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Abstract

Given a sufficiently good network connection, even a
handheld computer can run extremely resource-intensive
applications by executing the demanding portions on a
remote server. At first glance, the increasingly ubiquitous
deployment of wireless hotspots seems to offer the con-
nectivity needed for remote execution. However, we show
that the backhaul connection from the hotspot to the In-
ternet can be a prohibitive bottleneck for interactive ap-
plications. To eliminate this bottleneck, we propose a
new architecture, called Slingshot, that replicates remote
application state on surrogate computers co-located with
wireless access points. The first-class replica of each ap-
plication executes on a remote server owned by the hand-
held user; this offers a safe haven for application state in
the event of surrogate failure. Slingshot deploys second-
class replicas on nearby surrogates to improve applica-
tion response time. A proxy on the handheld broadcasts
each application request to all replicas and returns the
first response it receives. We have modified a speech rec-
ognizer and a remote desktop to use Slingshot. Our re-
sults show that these applications execute 2.6 times faster
with Slingshot than with remote execution.

1 Introduction

Creating applications that execute on small, mobile com-
puters is challenging. On one hand, the size and weight
constraints of handheld and similar computers limit their
processing power, battery capacity, and memory size. On
the other hand, user’s appetites are driven by the appli-
cations that run on desktops; these often require more
resources than a handheld provides. A solution to this
challenge is remote execution using wireless networks to
access compute servers; this combines the mobility of
handhelds and the processing power of desktops.

Although Internet connectivity is increasingly ubiquitous
due to widespread deployment of wireless hotspots, the
backhaul connections between hotspots and the Inter-
net are communication bottlenecks. The uplink band-
width from a wireless hotspot can be quite limited (e.g.

1.5 Mb/s for a T1 line). Further, this bandwidth must be
shared by all hotspot users. The network round-trip time
between a hotspot and a remote server may be large due
to the use of firewalls and other middleboxes, as well as
the vagaries of Internet routing. For interactive applica-
tions such as speech recognition and remote desktops,
the combination of high latency and low bandwidth is
prohibitive; mobile users cannot achieve acceptable re-
sponse times when communicating with remote servers.

In this paper, we describe Slingshot, a new architec-
ture for deploying mobile services at wireless hotspots.
Slingshot replicates applications on surrogate comput-
ers [1] located at hotspots. A first-class replica of each
application executes on a remote server owned by the
mobile user. Slingshot instantiates second-class repli-
cas on surrogates at or near the hotspot where the user
is located. A proxy running on a handheld broadcasts
each application request to all replicas; it returns the
first response it receives to the application. Second-class
replicas improve interactive response time since they are
reachable through low-latency, high-bandwidth connec-
tions (e.g. 54 Mb/s for 802.11g). At the same time, the
first-class replica is a trusted repository for application
state that is not lost in the event of surrogate failure.

Slingshot also simplifies surrogate management. It uses
virtual machine encapsulation to eliminate the need to
install application-specific code on surrogates. Further,
replication prevents the loss of application state when a
surrogate crashes or even permanently fails. The perfor-
mance impact of surrogate failure is mitigated by other
replicas, which continue to service client requests.

The harnessing of surrogate computation is a multi-
faceted problem with many challenges. This paper ad-
dresses several of these challenges, including improving
interactive response time, hiding the perceived cost of
migration, recovering from surrogate failure, and sim-
plifying surrogate management. It also presents con-
crete results that measure the potential benefit of surro-
gate computation for stateless and stateful applications.
Other challenges remain to be addressed. Slingshot does
not yet address privacy concerns, provide protocols for



secure replica management, manage surrogate load, or
decide when to instantiate and destroy replicas.

We have implemented two Slingshot services: a speech
recognizer and a remote desktop. Our results show that
instantiating a second-class replica on a surrogate lets
these applications run 2.6 times faster. Our results also
show that replication lets Slingshot move services be-
tween surrogates with little user-perceived latency and
recover gracefully from surrogate failure.

