)− f(x̄) ≤M. (39)

Let
a ≡ ∇f(x̄)>(x− x̄), u ≡ (1 + ρ)‖∇+f(x)‖‖x− x̄‖, v ≡ ∇f(x̄)>∇+f(x).

Then we have

0 ≤ a ≤ u+ v from (37) and optimality of x̄, a− v ≥ 0 from (39), and u ≥ 0.

Therefore, a2 ≤ au+ av ≤ au+ v(u+ v) ≤ au+ au+ v2 ≤ 2au+ 2v2, and

(∇f(x̄)>(x− x̄))2

≤ 2(∇f(x̄)>(x− x̄))(1 + ρ)‖∇+f(x)‖‖x− x̄‖+ 2(∇f(x̄)>∇+f(x))2

≤ 2(1 + ρ)M‖∇+f(x)‖‖x− x̄‖+ 2‖∇f(x̄)‖2‖∇+f(x)‖2.

The last inequality is from (39) and Cauchy’s inequality. Together with (36) the result
immediately holds.

Combining the previous two lemmas, we are now ready to prove the global error bound.

6. Note that we use ([x − ∇f(x)]+X − x + ∇f(x))>([x − ∇f(x)]+X − x + x − x̄) ≤ 0 and ∇+f(x) =
x− [x−∇f(x)]+X .
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Theorem 4.6 (Error Bound) Under Assumption 2.2 and any M > 0, we have

‖x− x̄‖ ≤ κ‖∇+f(x)‖, ∀x with x ∈ X and f(x)− f∗ ≤M ,

where

κ = θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M) + 2θ‖∇f(x̄)‖,

and θ ≡ θ
(
A,
(
E
b>
))

is defined in Lemma 4.3. Specially, when b = 0 or X = Rl,

κ = θ(A,E)2
1 + ρ

σg
.

Proof Consider the following polyhedron of the optimal solutions,

X ∗ = {x∗ | Ex∗ = t∗, b>x∗ = s∗, Ax∗ ≤ d},

where t∗ and s∗ are values described in Lemma 4.2. We can then apply Lemma 4.3 to have
for any x, there exists x∗ ∈ X ∗ such that

‖x− x∗‖ ≤ θ
(
A,
(
E
b>
)) ∥∥∥∥∥∥

[Ax− d]+P
Ex− t∗
b>x− s∗

∥∥∥∥∥∥ , (40)

where θ
(
A,
(
E
b>
))

, independent of x, is defined in Lemma 4.3. Denote θ
(
A,
(
E
b>
))

as θ for
simplicity. By considering only feasible x and using the definition of x̄, (40) implies

‖x− x̄‖2 ≤ ‖x− x∗‖2 ≤ θ2(‖Ex− t∗‖2 + (b>x− s∗)2), ∀x ∈ X .

With Lemmas 4.4 and 4.5, if f(x)− f∗ ≤M , we can bound ‖Ex− t∗‖2 and (b>x− s∗)2 to
obtain

‖x− x̄‖2

≤ θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M)‖∇+f(x)‖‖x− x̄‖+ 4θ2‖∇f(x̄)‖2‖∇+f(x)‖2.

(41)

Let
a ≡ ‖x− x̄‖, c ≡ 2θ‖∇f(x̄)‖‖∇+f(x)‖, and

b ≡ θ2(1 + ρ)(
1 + 2‖∇g(t∗)‖2

σg
+ 4M)‖∇+f(x)‖.

(42)

Then we can rewrite (41) as

a2 ≤ ba+ c2 with a ≥ 0, b ≥ 0, c ≥ 0. (43)

We claim that
a ≤ b+ c. (44)

Otherwise, a > b+ c implies that

a2 > a(b+ c) > ba+ c2,
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a violation to (43). By (42) and (44), the proof is complete.
Now we examine the special case of b = 0 or X = Rl. From (31) in Lemma 4.2, we can

apply Lemma 4.3 to have the existence of θ(A,E) such that ∀x ∈ X , there is x∗ ∈ X ∗ so
that

‖x− x̄‖ ≤ ‖x− x∗‖ ≤ θ(A,E)‖Ex− t∗‖.
With Lemma 4.4, we have

‖x− x̄‖2 ≤ θ(A,E)2
1 + ρ

σg
‖∇+f(x)‖‖x− x̄‖.

