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Supplementary Materials for “Parameter Selection
for Linear Support Vector Regression”

Jui-Yang Hsia, Chih-Jen Lin

I. A REVIEW OF PAST WORKS

The selection of best parameters can be considered as an
optimization problem. To be specific, we usually search for
parameters that minimize an estimation of the generalization
error (e.g., cross validation error). Parameter selection usually
involves solving a complex, two-level problem. That is, for
each parameter setting, we solve an optimization problem (a
linear SVR here) to attain a model. Then, we can use the model
to evaluate a validation loss (second level). Therefore, because
of the complexity, many global optimization algorithms have
been considered. We give a review of these approaches.

• Particle swam optimization [17]: see Section VI-B.
• Genetic optimization [12]: The process of genetic op-

timization is an analogy to an evolution process. It
considers several iterations (or generations). From one
iteration to another, a pool of parameters are mixed or
mutated. By selecting those having smaller validation
losses, the process can gradually find the best parameters.

• Simplex [23]: A simplex method considers a simplex with
D + 1 vertexes in the solution space with dimension D.
At each iteration, a simplex method updates one vertex
with worse performance to form a new simplex. To ensure
that the newly formed simplex covers the best parameter,
the updating process includes reflection, contraction and
expansion.

• Bayesian optimization [22]: The concept of Bayesian
optimization is to minimize the expected deviation from
the optimal value. The current target function is drawn
form a pool of functions with some distribution.

• Simulated annealing [18], [21]: see Section VI-A.

For works that have particularly investigated parameter
selection for SVM, we briefly review some of them.

• [2] and [5] consider a gradient-based method to mini-
mize a smooth estimation of CV accuracy. Kernel SVC
(support vector classification) is considered.

• [3] focuses on linear SVC problems by applying warm-
start techniques.

• [7], [19] and [26] consider warm-start techniques to speed
up the cross validation procedure for kernel SVC. In the
CV procedure, several related optimization problems are
solved. The solution of one problem can be adjusted as
an initial solution for another. The SVC dual problem
is considered with the variable alpha, so the warm-start
technique is referred to as alpha seeding.
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• [8] empirically compare different validation measure-
ments for kernel SVC.

• [10] and [28] investigate the optimality condition of SVC
problems to see how the optimal solution changes along
the regularization parameter C. They are able to find the
entire solution path of all C values, although the process
may involve some expensive matrix operations.

• [15] introduces a nested uniform design methodology to
select parameters for evaluating CV performances. Both
kernel SVC and SVR are considered.

• [20] (see Section VI.)
• [25] uses a genetic algorithm and a simplex optimization

algorithm for selecting parameters of kernel SVR.
• [27] proposes a hybrid genetic algorithm for the determi-

nation of parameters in kernel SVR.

II. PROOFS

A. Proof of Theorem 1
First, we prove that
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causes a contradiction. Further, (II.6) and (II.5) imply

‖wC0‖ < ‖wC1‖.

The first part is complete.
To prove

lim
C→0

wC = 0, (II.7)

we first show from earlier results that for any given Ĉ,

‖wC‖ ≤ ‖wĈ‖, ∀C < Ĉ.

Therefore, all wC , ∀C ≤ Ĉ are in a compact set. If (II.7) is
wrong, there is a convergent sequence {wCt

} such that

lim
t→∞

Ct = 0 and lim
t→∞

wCt
= w̄ 6= 0. (II.8)
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is the optimal solution when C = Ct,
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2
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Ct
wCt
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From (II.8), taking the limit we have

0 ≥ 1

2
w̄T w̄,

a contradiction to w̄ 6= 0.

B. Proof of Theorem 2

We begin with defining

ψi(w) = max(|yi −wTxi| − ε, 0)

and proving the following Lemma.

Lemma II.1. Consider L2 loss. Assume L(0) > 0. Then for
all i and C ≤ Cmin, we have

ξε(wC ;xi, yi) ≥ ξε(0;xi, yi)− 2ψi(0)
δ1L(0)

2
l∑
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, (II.9)

where

ξε(w;xi, yi) = max(|wTxi − yi| − ε, 0)2.

Proof. First, we show that
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By Theorem 1, we have
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where (II.12) comes from

1

2
‖wCmin‖2 ≤ f(wCmin ;Cmin) ≤ f(0;Cmin)

by using the fact wCmin is the solution at C = Cmin and the
loss function is non-negative. Next, we prove (II.9).
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where (II.14) is from (II.10). We give the following details for
deriving (II.13). Let

A = −|wT
Cxi| ≤ 0 and B = |yi| − ε.

We prove that

max(A+B, 0) = max(A+ max(B, 0), 0). (II.15)

If B ≥ 0, then
max(B, 0) = B

and the equality holds. If B < 0, then with A ≤ 0, both sides
of (II.15) are zero. Therefore, (II.15) holds. With

ψi(0) = |yi| − ε,

we have (II.13).

Proof of Theorem 2. If L(0) = 0, it is trivial that

L(wC) ≥ (1− δ1)L(0) = 0
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for every C <∞. If L(0) > 0, then for any C ≤ Cmin,
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where (II.16) is from Lemma II.1. �
In comparison with [3] we see that deriving a Cmin for linear

classification is simpler: By checking when the model predicts
all training data to be in one class, there is no need to involve
the zero point. Further, no parameter like δ1 here is required.

C. Proof of Theorem 3

We omit the proof of (5) because it is the same as that in
[3]. Here we prove that if the L2 loss is used, then W∞ 6= ∅.
The optimization problem infw L(w) can be rewritten as

min
ξ,w

‖ξ‖2 (II.17)

subject to ξi ≥ |yi −wTxi| − ε , i = 1, . . . , l.

Because

w = 0 and ξi = max(0, |yi| − ε), ∀i

satisfies the constraints, so problem (II.17) is feasible. Besides,
the feasible region of (II.17) is a polyhedral convex set, and
the objective function ‖ξ‖2 is convex quadratic. Therefore,
the infimum value is attained [24, Corollary 27.3.1]. That is,
W∞ 6= ∅.

D. Proof of Theorem 4

Suppose the result is wrong. Then there exists δ > 0 so that
for any ε̄ > 0, there is ε ≤ ε̄ such that

‖wε −w0‖ ≥ δ. (II.18)

Next we show that wε, ε ≥ 0 is in a compact set. Because wε

is optimal at ε,
1

2
‖wε‖2 + CL(wε; ε) ≤

1

2
‖w0‖2 + CL(w0; ε)

≤ 1

2
‖w0‖2 + CL(w0; 0),

where the last inequality is from L(w; ε) ≤ L(w; 0) for any
w and ε ≥ 0. With L(wε; ε) ≥ 0,

0 ≤ 1

2
‖wε‖2 ≤

1

2
‖w0‖2 + CL(w0; 0)

and therefore wε, ε ≥ 0 is in a compact set. This property and
(II.18) imply that there is a convergent subsequence {wεt}
such that

lim
t→∞

εt = 0 and lim
t→∞

wεt = w̄ 6= w0. (II.19)

Because wεt is optimal at ε = εt, we have

1

2
‖wεt‖2 + CL(wεt ; εt) ≤

1

2
‖w0‖2 + CL(w0; εt).