2 Design principles

We begin by discussing the three principles we followed
in the design of Slingshot.

2.1 Location, location, location

Server location can be critical to the performance of re-
mote execution. Consider a handheld connected to the
Internet at a wireless hotspot. If the handheld executes
code on a remote server, its network communication not
only passes through the wireless medium; it also tra-
verses the hotspot’s backhaul connection and the wide-
area Internet link. In a typical hotspot, the backhaul con-
nection is the bottleneck. For instance, the nominal band-
width of a 802.11g network (54 Mb/s) is more than an
order of magnitude greater than that of a T1 connection.
If the handheld could instead execute code on a server
located at the hotspot, it could avoid the communication
delay associated with the bottleneck link. For interac-
tive applications that require sub-second response time,
server location can make the difference between accept-
able and unacceptable performance.

Network latency is also a concern. A server that is nearby
in physical distance can often be quite distant in network
topology due to the vagaries of Internet routing. Fire-
walls, VPNs, and NAT middleboxes add additional la-
tency when connections cross administrative boundaries.
For mobile users, a journey of only a few hundred yards
can dramatically increase the round-trip time for com-
munication with a remote server. In contrast, a server
located at the current hotspot is only a network hop away.

2.2 Replicate rather than migrate

The desire to locate services near mobile users implies
that services need to move over time. When a hand-
held user moves to a new location, a surrogate at the new
hotspot will often offer better response time than a sur-
rogate at the previous hotspot.

What is the best method to move functionality? One op-
tion is migration: suspend the application on the previous
surrogate, transmit its state to the new surrogate, and re-
sume it there. This approach has a substantial drawback:

the application is unavailable while it is migrating. Sling-
shot uses an alternative strategy that instantiates multiple
replicas of each service. While a new replica is being
instantiated, existing replicas continue to serve the user.

Slingshot replication is a form of primary-backup fault
tolerance; i.e. it tolerates the failure of any number of
surrogates. For each application, Slingshot creates a
first-class replica on a reliable server known to the mo-
bile user—this server is referred to as the home server.
Slingshot ensures that all application state can be recon-
structed from information stored on the client and the
home server. This allows all state on a surrogate to be
regarded as soft state. Even if all surrogates crash, Sling-
shot continues to service requests using the first-class
replica on the home server. In contrast, a naive approach
that migrates applications between surrogates might lose
state when a surrogate fails.

We note that Slingshot handles both stateful and state-
less applications. The result of a remote operation for
a stateful application depends upon the operations that
have previously executed. Slingshot assumes that appli-
cations are deterministic; i.e. that given two replicas in
the same initial state, an identical sequence of operations
sent to each replica will produce identical results. As we
discuss in Section 4.2, Slingshot adopts an approach sim-
ilar to that of Rodrigues’ BASE [24] in eliminating non-
determinism with wrapper code. Slingshot instantiates a
new replica by checkpointing the first-class replica, ship-
ping its volatile state to a surrogate, and replaying any
operations that occurred after the checkpoint.

Instantiation of a new replica takes several minutes since
the volatile state must travel through the bandwidth-
constrained backhaul connection. However, existing
replicas mitigate the perceived performance impact. Un-
til the new replica is instantiated, existing replicas service
application requests.

2.3 Ease of maintenance

We see the business case for deploying a surrogate as be-
ing similar to that of deploying a wireless access point.
Desktop computers (without monitors) cost only a few
hundred dollars today, not much more than an access
point. Further, our results show that surrogates can pro-
vide significant value-add to wireless customers in terms
of improved interactive performance.