After canceling ‖x− x̄‖ from both sides, the proof is complete.

5. Proof of Theorem 2.8

The proof is modified from Theorem 3.1 of Luo and Tseng (1993). They applied a local
error bound to obtain asymptotic local linear convergence, while ours applies a global error
bound to have linear convergence from the first iteration.

By (9) and Lemma A.2, we have

‖xr − [xr − ωr∇f(xr)]+X ‖
≤ ‖xr − xr+1‖+ ‖xr+1 − [xr − ωr∇f(xr)]+X ‖
= ‖xr − xr+1‖+ ‖[xr − ωr∇f(xr) + er]+X − [xr − ωr∇f(xr)]+X ‖
≤ ‖xr − xr+1‖+ ‖er‖. (45)

By Lemma A.8, the left-hand side of above inequality could be bounded below by

ω‖xr − [xr −∇f(xr)]+X ‖ ≤ ‖x
r − [xr − ωr∇f(xr)]+X ‖,

where ω = min(1, infr ωr). With Theorems 4.1 or 4.6, (45), and (10), we have

‖xr − x̄r‖ ≤ κ‖∇+f(xr)‖ ≤ κ
‖xr − [xr − ωr∇f(xr)]+X ‖

ω
≤ κ1 + β

ω
‖xr − xr+1‖, (46)

where x̄r is the projection of xr to the optimal set.

x̄r ≡ [xr]+X ∗ .

Next, we bound f(xr+1)− f(x̄r). Lemma A.1 and the definition of xr+1 imply that(
xr − xr+1 + er

)> (
xr+1 − x̄r

)
≥ ωr∇f(xr)>(xr+1 − x̄r). (47)

From the convexity of f(x),

f(xr+1)− f(x̄r) ≤ ∇f(xr+1)>(xr+1 − x̄r)
= (∇f(xr+1)−∇f(xr))>(xr+1 − x̄r) +∇f(xr)>(xr+1 − x̄r)

≤ ‖∇f(xr+1)−∇f(xr)‖‖xr+1 − x̄r‖+
1

ωr
(xr − xr+1 + er)>(xr+1 − x̄r) (48)

≤
(
ρ‖xr+1 − xr‖+

1

α
‖xr − xr+1‖+

1

α
‖er‖

)
‖xr+1 − x̄r‖. (49)
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Inequality (48) is from (47), and (49) follows from the Lipschitz continuity of ∇f(x). In
addition,

‖xr+1 − x̄r‖ ≤ ‖xr+1 − xr‖+ ‖xr − x̄r‖. (50)

From (46), (10), and (50), each term in (49) is bounded by ‖xr − xr+1‖. Therefore,

f(xr+1)− f(x̄r) ≤ φ‖xr − xr+1‖2, where φ = (ρ+
1 + β

ω
)(1 + κ

1 + β

ω
).

From (11) and the above inequality,

f(xr+1)− f(x̄r) ≤ φ

φ+ γ
(f(xr)− f(x̄r)) , ∀r.

Because f(x) is convex, f(x̄r), ∀r correspond to the same unique optimal function value.
Thus the global linear convergence is established.

6. Discussions and Conclusions

For future research, we plan to extend the analysis to other types of algorithms and problems
(e.g., L1-regularized problems). Further, the global error bound will be useful in analyzing
stopping criteria and the effect of parameter changes on the running time of machine learning
problems (for example, the change of parameter C in SVM).