From (II.19) and the continuity of the loss function, taking the
limit leads to

1

2
‖w̄‖2 + CL(w̄; 0) ≤ 1

2
‖w0‖2 + CL(w0; 0),

so w̄ is also an optimal solution at ε = 0. However, w0 is
the unique optimal solution at ε = 0, and therefore there is a
contradiction.

III. DETAILS OF THE PROPOSED PROCEDURE

The procedure is given in Algorithm 1. More explanation
about how the CV procedure and the warm-start technique are
implemented together in the algorithm can be seen in Section
3.4 of [3].

We give more details about the termination condition (7)
and its implementation. Assume that w̃C is the obtained
approximate solution satisfying

‖∇f(w̃C ;C)‖ ≤ τ‖∇f(0;C)‖.

We then use w̃C as the initial solution of the Newton method
for training SVR with ∆C. If immediately the stopping
condition is satisfied

‖∇f(w̃C ; ∆C)‖ ≤ τ‖∇f(0; ∆C)‖,

then w̃C is returned as an approximate solution at ∆C. That
is,

w̃∆C = w̃C .

If this occurs for tstop consecutive problems, we terminate the
parameter selection procedure.

In [3], they prove a theorem to explain that generally (7)
should hold after C is large enough. We restate their theorem
and check if it holds in our SVR problem.

Theorem 1. For L2-loss SVR, we have

lim
C→∞

‖∇f(wC ; ∆C)‖
‖∇f(0;C)‖

= 0. (III.1)

Proof. First, we have

∇f(w;C) = w + C∇L(w)

and

∇f(wC ;C) = wC + C∇L(wC) = 0.

Then, the numerator of (III.1) can be written as

∇f(wC ; ∆C) = wC + ∆C∇L(wC)

= −C∇L(wC) + ∆C∇L(wC)

= (∆− 1)C∇L(wC).
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If L2 loss is used, L(w) is continuously differentiable. Taking
the limit leads to

lim
C→∞

‖∇f(wC ; ∆C)‖
‖∇f(0;C)‖

= lim
C→∞

(∆− 1)C‖∇L(wC)‖
C‖∇L(0)‖

= lim
C→∞

(∆− 1)‖∇L(wC)‖
‖∇L(0)‖

= (∆− 1)
‖∇L(w∞)‖
‖∇L(0)‖

= 0,

where the last equality from the definition of w∞ in (5). The
theorem is complete with that (III.1) is zero when C → ∞.

A. Some notes on the Stopping Criterion of Solving Each SVR
Problem

We discuss why in the stopping condition (7) of solving
each SVR problem, we use the zero point to calculate the
right side. That is,

‖∇f(w̃C,ε;C, ε)‖ ≤ τ‖∇f(0;C, ε)‖.

We give the explanation offered in [3]. Assume we are solving
a problem with parameters

∆C, ε.

The initial winit, by the warm-start setting, is an approximate
solution at

C, ε.

From Theorem 3, when C is large, winit = w̃C,ε is close to a
solution at ∆C. Therefore,

‖∇f(winit; ∆C, ε)‖ ≈ 0.

The stopping condition becomes very tight. The same situation
occurs if ε ≈ 0 because of Theorem 4. Therefore, it is more
suitable to have ‖∇f(0;C, ε)‖ on the right side so criteria
across parameters are more consistent.

IV. DETAILS OF EXPERIMENTAL SETTINGS

We mentioned that CV MSE is used to select the best
parameters. The MSE to validate one fold is∑

i{(yi − w̃
Txi)

2 | xi in the validation fold}
size of the validation fold

.

In the end results of all folds are averaged as the CV MSE.
Our implementation is extended from LIBLINEAR [9], and we
apply a Newton method for solving each SVR optimization
problem. Parameters used in our procedure are τ = 10−4 in
(3) and δ1 = 0.1 in (4). The data statistics are presented in
Table A.

If a running-time comparison is needed, we check the total
number of CG steps in the Newton method for training a
linear SVR. Note that each Newton iteration involves some
inner CG (conjugate gradient) steps, each of which takes the
same amount of operations. Because CG steps are the main
computational cost, it is well known [13], [14] that comparing
the number of CG steps gives an accurate timing comparison.

Algorithm 1 The proposed procedure for SVR parameter
selection.

1: Given
2: K as number of CV folds.
3: τ as stopping tolerance in (3).
4: ∆ as C increment.
5: S as number of ε steps and � = εmax/S.
6: δ1 ∈ (0, 1) as the parameter to calculate Cmin.
7: Cmax = a large constant
8: tstop = 5.
9: End Given

10: Initialize εmin = 0, εmax = maxi |yi|.
11: Initialize best CV score MSEbest ←∞.
12: for ε = εmax, εmax −�, . . . , εmin do
13: for CV fold k = 1, . . . ,K do
14: Initialize solution w̄k ← 0.
15: end for
16: Calculate Cmin by (4).
17: Initialize t = −1.
18: for C = Cmin,∆Cmin,∆

2Cmin, . . . , Cmax do
19: for CV fold k = 1, . . . ,K do
20: Apply warm start with the initial solution w̄k.
21: Use all data except fold k for training.
22: Obtain an approximate solution w̃k

C,ε satisfying
(3) with the stopping tolerance τ .

23: Predict fold k by w̃k
C,ε .

24: if w̄k 6= w̃k
C,ε then

25: t = −1.
26: end if
27: w̄k ← w̃k

C,ε.
28: end for
29: Calculate CV MSE from stored predicted values

of each fold in line 23.
30: if MSE < MSEbest then
31: MSEbest ← MSE.
32: Cbest ← C.
33: εbest ← ε.
34: end if
35: t← t+ 1.
36: if t = tstop then
37: break
38: end if
39: end for
40: end for
41: return Cbest and εbest

V. ADDITIONAL EXPERIMENTS OF THE PROPOSED
PROCEDURE

We conduct more experiments to analyze the τ value in (3),
the cost between two types of loops (C, ε) and (ε, C), and the
selection of tstop in the termination condition (7) for the C
sequence.