However, surrogates must be easy to manage if they are
to be widely deployed. Since we envision surrogates at
hotspots in airport lounges, coffee shops, and bookstores,
they must require little to no supervision. They should
be appliances that require little configuration; most prob-
lems should be fixable with a reboot.
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Figure 1. Slingshot architecture

To make surrogates easy to manage, Slingshot:

• minimizes the surrogate computing base.
Each replica runs within its own virtual ma-
chine, which encapsulates all-application spe-
cific state such as a guest OS, shared libraries,
executables, and data files. The surrogate com-
puting base consists of only the host operat-
ing system (Linux), the virtual machine monitor
(VMware), and Slingshot. No configuration or
setup is needed to enable a surrogate to run new
applications—each VM is self-contained.

• uses a heavyweight virtual machine. While
para-virtualization and other lightweight ap-
proaches to virtualization offer scalability and
performance benefits [4, 23, 29], they also re-
strict the type of applications that can run within
a VM. In contrast, by using a heavyweight
VMM (VMware), Slingshot runs the two ap-
plications described in Section 4 without mod-
ifying source code, even though their guest OS
(Windows XP) differs substantially from the
surrogate host OS (Linux).

• places no hard state on surrogates. Because
surrogates have only soft state, a reboot does not
lead to incorrect application behavior or data
loss. If a surrogate crashes or is rebooted, the
only impact a user sees is that performance de-
clines to the level that would have been avail-
able had the surrogate never been present.

3 Slingshot implementation

3.1 Overview

Figure 1 shows an overview of Slingshot. For simplicity
of exposition, this figure assumes that the mobile client is
executing a single application and that a single surrogate
is being used. In practice, we expect a Slingshot user to

run only one or two applications concurrently, with each
service replicated two or three times.

Each Slingshot application is partitioned into a local
component that runs on the mobile client and a remote
service that is replicated on the home server and sur-
rogates. Ideally, we partition the application so that
resource-intensive functionality executes as part of the
remote service; the local component typically contains
only the user interface. This partitioning enables de-
manding applications to run on clients such as handhelds
that are highly portable but also resource-impoverished.
The applications that we have studied so far (speech
recognition and remote desktops) already had client-
server partitionings that fit this model. For some ap-
plications, the best partitioning may not be immedi-
ately clear—in these cases, we could leverage prior
work [2, 12, 18] to choose a partition that fits our model.

In Figure 1, a first-class replica executes on the home
server and a second-class replica executes on the sur-
rogate. The home server, described in Section 3.2, is a
well-maintained server under the administrative control
of the user, e.g. the user’s desktop or a shared server
maintained by the user’s IT department. In contrast,
surrogate computers, described in section 3.3, are co-
located with wireless access points. They are adminis-
tered by third parties and are not assumed to be reliable.

Slingshot creates the first-class replica when the user
starts the application—this replica is required for execu-
tion of stateful services. As the application runs, Sling-
shot dynamically instantiates one or more second-class
replicas on nearby surrogates. These replicas improve
interactive performance because they are located closer
to the user and respond faster than the first-class replica
on the distant home server. If no second-class replicas
are instantiated, Slingshot’s behavior is identical to that
of remote execution.

Each replica executes within its own virtual machine.
Replica state consists of the persistent state, or disk im-



age of the virtual machine, and the volatile state, which
includes its memory image and registers. To handle per-
sistent state, we use the Fauxide and Vulpes modules
developed by Intel Research’s Internet Suspend/Resume
(ISR) project [20]. These modules intercept VMware
disk I/O requests. On the home server, we redirect these
requests to a service database that stores the disk blocks
of every remote service. On a surrogate, VMware reads
are first directed to a service cache—if the block is not
found in the cache, it is fetched from the service database
on the home server.

The client proxy is responsible for locating surrogates,
instantiating second-class replicas, and managing com-
munication with all replicas. It presents the local com-
ponent with the illusion that it is using a single remote
service by broadcasting each request to all replicas and
forwarding the first reply it receives to the local compo-
nent. Later replies from other replicas are checked for
consistency, as described in Section 3.4.