In conclusion, by focusing on a convex but non-strongly convex problem (1), we estab-
lished a global error bound. We then proved the global linear convergence on a wide range
of deterministic algorithms, including cyclic coordinate descent methods for dual SVM and
SVR. Consequently, the time complexity of these algorithms is O(log(1/ε)).
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Appendix A. Properties of Projected Gradient

We present some properties of projected gradient used in the proofs. Most of them are
known in the literature, but we list them here for completeness. Throughout this section,
we assume X is a non-empty, closed, and convex set.

First, we present a fundamental result used in the paper: the projection theorem to a
non-empty closed convex set X . The convex projection in Definition 2.3 is equivalent to
the following inequality on the right-hand side of (51). That is, if the inequality holds for
any z, this z will be the result of the convex projection and vise versa.

Lemma A.1 (Projection Theorem)

z = [x]+X ⇔ (z − x)>(z − y) ≤ 0, ∀y ∈ X . (51)
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Proof The proof is modified from Hiriart-Urruty and Lemaréchal (2001, Theorem 3.1.1).
From the convexity of X ,

αy + (1− α)z ∈ X , ∀y ∈ X , ∀α ∈ [0, 1].

By Definition 2.3,

‖x− z‖2 ≤ ‖x− (αy + (1− α)z)‖2, ∀y ∈ X , ∀α ∈ [0, 1].

The inequality can be written as

0 ≤ α(z − x)>(y − z) +
1

2
α2‖y − z‖2.

Divide α from both sides, and let α ↓ 0. Then we have (⇒).
For (⇐), if z = x, then 0 = ‖z − x‖ ≤ ‖y − x‖ holds for all y ∈ X . Thus, z = [x]+X . If

z 6= x, then for any y ∈ X ,

0 ≥ (z − x)>(z − y) = ‖x− z‖2 + (y − x)>(x− z)

≥ ‖x− z‖2 − ‖x− y‖‖x− z‖.

Divide ‖x− z‖ > 0 from both sides. Because the inequality is valid for all y, (⇐) holds.

The following lemma shows that the projection operator is Lipschitz continuous.

Lemma A.2 (Lipschitz Continuity of Convex Projection)

‖[x]+X − [y]+X ‖ ≤ ‖x− y‖, ∀x,y.

Proof The proof is modified from Hiriart-Urruty and Lemaréchal (2001) Proposition 3.1.3.
Let u = [x]+X and v = [y]+X . If u = v, then the result holds immediately. If not, with

Lemma A.1 we have

(u− x)>(u− v) ≤ 0, (52)

(v − y)>(v − u) ≤ 0. (53)

Summing (52) and (53), we have

(u− v)>(u− x− v + y) ≤ 0.

We could rewrite it as

‖u− v‖2 ≤ (u− v)>(x− y) ≤ ‖u− v‖‖x− y‖.

Cancel ‖u− v‖ > 0 at both sides. Then the result holds.

Lemma A.3 Assume ∇f(x) is ρ Lipschitz continuous. Then ∀x,y ∈ X ,

(∇f(x)−∇f(y))>(x− y) ≤ (1 + ρ)‖∇+f(x)−∇+f(y)‖‖x− y‖.
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Proof For simplification, we will use ∇x ≡ ∇f(x) and ∇+
x ≡ ∇+f(x) in this proof.

From Lemma A.1,

([x−∇x]+X − x+∇x)>([x−∇x]+X − [y −∇y]+X ) ≤ 0.

With the definition of ∇+f(x), this inequality can be rewritten as

(∇x −∇+
x )>(x−∇+

x − y +∇+
y ) ≤ 0.

Further, we have

∇x>(x− y) ≤ ∇+
x
>

(x− y) +∇x>(∇+
x −∇+

y )−∇+
x
>

(∇+
x −∇+

y ). (54)

Similarly,

∇y>(y − x) ≤ ∇+
y
>

(y − x) +∇y>(∇+
y −∇+

x )−∇+
y
>

(∇+
y −∇+

x ). (55)

Summing (54) and (55) leads to

(∇x −∇y)>(x− y)

≤ (∇+
x −∇+

y )>(x− y) + (∇x −∇y)>(∇+
x −∇+

y )− ‖∇+
x −∇+

y ‖2

≤ (∇+
x −∇+

y )>(x− y) + (∇x −∇y)>(∇+
x −∇+

y ).