A. Selected (ε, C) Values

In Table B, we list the selected (ε, C) values by the three
settings considered in Tables I and II. Besides, we also list the
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Table A: Data statistics.

l: # instances n: # features
abalone 4,177 8
bodyfat 252 14
cadata 20,640 8
cpusmall 8,192 12
E2006-train 16,087 150,360
eunite2001 336 16
housing 506 13
log1p-E2006-train 16,087 4,272,227
mg 1,385 6
mpg 392 7
pyrim 74 27
space-ga 3,107 6
triazines 186 60
YearPredictionMSD 463,715 90

selected parameters by the two alternative parameter selection
methods investigated later in Section VI.

We observe that two alternative parameter selection methods
usually end up with a large C value. This result can be
explained by the combination of two factors.
• The initial C value considered by the two methods may

be large because it is uniformly drawn from a large
interval. In contrast, our grid search starts from a small
value Cmin.

• Once a large initial C value is considered, the search
procedure may stay in a nearby region because the CV
MSE between two large C values is indifferent. Note
that from Theorem 3, when C value is large enough, the
solution is close to w∞.

B. The Selection of τ in the Stopping Condition of Training
Each SVR

The choose of τ is a trade-off between the cost of time and
the approximation of w̃C,ε to wC,ε. The experiment considers
two settings (C, ε) and (ε, C) without imposing a termination
condition on the C sequence.

Results of using various τ values are in Table C, where
we check both CV MSE and running time. The CV MSE is
stable when τ is smaller than 10−4. For the running time, from
Table Cb, the cost can significant increase with smaller τ . If
τ is very small, the cost may be hundred times more than that
of using a large τ .

Because CV MSE has stabilized after τ = 10−4 and the cost
with τ = 10−5 and 10−6 is significantly higher, we decide to
set τ = 10−4 in our implementation.

In Table Ca, for the bodyfat and pyrim sets the CV MSE
is worse under a smaller τ . We give further investigation in
Section V-E.

C. Loop Selection

Two settings (ε, C) and (C, ε) under different number
intervals of [εmin, εmax] are compared. We consider 20, 40, 60,
80 and 100 intervals. We do not impose a termination criterion
on the C sequence so both (ε, C) and (C, ε) settings solve
the same number of SVR problems. The CV MSE and time
comparison is shown in Tables Da and Db.

From Table Da, the best CV MSE is not significantly smaller
when the number of ε intervals increases. This result indicates
that the 20 intervals have an enough coverage over the search
space. A finer grid of the [εmin, εmax] space may not be required.

For the running time, if ε is in the outer loop, we observe
that the total running time of (ε, C) is almost proportional to
the number of ε intervals. This result indicates that the training
of the C sequence under a given ε is similar to that under
nearby ε values. In contrast, the cost of (C, ε) is not increased
much if the number of ε intervals in enlarged. The reason is
apparently that warm start on the ε sequence is effective.

In conclusion, a finer grid of a parameter makes warm start
more effective if that parameter is used in the inner loop.
Because CV MSE has stabilized by using 20 ε values, and in
general the number of C values checked is higher, we decide
to consider (ε, C) by letting ε be in the outer loop.

D. Selection of tstop in the Termination Condition (7)

To ensure that a proper range of C is covered by applying
the stopping criterion (7), the selection of tstop is crucial. A
larger tstop indicates that the current w̃C,ε is required to satisfy
the stopping condition of more subsequent SVR problems. We
consider the (ε, C) setting with the criterion (7) by trying

tstop = 3, 4, 5, 6. (V.1)

The results of comparing with the setting of not applying (7)
are presented in Tables Ea and Eb.

From Table Ea, if tstop ≥ 5, then the CV MSE is the same
as if (7) is not applied (i.e., no termination condition). Further,
from Table Eb the cost under various tstop is similar. Therefore,
we consider that tstop = 5 is a proper choice.

E. Further Analysis on the τ value for Data Sets Bodyfat and
Pyrim

In Section V-B to check the stopping condition (3) in
training an SVR, we generally observe that as the tolerance
τ decreases the CV MSE slightly improves and converges to
that of using the optimal wC,ε. However, the opposite occurs
for problems Bodyfat and Pyrim. It is known that in some
situations an approximate solution leads to a better model than
that by the optimal solution. We suspect that this situation
occurs for the two data sets. We confirm this suspicion by
conducting the parameter selection without the warm start
strategy. In Table F we report CV MSE under various τ values.
Results show that as a stricter tolerance τ is used, the CV MSE
slightly deteriorates.

VI. COMPARISON WITH OTHER APPROACHES FOR SVR
PARAMETER SELECTION

In this section we compare our approach (searching a grid
of parameters with the warm-start trick) with some other
parameter selection methods.
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Table B: Selected best parameters are showed in the pair (ε, log2 C).

Data set
Method (ε, C) (C, ε) SA PSO

Criterion in (7) No criterion No criterion
abalone (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.04, 48.64) (0.10, 49.59)
abalone-scale (0.00, 3.00) (0.00, 3.00) (0.00, 3.00) (0.01, 48.59) (0.00, 49.66)
bodyfat (0.00, -12.00) (0.00, -12.00) (0.00, -12.00) (0.00, 48.63) (0.00, 47.50)
bodyfat-scale (0.00, 6.00) (0.00, 6.00) (0.00, 6.00) (0.00, 48.64) (0.00, 46.45)
cadata (50000.10, -9.00) (49999.98, -9.00) (49999.98, -9.00) (10778.74, 46.01) (10911.24, 48.44)
cpusmall (0.00, -32.00) (0.00, -32.00) (0.00, -32.00) (0.09, 48.64) (0.00, 49.42)
cpusmall-scale (0.00, -1.00) (0.00, -1.00) (0.00, -1.00) (0.01, 48.60) (0.15, 49.31)
E2006.train (0.00, -1.00) (0.00, -1.00) (0.00, -1.00) (0.00, 45.85) (0.09, 49.77)
eunite2001 (0.00, 2.00) (0.00, 2.00) (0.00, 2.00) (0.01, 48.64) (0.00, 47.16)
housing (0.00, -7.00) (0.00, -7.00) (0.00, -7.00) (0.74, 47.33) (0.27, 49.70)
housing-scale (0.00, -2.00) (0.00, -2.00) (0.00, -2.00) (0.00, 48.64) (0.00, 48.55)
log1p.E2006.train (0.00, -12.00) (0.00, -12.00) (0.00, -12.00) (0.17, 33.26) (0.18, 49.29)
mg (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 48.65) (0.00, 48.77)
mg-scale (0.07, 1.00) (0.07, 1.00) (0.07, 1.00) (0.05, -0.25) (0.04, 49.48)
mpg (0.00, -9.00) (0.00, -9.00) (0.00, -9.00) (0.59, 17.97) (0.05, 49.81)
mpg-scale (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 48.64) (0.00, 49.63)
pyrim (0.00, 2.00) (0.00, 2.00) (0.00, 2.00) (0.23, 49.93) (0.26, 49.30)
pyrim-scale (0.09, 2.00) (0.09, 2.00) (0.09, 2.00) (0.10, 47.24) (0.10, 47.95)
space-ga (0.00, -56.00) (0.00, -56.00) (0.00, -56.00) (0.00, 48.64) (0.02, 49.90)
space-ga-scale (0.00, 8.00) (0.00, 8.00) (0.00, 8.00) (0.00, 48.64) (0.00, 49.67)
triazines (0.00, -1.00) (0.00, -1.00) (0.00, -1.00) (0.30, 48.60) (0.30, 48.98)
triazines-scale (0.00, -4.00) (0.00, -4.00) (0.00, -4.00) (0.00, 48.64) (0.00, 49.77)
YearPredictionMSD (100.55, -18.00) (100.55, -18.00) (100.55, -18.00) (9.90, 47.86) (11.84, 50.00)