If a mobile computer has a high-capacity storage device
such as a flash card or a microdrive, Slingshot reduces
the time to instantiate replicas by storing checkpoints on
the mobile computer. As described in Section 3.6, the
client logs all operations that occur after the checkpoint
and replays them to bring a new surrogate up-to-date.

3.2 The home server

A Slingshot user defines a single, well-known home
server that stores and executes the first-class replicas for
all of her remote services. Each service is uniquely iden-
tified by a serviceid string assigned by the user when the
service is created. The service database on the home
server manages the persistent and volatile state associ-
ated with each service. The director instantiates and ter-
minates first-class replicas. We describe these compo-
nents in the next two sections. The home server also runs
the VMware virtual machine monitor. Each Slingshot
service runs within a separate VM that is dynamically
instantiated when a user starts its associated application
on the client.

3.2.1 The service database

The home server stores the state of every service un-
der its purview in its service database. Previous re-
search in virtual machine migration by Sapuntzakis [25]
and Tolia [26] has shown that content-addressable stor-
age is highly effective in reducing the storage costs of
virtual machine disk images. We adopt their approach
by dividing the disk image of each virtual machine into
4 KB chunks and indexing each chunk by its SHA-1 hash
value. As shown in Figure 2, each service has a chunk ta-
ble that maps the chunks in its virtual disk image to the
SHA-1 hash of the data stored at each location.

The service database assumes that any two blocks that
hash to the same value are identical. It maintains a hash
table of the SHA-1 values of all chunks that it currently
stores. When it receives a request to store a new chunk
whose SHA-1 value matches that of a chunk it already
has stored, it increments a reference count on the existing
chunk. This method of eliminating duplicate storage has
been shown to substantially reduce disk usage [10] due
to similarities between the disk state of different com-
puters. We expect such similarities to be common in our
environment, since a single user may create many remote
services from a generic OS image. For example, we cre-
ated the speech recognizer and VNC services discussed
in Section 4 from the same Windows XP image.

As shown in Figure 2, when a first-class replica reads a
block from its virtual disk, the Fauxide/Vulpes ISR mod-
ules intercept the request and pass the associated logi-
cal block number to the service database. The database
looks up the block number in the service’s chunk table
to determine the SHA-1 value of the chunk stored at that
location. It then looks up the SHA-1 value in the hash
table to find the location of the chunk in the database.

Requests that modify blocks follow a similar path. The
database locates the chunk in the service’s chunk table.
It then indexes on the old SHA-1 value and decrements
the reference count associated with the chunk in its hash
table. If the reference count drops to zero, it deletes the
chunk. The service database next looks up the new SHA-
1 value of the modified block in its hash table. If the
modified chunk is a duplicate of an existing chunk, the
service database increments the reference count of the
existing chunk. Otherwise, it stores the chunk and adds
its SHA-1 value to its hash table.

Since the volatile state is likely unique to each service,
content-addressable storage offers little benefit. Thus,
the service database stores the volatile state of each re-
mote service in a file named by its serviceid.

3.2.2 The home server director

When a mobile user starts a Slingshot application, the
client proxy asks the director on the home server to in-
stantiate the first-class replica. The director uses the ser-
viceid provided by the client proxy to retrieve the volatile
state from the service database. It starts a VMware pro-
cess, resumes the virtual machine with the volatile state,
and replies to the client proxy. The persistent state is re-
trieved on demand from the service database as the first-
class replica executes.

When the user terminates the application, the client
proxy tells the director to halt the replica. The direc-
tor suspends the virtual machine, which causes VMware
to write its volatile state to disk. It then terminates the
virtual machine.
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Figure 2. Reading a chunk from the service database

The volatile state is large (e.g. 128 MB) because it con-
tains the entire memory image of the virtual machine.
We use Waldspurger’s ballooning technique [28] to re-
duce its size. When we create a new service, we place
a script in the guest OS that allocates a large amount
of highly-compressible (e.g. almost entirely zeroed out)
memory pages. When VMware suspends the virtual ma-
chine, this script runs to force unused memory pages to
disk and replace them with more compressible pages.
The director compresses the volatile state with gzip be-
fore storing it in the service database—this reduces stor-
age and network costs.