With ∇f(x) being ρ Lipschitz continuous, we have

(∇x −∇y)>(x− y)≤ ‖∇+
x −∇+

y ‖(‖x− y‖+ ‖∇x −∇y‖)
≤ (1 + ρ)‖∇+

x −∇+
y ‖‖x− y‖.

The next two lemmas correspond to the strong convexity and Lipschitz continuity of pro-
jected gradient.

Lemma A.4 If f(x) is σ strongly convex and ∇f(x) is ρ Lipschitz continuous,

σ

1 + ρ
‖x− y‖ ≤ ‖∇+f(x)−∇+f(y)‖, ∀x,y ∈ X .

Proof With the strong convexity and Lemma A.3,

σ‖x− y‖2 ≤ (∇x −∇y)>(x− y) ≤ (1 + ρ)‖∇+
x −∇+

y ‖‖x− y‖.

If x 6= y, we have the result after canceling ‖x − y‖ from both sides. For the situation of
x = y, the result obviously holds.

Lemma A.5 (Lipschitz Continuity of Projected Gradient) If ∇f(x) is ρ Lipschitz
continuous, then

‖∇+f(x)−∇+f(y)‖ ≤ (2 + ρ)‖x− y‖, ∀x,y ∈ X .
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Proof By the definition of projected gradient and Lemma A.2,

‖∇+f(x)−∇+f(y)‖≤ ‖x− y‖+ ‖[x−∇f(x)]+X − [y −∇f(y)]+X ‖
≤ ‖x− y‖+ ‖x− y‖+ ‖∇f(x)−∇f(y)‖
≤ (2 + ρ)‖x− y‖.

The last inequality follows from the ρ Lipschitz continuity of ∇f(x).

A useful property of projected gradient is to test whether a solution is optimal; see the
following lemma.

Lemma A.6 For any x ∈ X ,

x is optimal for problem (4)⇔ ∇+f(x) = 0.

Proof From Lemma A.1 and the definition of ∇+f(x),

∇+f(x) = 0⇔ x = [x−∇f(x)]+X

⇔ (x− (x−∇f(x)))>(x− y) ≤ 0, ∀y ∈ X
⇔ ∇f(x)>(y − x) ≥ 0, ∀y ∈ X
⇔ x is optimal.

The last relation follows from the optimality condition of convex programming problems.

The next two lemmas discuss properties of projected gradient defined with different scalars
on the negative gradient direction.

Lemma A.7 ∀x ∈ X ,

‖x− [x− α∇f(x)]+X ‖ is monotonically increasing for all α > 0.7

Proof Let

u = x− α1∇f(x), (56)

v = x− α2∇f(x), (57)

where 0 < α1 < α2. By Lemma A.1, we have

([u]+X − u)>([u]+X − [v]+X ) ≤ 0, (58)

([v]+X − v)>([v]+X − [u]+X ) ≤ 0. (59)

Let z = [u]+X − [v]+X . Expanding the definition of u and v leads to

α1∇f(x)>z ≤ (x− [u]+X )>z ≤ (x− [v]+X )>z ≤ α2∇f(x)>z, (60)

7. The proof is modified from http://math.stackexchange.com/questions/201168/

projection-onto-closed-convex-set .
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where the first and the last inequalities are from (58) and (59), respectively, and the second
inequality is from ([u]+X−[v]+X )>z = z>z ≥ 0. With 0 < α1 < α2, (60) implies∇f(x)>z ≥ 0
and

(x− [u]+X )>z ≥ 0.