A. Simulated Annealing Approach

We consider simulated annealing (SA) approach in [20]. In
[20], the SA approach has successfully determined parameters
and selected features for support vector machine (SVM). SA
approach is a global search algorithm inspired from the cooling
process of metal: the particle in metal will converge to the
lowest-energy state when the initial heat is high enough.

1) Implementation Details: Our implementations are based
on [20] and details are in Algorithm 2. A search range

[Cmin, Cmax]× [εmin, εmax] (VI.1)

must be pre-specified. In the paper, we have derived all bounds
except Cmax. We follow the setting in Section V-A to set
Cmax = 250.

However, following [20], because the range of [Cmin, Cmax]
is usually much greater than the one of [εmin, εmax], the
domination of one parameter may occur. Therefore, an equally
scaled space is considered to be the SA search range

[0, 1]× [0, 1] (VI.2)

instead of directly using the range in (VI.1). For each point in
(VI.2) we must map it back to (VI.1) for training SVR. Thus,
we define the following mapping between (VI.2) and (VI.1).

Θ(z0, z1) = (z0 × Cmax + Cmin, z1 × εmax + εmin),

where

(z0, z1) ∈ [0, 1]× [0, 1].

As a result, we can evaluate CV MSE with parameter pair
(C, ε) = Θ(z0, z1). For the selection of initial starting point
z0, we follow [20] to randomly choose some values from
(VI.2). We set the maximal number of iterations to be 300.

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a global optimization
method [6], [17]. PSO is a population-base approach that has
a swarm of particles to search for an optimal solution (or
position). In the process, each particle considers information
from itself and its neighbors to update the position. Among the
various PSO implementations, we consider the one in [29]. It
is one of the most popular PSO variants and possesses a strong
ability for searching an optimal solution [16].

For implementation details, we consider the same search
space (VI.2) as in the annealing approach and use Θ to retrieve
(C, ε). We set the maximal number of iterations to be 10 and
each iteration involves 40 CV MSE evaluations.

C. Results and Analysis

We compare SA, PSO and our methods in this section.
Results of showing the ratio

Best CV MSE by a method
Best CV MSE by “Full and independent”

(VI.3)

in comparison with the baseline “Full and independent” ap-
proach are in Table G. From this table we have have following
observations.
• PSO and SA methods can achieve competitive CV MSE

values because most of the ratios are close to 1.
• When stability is considered, SA and PSO may not be

a suitable choice. For example, in log1p.E2006.train,
pyrim, traizines and traizines-scale, the CV MSE is 10%
worse than the baseline. This result is expected because
for an optimization technique such as SA or PSO, it is
possible that the procedure reaches a local minimum. In
contrast, a grid search, usually not practically feasible,
guarantees to find a point close to a global minimum.
Because linear SVR involves only two parameters, we
can afford to conduct a grid search.
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Table C: The comparison of using τ = 10−2, 10−3, 10−3, 10−4, 10−5, 10−6 is presented. The (ε, C) setting does not impose
a termination condition on the C sequence, so both (ε, C) and (C, ε) run the full grid. All values are normalized by the first
column.

(a) CV MSE

Data set (C, ε) (ε, C)
10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

abalone 1.00 0.90 0.90 0.90 0.90 1.05 0.90 0.90 0.90 0.90
abalone-scale 1.00 0.96 0.96 0.96 0.96 1.07 0.97 0.96 0.96 0.96
bodyfat 1.00 0.37 0.39 0.42 0.42 6.25 0.44 0.42 0.42 0.42
bodyfat-scale 1.00 0.97 0.96 0.96 0.96 1.08 0.96 0.96 0.96 0.96
cadata 1.00 0.89 0.50 0.49 0.49 1.01 0.94 0.54 0.49 0.49
cpusmall 1.00 1.00 0.83 0.81 0.79 1.00 1.00 0.81 0.81 0.80
cpusmall-scale 1.00 0.96 0.96 0.96 0.96 1.21 0.98 0.96 0.96 0.96
E2006-train 1.00 1.00 1.00 0.97 0.97 1.00 1.00 0.99 0.97 0.97
eunite2001 1.00 0.93 0.89 0.89 0.89 1.02 0.89 0.89 0.89 0.89
housing 1.00 0.72 0.42 0.42 0.42 1.18 0.77 0.44 0.42 0.42
housing-scale 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
log1p-E2006-train 1.00 0.95 0.95 0.95 0.95 2.06 0.98 0.95 0.95 0.95
mg 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00
mg-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mpg 1.00 0.61 0.52 0.50 0.49 6.24 0.82 0.52 0.50 0.49
mpg-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
pyrim 1.00 1.19 1.19 1.19 1.19 1.32 1.18 1.19 1.19 1.19
pyrim-scale 1.00 0.98 0.99 1.06 1.06 1.06 1.05 1.06 1.06 1.06
space-ga 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
space-ga-scale 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
triazines 1.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
triazines-scale 1.00 1.00 0.99 0.99 0.99 1.01 1.00 0.99 0.99 0.99
YearPredictionMSD 1.00 0.43 0.33 0.33 0.33 6.74 1.41 0.34 0.33 0.33