3.3 Surrogates

The surrogate architecture is similar to that of the home
server, except that we replace the service database with
the service cache described in Section 3.3.2. The director
also plays a slightly different role on a surrogate.

3.3.1 The surrogate director

The surrogate director currently accepts connections
from any client that wishes to instantiate a second-
class replica. Potentially, the director could enforce
access-control policies similar to those enforced by ac-
cess points today. The client proxy passes the director
the IP address of its home server and the serviceid of the
remote service it wishes to instantiate. The director con-
tacts the home server and requests the volatile state and
chunk table for the requested service.

Usually, the home server is already executing the first-
class replica of the service in question. For a stateful
service, this means that Slingshot must generate a coher-
ent checkpoint that represents the current execution state
of that replica. The home server creates this checkpoint
by suspending and resuming the virtual machine contain-
ing the replica; this causes a new volatile state and chunk
table to be written to the service database.

The home servers ships copies of the volatile state and
chunk table to the surrogate. Even after compression,
this information is quite large (e.g. 32 MB for a VNC
service)—thus, it can take several minutes to transfer.

Next, the director starts a new virtual machine and re-
sumes it using the volatile state. As the replica executes,
its disk I/O is intercepted by the ISR modules and redi-
rected to the service cache described below.

When the client disconnects from the surrogate, the di-
rector terminates the virtual machine. Since surrogate
replicas are second-class, the service state is logically
discarded at this point. However, persistent state chunks
remain in the service cache until they are evicted due to
storage limitations. This improves response time if the
service is later restarted on the surrogate.

3.3.2 The service cache

The service cache is a content-addressable store of data
chunks. As with the service database, each chunk is in-
dexed by its SHA-1 hash value, and storage of duplicate
chunks is eliminated. This lets users benefit from simi-
larities among the disk images of their replicas. For in-
stance, two people using Windows-based services may
have similar disk images. Chunks cached by one user
can be used by the other.

When the service cache receives a request to read a
chunk, it first tries to service it locally. If the chunk is
not cached, it asks the service database associated with
the replica for the chunk.

A subtle problem occurs because Slingshot enforces de-
terminism at the application level. There is no guarantee
that two different replicas will write the same data to the
same location on disk. A naive implementation might
ask the database for an uncached chunk, only to find that
it had been over-written by a store performed by the first-
class replica. We therefore need to ensure that the service
database keeps all chunks that might potentially be re-
quested by second-class replicas.

Slingshot uses a copy-on-write approach for stateful ser-
vices. When a surrogate starts a second-class replica,
the database copies the service’s chunk table—the new
copy increments the reference count for each of its en-
tries. When the second-class replica is terminated, the
database deletes its chunk table and decrements the ref-
erence count for each entry. Thus, even if the first-class



replica modifies or deletes a chunk, that chunk is not
deleted until after the second-class replica terminates.

A similar concern arises for chunks modified by the
second-class replica. The modified chunks may not be
written to the service database by the first-class replica
due to non-determinism at the disk I/O level. The surro-
gate cache therefore pins modified chunks for the dura-
tion of a replica’s execution—this ensures that they will
never need to be fetched from the service database.

The surrogate cache uses an LRU eviction algorithm that
exempts chunks that are currently pinned. Since chunks
remain cached even after a service is terminated, it is
likely that the chunks of a frequent visitor to a hotspot
will remain cached between visits.

3.4 The client proxy

The client proxy is a stand-alone process responsible for
surrogate discovery, instantiating and destroying repli-
cas, and coordinating communication with each replica.
It uses UPnP [22] to discover new surrogates in its sur-
rounding network environment. Currently, the decision
to instantiate a new second-class replica is a made by the
user. In the future, we plan to add heuristics for moni-
toring network performance and automatically deciding
when new replicas are needed.