Using this inequality,

‖x− [v]+X ‖
2 = ‖x− [u]+X + z‖2 = ‖x− [u]+X ‖

2 + 2(x− [u]+X )>z + ‖z‖2 ≥ ‖x− [u]+X ‖
2.

Therefore, from (56)-(57),

‖x− [x− α2∇f(x)]+X ‖ ≥ ‖x− [x− α1∇f(x)]+X ‖.

With 0 < α1 < α2, the proof is complete.

Lemma A.8 ∀x ∈ X and α > 0, if

u = x− [x−∇f(x)]+X ,

v = x− [x− α∇f(x)]+X ,

then
min(1, α)‖u‖ ≤ ‖v‖ ≤ max(1, α)‖u‖.

Proof From Lemma 1 in Gafni and Bertsekas (1984), ‖x − [x − α∇f(x)]+X ‖/α is mono-
tonically decreasing for all α > 0. Thus,

α‖x− [x−∇f(x)]+X ‖ ≤ ‖x− [x− α∇f(x)]+X ‖, ∀α ≤ 1.

From Lemma A.7, we have

‖x− [x−∇f(x)]+X ‖ ≤ ‖x− [x− α∇f(x)]+X ‖, ∀α ≥ 1.

Therefore, min(1, α)‖u‖ ≤ ‖v‖. A similar proof applies to ‖v‖ ≤ max(1, α)‖u‖.

Appendix B. Proof of Hoffman’s Bound (Lemma 4.3)

The following proof is a special case of Mangasarian and Shiau (1987) and Li (1994), which
bounds the distance of a point to the polyhedron by the violation of inequalities. We begin
with an elementary theorem in convex analysis.

Lemma B.1 (Carathèodory’s Theorem) For a non-empty polyhedron

A>u+ E>v = y, u ≥ 0, (61)

there is a feasible point (u,v) such that

The corresponding rows of A, E to u, v’s non-zero elements are linearly independent.
(62)
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Proof Let (u,v) be a point in the polyhedron, and therefore E>v = y − A>u. If the
corresponding rows of E to non-zero elements of v are not linearly independent, we can
modify v so that E>v remains the same and E’s rows corresponding to v’s non-zero elements
are linearly independent. Thus, without loss of generality, we assume that E is full row-
rank. Denote a>i as the ith row of A and e>j as the jth row of E. If the corresponding rows
of A,E to non-zero elements of u,v are not linearly independent, there exists (λ, ξ) such
that

1. (λ, ξ) 6= 0.

2. (λ, ξ)’s non-zero elements correspond to the non-zero elements of (u,v). That is,
λi = 0 if ui = 0, ∀i, and ξj = 0 if vj = 0, ∀j.

3. (λ, ξ) satisfies ∑
i: ui>0, λi 6=0

λiai +
∑

j: vj 6=0, ξj 6=0

ξjej = 0.

Besides, the set {i | ui > 0, λi 6= 0} is not empty because the rows of E are linearly
independent. Otherwise, a contradiction occurs from λ = 0, ξ 6= 0, and∑

j: vj 6=0, ξj 6=0

ξiej = 0.

By choosing

s = min
i: ui>0, λi 6=0

ui
λi
> 0,

we have

A>(u− sλ) + E>(v − sξ) = A>u+ E>v = y and u− sλ ≥ 0.

This means that (u− sλ,v− sξ) is also a member of the polyhedron (61) and has less non-
zero elements than (u,v). The process could be repeatedly applied until there is a point
satisfying the linearly independent condition (62). Thus, if the polyhedron is not empty, we
can always find a (u,v) such that its non-zero elements correspond to linearly independent
rows in (A,E).

Now we prove Hoffman’s bound (Lemma 4.3) by Carathèodory’s theorem and the KKT
optimality condition of a convex projection problem.