(b) Running time

Data set (C, ε) (ε, C)
10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

abalone 1.00 2.00 3.49 5.45 7.81 0.33 0.50 0.75 1.09 1.49
abalone-scale 1.00 1.96 3.46 4.89 6.27 0.33 0.49 0.78 1.10 1.46
bodyfat 1.00 1.54 2.13 3.15 3.76 0.15 0.27 0.40 0.56 0.74
bodyfat-scale 1.00 1.96 4.31 6.91 10.38 0.16 0.37 0.73 1.15 1.63
cadata 1.00 3.08 7.16 14.06 23.92 0.18 0.35 0.61 1.03 1.59
cpusmall 1.00 1.68 3.82 6.79 10.12 0.15 0.25 0.39 0.60 0.89
cpusmall-scale 1.00 1.85 3.58 5.37 7.14 0.18 0.33 0.51 0.86 1.29
E2006-train 1.00 1.29 1.67 4.80 19.71 0.41 0.53 0.68 0.94 1.74
eunite2001 1.00 1.62 3.14 4.53 5.89 0.18 0.33 0.55 0.85 1.24
housing 1.00 2.26 5.68 10.15 16.61 0.19 0.33 0.59 1.08 1.61
housing-scale 1.00 2.03 3.45 4.96 6.90 0.21 0.37 0.63 0.97 1.40
log1p-E2006-train 1.00 2.18 5.55 11.81 20.87 0.26 0.39 0.68 1.26 2.53
mg 1.00 1.78 2.84 3.98 5.07 0.23 0.40 0.59 0.89 1.23
mg-scale 1.00 1.69 2.56 3.16 3.77 0.20 0.35 0.54 0.75 0.99
mpg 1.00 2.16 3.74 6.04 8.39 0.23 0.37 0.58 0.83 1.14
mpg-scale 1.00 1.96 3.30 4.15 4.96 0.22 0.38 0.62 0.86 1.13
pyrim 1.00 3.10 10.43 28.23 46.86 0.19 0.37 0.87 1.63 2.28
pyrim-scale 1.00 2.42 6.04 12.14 22.06 0.20 0.38 0.70 1.18 1.75
space-ga 1.00 1.59 2.43 2.88 3.08 0.16 0.21 0.28 0.34 0.40
space-ga-scale 1.00 1.49 2.04 2.54 3.09 0.19 0.30 0.43 0.55 0.67
triazines 1.00 3.83 13.22 43.53 126.28 0.19 0.37 0.93 2.44 6.55
triazines-scale 1.00 2.84 10.74 29.33 78.30 0.18 0.36 0.86 2.09 5.61
YearPredictionMSD 1.00 2.42 7.12 20.72 63.21 0.13 0.27 0.81 2.04 4.47

The above results are obtained by running SA or PSO up to
a pre-specified number of iterations. The termination of these
methods is certainly a practical issue.

Next we compare the running time. Because no clear
termination condition is available for SA or PSO, we consider
the following setting. We split the entire process of running
SA or PSO to several stages. At each stage we respectively
present the CV MSE and running time up to the current stage
in comparison with the final result of the proposed Algorithm

1. Specifically, the following two ratios are calculated.

CV MSE at the current stage
Final CV MSE by Algorithm 1

(VI.4)

and
cumulative running time

Total running time by Algorithm 1
. (VI.5)

Results for SA and PSO are respectively given in Tables H
and I. Clearly, we see that CV MSE ratio gradually decreases,
while the running-time ratio increases. When the CV MSE
ratio reaches 1 or a smaller value, a running-time ratio smaller
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Table D: The comparison of using different number of ε values in the parameter search is presented. We consider 20, 40, 60,
80 and 100. The (ε, C) setting does not impose a termination condition on the C sequence, so both (ε, C) and (C, ε) run the
full grid. All values are normalized by the first column.

(a) CV MSE

Data set (C, ε) (ε, C)
20 40 60 80 100 20 40 60 80 100

abalone 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
abalone-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
bodyfat 1.00 1.05 1.05 1.07 1.10 1.07 1.07 1.07 1.07 1.07
bodyfat-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cadata 1.00 0.99 1.00 0.99 0.99 1.07 1.07 1.07 1.07 1.07
cpusmall 1.00 1.01 1.02 0.98 1.01 0.98 0.98 0.98 0.98 0.98
cpusmall-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E2006-train 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
eunite2001 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
housing 1.00 0.98 0.99 1.00 0.99 1.04 1.04 1.04 1.04 1.04
housing-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
log1p-E2006-train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mg-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mpg 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
mpg-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
pyrim 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
pyrim-scale 1.00 1.03 1.02 1.04 1.03 1.07 1.03 1.03 1.03 1.03
space-ga 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
space-ga-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
triazines 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
triazines-scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
YearPredictionMSD 1.00 1.00 1.00 1.01 1.01 1.03 1.03 1.03 1.03 1.03

(b) Running time

Data set (C, ε) (ε, C)
20 40 60 80 100 20 40 60 80 100

abalone 1.00 1.47 1.86 2.26 2.67 0.22 0.43 0.64 0.86 1.07
abalone-scale 1.00 1.37 1.76 2.20 2.58 0.22 0.45 0.66 0.89 1.11
bodyfat 1.00 1.26 1.62 1.83 2.09 0.19 0.37 0.56 0.75 0.93
bodyfat-scale 1.00 1.52 1.87 2.08 2.33 0.17 0.34 0.50 0.67 0.84
cadata 1.00 1.85 2.02 2.26 2.41 0.08 0.17 0.25 0.34 0.42
cpusmall 1.00 1.31 1.52 1.77 1.87 0.10 0.21 0.31 0.41 0.51
cpusmall-scale 1.00 1.48 1.82 2.05 2.21 0.14 0.28 0.42 0.57 0.71
E2006-train 1.00 1.76 2.51 3.08 3.79 0.41 0.82 1.24 1.65 2.07
eunite2001 1.00 1.48 1.68 1.88 2.02 0.17 0.35 0.52 0.69 0.86
housing 1.00 1.45 1.75 2.01 2.20 0.10 0.21 0.31 0.41 0.52
housing-scale 1.00 1.66 2.19 2.77 3.22 0.18 0.36 0.54 0.72 0.90
log1p-E2006-train 1.00 1.38 1.48 1.86 2.21 0.12 0.24 0.35 0.47 0.59
mg 1.00 1.53 1.92 2.31 2.66 0.21 0.42 0.63 0.84 1.04
mg-scale 1.00 1.67 2.26 2.84 3.42 0.21 0.43 0.64 0.86 1.07
mpg 1.00 1.46 1.73 1.99 2.16 0.15 0.31 0.46 0.61 0.77
mpg-scale 1.00 1.50 1.94 2.38 2.77 0.19 0.37 0.56 0.74 0.92
pyrim 1.00 1.52 1.75 2.02 2.22 0.08 0.17 0.25 0.33 0.41
pyrim-scale 1.00 1.57 2.02 2.47 2.73 0.12 0.23 0.34 0.46 0.57
space-ga 1.00 1.58 2.20 2.60 3.09 0.12 0.23 0.34 0.46 0.57
space-ga-scale 1.00 1.66 2.22 2.78 3.31 0.21 0.41 0.62 0.83 1.03
triazines 1.00 1.40 1.62 1.76 1.79 0.07 0.14 0.21 0.27 0.34
triazines-scale 1.00 1.48 1.84 1.99 2.14 0.08 0.16 0.24 0.32 0.39
YearPredictionMSD 1.00 1.16 1.27 1.33 1.41 0.11 0.22 0.33 0.43 0.54

than 1 indicates that if the approach can rightly stop at that
point, then it is more efficient than the proposed Algorithm 1.
From Tables H and I, we can see that the situation significantly
varies. For example, in Table H for problem mg-scale in 1%
of the running time by Algorithm 1, SA achieves the same CV
MSE. However, for problem pyrim-scale, SA needs four folds
of running time to achieve the same CV MSE by Algorithm 1.
Further, in some situations CV MSE by SA or PSO is always
bigger than that by the proposed Algorithm 1.