On startup, the local component sends the client proxy
its serviceid. The proxy immediately instantiates a first-
class replica on the home server. It subsequently instan-
tiates second-class replicas on nearby surrogates when
requested by the user.

The client proxy maintains an event log of requests sent
by the local application component. The client proxy
spawns a thread for each replica; the thread sends logged
events to the replica in the order they were received.
Events may optionally have application-specific precon-
ditions that must be satisfied before they can be sent to
a replica. For instance, our VNC application specifies a
precondition that ensures that the remote desktop is ready
to accept each key stroke and mouse click event before
that event is sent. Services that must process events se-
quentially to ensure determinism specify that the previ-
ous event must complete before an event is sent.

The client proxy records the replies received from each
replica in the event log. When the first reply is received,
it is returned to the local component. Later replies are
compared with the first reply to ensure that the repli-
cas are behaving deterministically. If the reply from a
second-class replica differs significantly (as determined
by an application-specific function) from the reply from
the first-class replica, the second-class replica is termi-
nated. Such divergence could be due to a bug in the wrap-
per code enforcing determinism, or it could be the result

of a faulty or malicious surrogate. Note that the client
proxy may already have received a reply that is later de-
termined to be faulty. In this case, the application is no-
tified via an upcall so that corrective action can be taken.
This strategy is similar to those employed in the SUNDR
file system [21] and in Brown’s operator undo [7]. Al-
ternatively, we could try to prevent malicious surrogate
behavior using a trusted computing architecture [15].

3.5 Instantiating new replicas

In Figure 3, we show how Slingshot responds to a user
moving between hotspots, assuming that a surrogate is
located at each hotspot. The client proxy first asks the
nearby surrogate to instantiate a replica. The surrogate
requests the service state from the home server; the home
server checkpoints the first-class replica and ships the
compressed chunk table and volatile state to the surro-
gate. Note that the distant surrogate can process events
for the client during checkpointing. This hides almost all
delay associated with suspending and resuming the VM
on the home server. The client proxy queues events for
the first-class replica while it is being checkpointed and
sends them after the replica resumes execution.
The new surrogate uses the checkpoint to resume the
service within a new virtual machine. The client proxy
brings the new replica up-to-date by replaying all events
in the event log that were sent by the application after
the checkpoint was created. Once the new replica is up-
to-date, it improves interactive response time for the ap-
plication by responding more swiftly to new events sent
by the local component. At this point, the client proxy
terminates the replica at the previous hotspot.
The benefit of replication is that the user sees little fore-
ground performance impact due to the use of a new sur-
rogate. After checkpointing, the first-class replica on
the home server services requests while the new second-
class replica is instantiated and brought up-to-date. In
contrast, a naive migration approach would leave the
service unavailable while state is being shipped—as we
show in Section 5, application state can take several min-
utes to ship over limited backhaul connections. Although
the first-class replica is unavailable while it is being
checkpointed, that operation is relatively short (i.e. ap-
proximately 10 seconds). Even that cost can be masked
if another second-class replica exists.
Slingshot performs two optimizations if a service is
marked as stateless. It skips checkpointing the service
on the home server (since its state is static). It also does
not replay events (since the replica is up-to-date).

3.6 Leveraging mobile storage

Migration can be time consuming due to the need to ship
state from the home server (step 4 in Figure 3). For a typ-
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ical service, the size of the compressed volatile state and
chunk table is 30–40 MB. If the home server is connected
to the Internet via a DSL link with 256 Kb/s uplink band-
width, it takes over 20 minutes to ship the state.