Proof If x is in the polyhedron, we can take x∗ = x and the inequality (33) holds naturally
for every positive θ. Now if x does not belong to the polyhedron, consider the following
convex projection problem

min
p
‖p− x‖, subject to Ap ≤ d, Ep = t. (63)

The polyhedron is assumed to be non-empty, so a unique optimal solution x∗ of this problem
exists. Because x is not in the polyhedron, we have x∗ 6= x. Then by the KKT optimality
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condition, a unique optimal x∗ for (63) happens only if there are u∗ and v∗ such that

x∗ − x
‖x∗ − x‖

= −A>u∗ − E>v∗, u∗ ≥ 0,

Ax∗ ≤ d, Ex∗ = t, u∗i (Ax
∗ − d)i = 0, ∀i = 1, . . . , l.

Denote

I = {i | (Ax∗ − d)i = 0}.

Because u∗i = 0,∀i /∈ I, (u∗I ,v
∗) is a feasible point of the following polyhedron.

−A>I uI − E>v =
x∗ − x
‖x∗ − x‖

, uI ≥ 0, (64)

where AI is a sub-matrix of A’s rows corresponding to I. Then the polyhedron in (64) is
non-empty. From Lemma B.1, there exists a feasible (ûI , v̂) such that

The corresponding rows of AI , E to non-zero ûI , v̂ are linearly independent. (65)

Expand ûI to a vector û so that

ûi = 0, ∀i /∈ I. (66)

Then (65) becomes

The corresponding rows of A,E to non-zero û, v̂ are linearly independent. (67)

By multiplying (x∗ − x)> on the first equation of (64), we have

‖x∗ − x‖ = û>A(x− x∗) + v̂>E(x− x∗) = û>(Ax− d) + v̂>(Ex− t). (68)

The last equality is from Ex∗ = t and (66). Further, by the non-negativity of û,

û>(Ax− d) ≤ û>[Ax− d]+P . (69)

From (68) and (69),

‖x∗ − x‖ ≤ û>[Ax− d]+P + v̂>(Ex− t) ≤
∥∥∥∥ûv̂
∥∥∥∥∥∥∥∥[Ax− d]+P

Ex− t

∥∥∥∥ . (70)

Next we bound
∥∥ û
v̂

∥∥. With (64) and (67), we have

‖A>û+ E>v̂‖ = 1 and
∥∥ û
v̂

∥∥ ≤ θ(A,E),

where θ(A,E) is defined in (34). Together with (70), the proof is complete.

Note that this version of Hoffman’s bound is not the sharpest one. For a more complex
but tighter bound, please refer to Li (1994).
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Appendix C. Strictly Diagonally Dominance and Positive Definiteness

Lemma C.1 If a symmetric matrix Q is strictly diagonally dominant

Qii >
∑
j 6=i
|Qij |, ∀i, (71)

then it is positive definite. The reverse is not true.

Proof The result is modified from Rennie (2005). Because Q is symmetric,

Q = RDR>, (72)

where R is an orthogonal matrix containing Q’s eigen-vectors as its columns and D is a
real-valued diagonal matrix containing Q’s eigen-values. Let u be any eigen-vector of Q.
We have u 6= 0; otherwise, from (72), the corresponding Qii = 0 and (71) is violated. Let λ
be the eigen-value such that λu = Qu. Choose i = arg maxj |uj |. Because u 6= 0, we have
either ui > 0 or ui < 0. If ui > 0,

Qijuj ≥ −|Qij |ui, ∀j and λui =
∑
j

Qijuj ≥ (Qii −
∑
j 6=i
|Qij |)ui. (73)

If ui < 0,

Qijuj ≤ −|Qij |ui, ∀j and λui =
∑
j

Qijuj ≤ (Qii −
∑
j 6=i
|Qij |)ui. (74)

By (73) and (74), we have λ ≥ Qii −
∑

j 6=i |Qij | > 0. Therefore, Q is positive definite.
On the other hand, the following matrix

Q =

(
2 3
3 10

)
is positive definite but not diagonally dominant. Thus, the reverse is not true.
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