In the above discussion, we somewhat assume that SA or
PSO can terminate right after achieving a satisfactory CV

MSE, but as noted earlier, deciding when to stop the search
procedure is not an easy task.

D. Discussion on Complexity and Running Time

To solve a linear SVR problem under parameter by the
Newton method, from [11], [14], the complexity is

# of Newton iterations× # of CG steps×O(nl),

where n is the feature size and l is the number of instances in
the data set. The number of Newton iterations is often small
(≤ 100), though the precise number depends on the data,
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Table E: The comparison of using tstop = 3, 4, 5, 6 in the termination condition of the C sequence of the (ε, C) setting is
presented. All values are normalized by the first column.

(a) CV MSE

Data set tstop
No

criterion 3 4 5 6

abalone 1.00 1.00 1.00 1.00 1.00
abalone-scale 1.00 1.00 1.00 1.00 1.00
bodyfat 1.00 1.00 1.00 1.00 1.00
bodyfat-scale 1.00 1.00 1.00 1.00 1.00
cadata 1.00 1.04 1.04 1.00 1.00
cpusmall 1.00 1.09 1.09 1.00 1.00
cpusmall-scale 1.00 1.00 1.00 1.00 1.00
E2006-train 1.00 1.01 1.00 1.00 1.00
eunite2001 1.00 1.00 1.00 1.00 1.00
housing 1.00 1.00 1.00 1.00 1.00
housing-scale 1.00 1.00 1.00 1.00 1.00
log1p-E2006-train 1.00 1.00 1.00 1.00 1.00
mg 1.00 1.00 1.00 1.00 1.00
mg-scale 1.00 1.00 1.00 1.00 1.00
mpg 1.00 1.03 1.00 1.00 1.00
mpg-scale 1.00 1.00 1.00 1.00 1.00
pyrim 1.00 1.00 1.00 1.00 1.00
pyrim-scale 1.00 1.00 1.00 1.00 1.00
space-ga 1.00 1.00 1.00 1.00 1.00
space-ga-scale 1.00 1.00 1.00 1.00 1.00
triazines 1.00 1.00 1.00 1.00 1.00
triazines-scale 1.00 1.00 1.00 1.00 1.00
YearPredictionMSD 1.00 1.05 1.00 1.00 1.00

(b) Running time

Data set tstop
No

criterion 3 4 5 6

abalone 1.00 1.00 1.00 1.00 1.00
abalone-scale 1.00 1.00 1.00 1.00 1.00
bodyfat 1.00 1.00 1.00 1.00 1.00
bodyfat-scale 1.00 1.00 1.00 1.00 1.00
cadata 1.00 0.99 1.00 1.00 1.00
cpusmall 1.00 1.00 1.00 1.00 1.00
cpusmall-scale 1.00 1.00 1.00 1.00 1.00
E2006-train 1.00 1.00 1.00 1.00 1.00
eunite2001 1.00 1.00 1.00 1.00 1.00
housing 1.00 0.99 1.00 1.00 1.00
housing-scale 1.00 1.00 1.00 1.00 1.00
log1p-E2006-train 1.00 1.00 1.00 1.00 1.00
mg 1.00 1.00 1.00 1.00 1.00
mg-scale 1.00 1.00 1.00 1.00 1.00
mpg 1.00 1.00 1.00 1.00 1.00
mpg-scale 1.00 1.00 1.00 1.00 1.00
pyrim 1.00 0.99 0.99 0.99 1.00
pyrim-scale 1.00 1.00 1.00 1.00 1.00
space-ga 1.00 1.00 1.00 1.00 1.00
space-ga-scale 1.00 1.00 1.00 1.00 1.00
triazines 1.00 1.00 1.00 1.00 1.00
triazines-scale 1.00 1.00 1.00 1.00 1.00
YearPredictionMSD 1.00 0.97 1.00 1.00 1.00

Table F: The best MSE by using different τ values in the
stopping condition (3) for training each SVR. Warm start is
not applied so all SVR problems are run independently. All
values are normalized by the first column.

τ values
Data set 10−3 10−4 10−5 10−6

bodyfat 1.00 1.00 1.18 1.18
pyrim 1.00 1.02 1.03 1.03

the parameters, and the stopping condition. See, for example,

the analysis in Chapter 9 of [1]. Regarding the number of
CG steps, a theoretical upper bound is n, though under most
practically used inner CG stopping conditions, the number is
in general no more than 50. We use the table J to illustrate
that in the “full and independent” approach, the running time
for SVR problems under different parameters can significantly
vary. In table J we show the following ratio:

running time under a (ε, C)

smallest running time of all parameters
.
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Algorithm 2 Simulated annealing approach.

1: Given
2: K as number of CV folds.
3: τ as stopping tolerance in (3).
4: εmin = 0, εmax = maxi |yi|.
5: δ1 ∈ (0, 1) as the parameter to calculate Cmin.
6: Cmax = a large constant.
7: T0 = a large constant, T = T0.
8: Select a random initial solution z0 ∈ [0, 1]× [0, 1].
9: Set max iteration I = 300.

10: D = 2.
11: demon = 1.0/0.9D/2.0 − 1.0.
12: chi2 = the 99 percentile point of χ2 distribution with

D degree of freedom.
13: End Given
14: Evaluate K-fold CV MSE0 at z0.
15: MSEbest = MSE0.
16: i← 1.
17: while i < I do
18: Select a random direction.
19: Select a random point zi ∈ [0, 1] × [0, 1] on the

direction.
20: Evaluate K-folds CV MSEi at Θ(zi).
21: ∆E ← MSE0 −MSEi.
22: if ∆E < 0 then
23: accp = e∆E/T .
24: else
25: accp = 1.
26: end if
27: Select a random value µ from the uniform distribution

in (0, 1).
28: if µ ≤ accp then
29: z0 = zi.
30: MSE0 = MSEi.
31: end if
32: if MSE0 < MSEbest then
33: MSEbest = MSE0.
34: zbest = z0.
35: T = 2× MSEbest−MSE0

demon×chi2 .
36: end if
37: i← i+ 1.
38: end while
39: Return zbest.