Given sufficient storage capacity, Slingshot reduces the
time to ship state by storing checkpoints on the mobile
computer. We observed that the service-specific event
log can be used to roll forward replica state from any
prior checkpoint, not just one that is created at the begin-
ning of replica instantiation. Thus, by storing a check-
point on a mobile computer and logging all events that
occur after that checkpoint, Slingshot can instantiate a
replica without shipping state from the home server. In-
stead, it ships the state from the mobile computer over the
high-bandwidth wireless network at the hotspot. Most of
this bandwidth should be unused since the capacity of the
wireless network is typically much greater than that of
the backhaul connection, yet most communication from
computers located at the hotspot is with endpoints lo-
cated outside the hotspot (and thus limited by the back-
haul bandwidth).

When a user returns to her home server, she can tell
Slingshot to create new checkpoints of her applications
on a high-capacity storage device such as a micro-
drive. Each checkpoint contains the volatile and persis-
tent state. The volatile state and chunk table are stored
in separate files; the chunks that comprise the persistent
state are stored in a content-addressable cache on the mo-
bile computer. The event log is empty when the user cre-
ates a new snapshot. As the application is used on the
road, Slingshot appends each request to the log. This
enables Slingshot to instantiate a new replica of a state-
ful service by first restoring the checkpoint represented
by the volatile state, and then deterministically replaying
the event log. For stateless services, Slingshot neither
records nor replays an event log.

When a new replica is instantiated on a nearby surrogate,

the mobile computer tries to find a checkpoint on its local
storage device. If a checkpoint is found, the mobile com-
puter ships the volatile state, chunk table, and hash table
for its local chunk cache to the surrogate. One reason
that we transmit the chunk table and the hash table to the
surrogate is that the surrogate can usually maintain this
information in memory, whereas a resource-constrained
mobile computer cannot. When a disk I/O request misses
in the service cache, the surrogate fetches the chunk from
the mobile computer if it is available there; otherwise, the
chunk is fetched from the home server.

As operations accumulate, so does the time to bring a
new second-class replica up-to-date. This means that
there exists a break-even point where it takes less time
to create a new checkpoint from the first-class replica on
the home server and download it over the Internet than it
takes to instantiate a replica from client storage.

4 Slingshot applications

We have adapted the IBM ViaVoice speech recognizer
and the VNC remote desktop to use Slingshot. Due to
Slingshot’s use of virtual machine encapsulation, we did
not need to modify the source code of either application.
All Slingshot-specific functionality is performed within
proxies that intercept and redirect network traffic.

4.1 Speech recognition

We chose speech recognition as our first service because
of its natural application to handheld computers. We
used IBM ViaVoice in our work. We created a server-
side proxy that accepts audio input from a remote client
and passes it to ViaVoice through that application’s API.
ViaVoice returns a text string which the proxy sends to
the client. ViaVoice and our server run on a Windows
XP guest OS executing within a VMware virtual ma-



chine. The local component of this application displays
the speech recognition output.

We chose to implement speech recognition as a stateless
service. One can certainly make a reasonable argument
that speech recognition should be a stateful service in
order to allow a user to train the recognizer. However, we
wanted to explore the optimizations that Slingshot could
provide for stateless services.

4.2 Virtual desktop

VNC allows users to view and interact with another com-
puter from a mobile device. In the case of Slingshot,
the remote desktop is a Windows XP guest OS execut-
ing within a VMware virtual machine. This allows users
to remotely execute any Windows application from their
handhelds. This is clearly a stateful service; i.e., a user
who edits a Word document expects the document to ex-
ist when the service is next instantiated.

Adapting VNC to Slingshot presented interesting chal-
lenges. First, the VNC server sends display updates to
the client in a non-deterministic fashion. When pixels on
the screen change, it reports the new values to the client
in a series of updates. Two identical replicas may com-
municate the same change with a different sequence of
updates. The resulting screen image at the end of the up-
dates is identical but the intermediary states may not be
equivalent. A second challenge is that some applications
are inherently non-deterministic. One annoying example
is the Windows system clock; two surrogates can send
different updates because their clocks differ.