Note that we obtain the above ratio by using the total number
of CG steps in solving an SVR problem because we have
indicated that the running time is roughly proportional to it.

Based on the above discussion about the complexity of
solving each individual SVR problem, for parameter selection
approaches considered in the paper, we can roughly summarize
their complexity as follows.

Algorithm 3 Standard particle swarm optimization approach.

1: Given
2: K as number of CV folds.
3: τ as stopping tolerance in (3).
4: εmin = 0, εmax = maxi |yi|.
5: δ1 ∈ (0, 1) as the parameter to calculate Cmin.
6: Cmax = a large constant.
7: Choose N = 40 as the swarm size.
8: Choose max iteration I = 10.
9: Choose neighborhood size b = 3.

10: Choose velocity update rate ω = 1
2 ln(2) and c = 1

2 +

ln(2).
11: End Given
12: min0 = 0, max0 = 1, min1 = 0, max1 = 1
13: for i = 1, · · · , N do
14: Initialize particle i’s position zi uniformly from

[min0,max0]× [min1,max1].
15: Initialize particle i’s velocity vi uniformly from

[min0−zi0,max0−zi0]× [min1−zi1,max1−zi1].
16: Evaluate particle performance MSEi with Θ(zi).
17: Initialize particle i’s previous best position pi = zi

and local best position li = zi.
18: if MSEi < MSEbest then
19: MSEbest = MSEi.
20: zbest = zi.
21: end if
22: MSEi,pre

best ← MSEi.
23: MSEi,loc

best ← MSEi.
24: for l = 1, · · · , b do
25: Select a random particle with index j (accept

repeat selection)
26: if MSEi < MSEj then
27: lj ← zi

28: MSEj,loc
best ← MSEi

29: end if
30: end for
31: end for
32: t = 0
33: while t < I do
34: for i = 1, · · · , N do
35: if li 6= pi then
36: gi ← zi + cp

i+li−2zi

3 .
37: else
38: gi ← zi + cp

i−zi

2 .
39: end if
40: Select a random point z′ uniformly from sphere

with center zi and radius ‖zi − gi‖.
41: Update velocity vi ← ωvi + (z′ − zi).
42: Update position zi ← zi + vi.

• Full and independent:

# of ε values in the outer loop× (VI.6)
# of C values in the inner loop× (VI.7)
# of average Newton iterations×
# of average CG steps×O(nl).
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43: if zi /∈ [max0,max0]× [min1,max1] then
44: for d = 1, 2 do
45: if zid > maxd then
46: zid ← maxd
47: vid ← −0.5vid
48: else if zid < mind then
49: zid ← mind
50: vid ← −0.5vid
51: end if
52: end for
53: end if
54: Evaluate MSEi with Θ(zi).
55: if MSEi < MSEbest then
56: MSEbest = MSEi.
57: zbest = zi.
58: end if
59: if MSEi < MSEi,pre

best then
60: pi ← zi.
61: MSEi,pre

best ← MSEi.
62: end if
63: for l = 1, · · · , b do
64: Select a random particle with index j
65: if MSEi < MSEj then
66: lj ← zi

67: MSEj,loc
best ← MSEi

68: end if
69: end for
70: t← t+ 1.
71: end for
72: end while
73: Return zbest.

Note that in our grid setting, the number of ε values in
the outer loop is a constant 10, while the number of C
values in the inner loop is another constant log2(Cmax)−
log2(Cmin). The Cmin depends on each data set.

• Our proposed warm-start setting:

# of ε values in the outer loop×
average # of C values in the inner loop×
# of average Newton iterations
× # of average CG steps×O(nl).

The main difference from (VI.6) is that the following two
values are reduced:

# of C values and # of Newton iterations, (VI.8)

where the former comes from the termination condition
(6), while the latter is from the warm-start strategy. Note
that by using a better initial solution, the number of
Newton iterations in solving a single SVR problem can
be significantly reduced.

• Partial swarm approach:

# of epochs× swarm size× # of average Newton iterations
× # of average CG steps×O(nl),

where the swarm size is 40.

Table G: An MSE comparison with the baseline setting of
running the full grid without warm start; see the ratio defined
in (11). We compare simulated annealing (SA), particle swarm
optimization (PSO) and our method. Ratios larger than one are
boldfaced.

SA PSO Criterion
in (7)

abalone 1.01 1.01 1
abalone-scale 1 1 1
bodyfat 1 1 1.18
bodyfat-scale 1 1 1
cadata 0.99 0.99 1.09
cpusmall 1 1 1
cpusmall-scale 1 1 1
E2006.train 1 1 0.99
eunite2001 1 1.01 1
housing 0.99 1 1.04
housing-scale 1 1 1
log1p.E2006.train 1.11 1.11 1
mg 1 1 1
mg-scale 1 1 1
mpg 0.99 0.99 0.99
mpg-scale 1 1 1
pyrim 1.59 1.57 1
pyrim-scale 0.95 0.96 1
space-ga 1 1 1
space-ga-scale 1 1 1
triazines 1.09 1.10 1
triazines-scale 1.23 1.23 1
YearPredictionMSD 0.99 0.99 1.02

• Simulated annealing:

# of epochs× # of average Newton iterations
× # of average CG steps×O(nl).

The above summary gives a good guideline on the com-
putational cost, but does not accurately reflect the practical
running time. Therefore, in the main paper as well as the
supplementary materials we show direct time comparisons in
various places. We check the running time reduction of the
warm start technique in Table II in the main paper. Also,
we have shown Tables H and I in supplementary materials
to demonstrate the overall time cost comparison between
our method, the particle swarm approach and the simulated
annealing approach.

VII. SUMMARY AND FUTURE ISSUES

We begin with summarizing technical insights gained in this
work.
• Upper and lower bounds of C and ε except Cmax are

derived.
• With two parameters, we thoroughly investigate which

one should be in the outer level of the search procedure,
while the other is in the inner.

• We investigate conditions for terminating the parameter
search. Results show that a setting proposed in [4] can
be extended here.

• We compare the proposed method with two alternating
approaches for parameter selection and demonstrate the
robustness of our method.

Regarding future research, we plan to study the following
issues.
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Table H: CV MSE and cumulative running time of SA in comparison with the final results of Algorithm 1. We present ratios
along SA’s iterations; see (VI.5) and (VI.4). The first iteration achieving the ratio of CV MSE ≤ 1 is boldfaced.

iteration 30 60 90 120 150 180 210 240 270 300
abalone CV MSE 1.41 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
abalone time 0.02 0.33 0.61 0.90 1.17 1.47 1.74 1.99 2.26 2.50
abalone-scale CV MSE 1.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
abalone-scale time 0.02 0.29 0.53 0.79 1.05 1.31 1.55 1.79 2.06 2.30
bodyfat CV MSE 9.08 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
bodyfat time 0.01 0.24 0.44 0.65 0.85 1.06 1.25 1.44 1.64 1.82
bodyfat-scale CV MSE 1.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
bodyfat-scale time 0.03 0.32 0.57 0.84 1.08 1.35 1.59 1.85 2.13 2.37
cadata CV MSE 1.00 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
cadata time 0.03 0.40 0.76 1.16 1.54 1.93 2.29 2.68 3.07 3.45
cpusmall CV MSE 1.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cpusmall time 0.02 0.39 0.75 1.15 1.66 2.10 2.57 3.01 3.44 3.89
cpusmall-scale CV MSE 1.48 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cpusmall-scale time 0.02 0.36 0.69 1.04 1.41 1.76 2.09 2.43 2.76 3.09
E2006.train CV MSE 1.59 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E2006.train time 0.01 0.12 0.21 0.29 0.37 0.44 0.51 0.58 0.66 0.73
eunite2001 CV MSE 1.34 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
eunite2001 time 0.01 0.35 0.65 0.99 1.37 1.72 2.07 2.41 2.73 3.06
housing CV MSE 1.25 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
housing time 0.03 0.52 1.02 1.60 2.17 2.74 3.28 3.80 4.36 4.91
housing-scale CV MSE 1.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
housing-scale time 0.02 0.27 0.52 0.77 1.02 1.26 1.50 1.73 2.00 2.24
log1p.E2006.train CV MSE 1.84 1.12 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
log1p.E2006.train time 0.02 1.09 2.26 3.27 4.58 5.79 6.96 8.20 9.30 10.39
mg CV MSE 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mg time 0.01 0.22 0.41 0.62 0.82 1.02 1.21 1.40 1.59 1.78
mg-scale CV MSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mg-scale time 0.01 0.14 0.27 0.39 0.51 0.63 0.75 0.87 0.99 1.12
mpg CV MSE 1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mpg time 0.03 0.32 0.60 0.92 1.27 1.61 1.94 2.26 2.61 2.94
mpg-scale CV MSE 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mpg-scale time 0.03 0.24 0.45 0.64 0.81 1.02 1.19 1.41 1.60 1.77
pyrim CV MSE 2.46 1.62 1.61 1.61 1.59 1.59 1.59 1.59 1.59 1.59
pyrim time 0.07 1.22 2.26 3.09 4.17 4.93 5.81 6.75 7.63 8.48
pyrim-scale CV MSE 1.09 1.02 1.02 1.02 1.00 0.95 0.95 0.95 0.95 0.95
pyrim-scale time 0.02 1.00 2.13 2.95 4.05 4.87 5.79 6.88 7.85 8.70
space-ga CV MSE 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
space-ga time 0.04 0.35 0.58 0.81 1.03 1.27 1.48 1.70 1.97 2.17
space-ga-scale CV MSE 1.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
space-ga-scale time 0.02 0.27 0.50 0.73 0.96 1.20 1.41 1.65 1.88 2.09
triazines CV MSE 1.30 1.30 1.21 1.12 1.09 1.09 1.09 1.09 1.09 1.09
triazines time 0.09 2.09 3.18 3.80 4.94 5.80 6.90 7.93 8.90 9.73
triazines-scale CV MSE 1.36 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.22
triazines-scale time 0.07 0.95 1.60 2.46 3.19 4.00 4.68 5.34 6.03 6.74
YearPredictionMSD CV MSE 1.30 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
YearPredictionMSD time 0.05 0.88 1.69 2.52 3.36 4.22 5.04 5.82 6.62 7.38

• From users’ experiences in running the proposed proce-
dure, we plan to refine the settings. For example, some
constants such as δ1 in (4), tstop in (7), τ in (7), and �, ∆
in (10) may be adjusted. In particular, if feature or target
values are extremely large or small, the effectiveness of
the proposed procedure might be affected.

• It is important to investigate the relation between C and
ε. A good understanding may lead us to reduce the search
space of parameters.
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Table J: The time comparison under different parameter pairs in cadata.

C
2−30 2−26 2−22 2−18 2−14 2−10 2−6 2−2 22 26 210 214 218

ε

0 1.50 2.00 2.83 2.67 2.50 3.00 3.17 3.17 3.17 3.17 3.17 3.17 3.17
47500.09 1.67 2.17 3.33 4.17 3.17 4.50 4.67 4.67 4.50 4.67 4.50 4.50 4.67
95000.19 1.50 2.50 3.50 3.67 4.50 6.00 6.50 6.00 6.17 6.17 6.17 6.00 6.00

142500.28 1.67 2.67 3.67 4.33 5.00 6.33 6.00 6.00 6.33 6.33 6.17 6.17 6.00
190000.38 1.67 2.17 3.50 4.17 5.50 5.33 5.50 5.83 5.83 5.83 5.83 5.83 5.83
237500.47 1.67 2.00 3.00 4.33 3.00 4.67 2.00 2.50 2.50 2.50 2.50 2.50 2.50
285000.57 1.67 2.00 2.50 3.17 3.50 4.67 2.50 2.50 2.50 2.50 2.50 2.50 2.50
332500.66 1.50 1.83 2.67 3.00 3.67 4.67 3.17 2.33 2.33 2.33 2.33 2.33 2.33
380000.76 1.50 2.17 2.50 4.50 3.83 4.67 3.00 2.50 2.33 2.33 2.33 2.33 2.33
427500.85 1.17 1.83 2.50 7.00 4.17 4.00 3.17 2.50 2.50 2.50 2.50 2.50 2.50
475000.95 1.00 1.83 3.83 6.83 2.67 4.17 3.00 2.67 2.50 2.50 2.50 2.50 2.50

[29] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas-Mujica. Standard
particle swarm optimisation 2011 at cec-2013: A baseline for future
pso improvements. In IEEE Congress on Evolutionary Computation,
pages 2337–2344, 2013.


	A Review of Past Works
	Proofs
	Proof of Theorem 1 
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Details of the Proposed Procedure
	Some notes on the Stopping Criterion of Solving Each SVR Problem

	Details of Experimental Settings
	Additional Experiments of the Proposed Procedure
	Selected (, C) Values
	The Selection of  in the Stopping Condition of Training Each SVR
	Loop Selection
	Selection of tstop in the Termination Condition (7)
	Further Analysis on the  value for Data Sets Bodyfat and Pyrim

	Comparison with Other Approaches for SVR Parameter Selection
	Simulated Annealing Approach
	Implementation Details

	Particle Swarm Optimization
	Results and Analysis
	Discussion on Complexity and Running Time

	Summary and Future Issues
	References