We noted that some non-determinism is unlikely to be
relevant to the user (e.g. a slightly different clock value).
Unfortunately, other non-determinism affects correct ex-
ecution. For example, a key stroke or mouse click is of-
ten dependent upon the window state. If a user opens
a text editor and enters some text, the key strokes must
be sent to each replica only after the editor has opened
on that replica. If this is not done, the key strokes will
be sent to another application. To solve this problem, we
associate a precondition with each input event. When the
user executes the event, we log the state of the window
on the client to which that event was delivered. When
replaying the event on a server, we require that the win-
dow be in an identical state before the event is delivered.
Since each event is associated with a screen coordinate,
we check state equality by comparing the surrounding
pixel values of the original execution and the background
execution. In the above example, this strategy causes
Slingshot to wait until the editor is displayed before it
delivers the text entry events.

A second issue with VNC is that its non-determinism
prevents us from mixing updates from different replicas.

We designate the best-performing replica as the fore-
ground replica and the remainder as background replicas.
Only events from the foreground replica are delivered to
the client. If performance changes, we quiesce the repli-
cas before choosing a new foreground replica. Two repli-
cas are quiesced by ensuring that the same events have
been delivered to each, and by requesting a full-screen
update from the new foreground replica to eliminate tran-
sition artifacts. New events are logged while quiescing
replicas. Note that the foreground replica is rarely the
first-class replica since nearby surrogates provide better
performance in the common case.

We were encouraged that VNC can fit within the
Slingshot model, since its behavior is relatively non-
deterministic. Based on this result, we suspect that
application-specific wrappers can be used to enforce de-
terminism for many applications. For those applications
where this approach proves infeasible, we could use a
VMM that enforces determinism at the ISA level as is
done in Hypervisor [6] and ReVirt [11].

5 Evaluation

Our evaluation answers the following questions:

• How much do surrogates improve interactive re-
sponse time?

• What is the perceived performance impact of in-
stantiating a new replica?

• How much does the use of mobile storage re-
duce replica instantiation time?

5.1 Methodology

The client platform in our evaluation is an iPAQ 3970
handheld running the Linux 2.4.19-rmk6 kernel. The
handheld has an XScale-PXA250 processor, 64 MB of
DRAM, and 48 MB of flash. It uses a 11 Mb/s Cisco 350
802.11b PCMCIA card for network communication and
a 4 GB Hitachi microdrive for bulk storage. Unless oth-
erwise noted, the home server and surrogates are Dell
Precision 350 desktops with a 3.06 GHz Pentium 4 pro-
cessor running RedHat Enterprise Linux version 3.

We use a Cisco 350 802.11b wireless access point. We
emulate the topology in Figure 4 by connecting all com-
puters and the access point to a Dell desktop running
the NISTNet [8] network emulator. This topology em-
ulates a scenario where the handheld client is located at
a wireless hotspot equipped with a surrogate computer.
Hotspots are connected to the Internet through T1 con-
nections with 1.5 Mb/s uplink and downlink bandwidth.
A distant surrogate at another hotspot is accessible with
latency of 15 ms. The home server is connected through
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an emulated DSL connection—the latency between the
handheld’s hotspot and the home server is 30 ms.

We execute the IBM ViaVoice speech recognizer as a
stateless service, and VNC as a stateful service. For re-
peatability, the local component of each application exe-
cutes a fixed, periodic workload. For speech, each itera-
tion of the workload recognizes a phrase and pauses three
seconds before beginning the next iteration. For VNC,
each iteration opens Microsoft Word, inserts text at the
beginning of a document, saves the document, closes
Word, and pauses ten seconds before the next iteration
begins. The client uses the same heuristics described
in Section 4.2 to wait until Word opens before inserting
text, and to wait until the window is fully closed before
beginning the 10 second pause between iterations.

Each service runs within a separate VM configured with
128 MB of memory and 4 GB of local storage. We create
each service from a vanilla Windows XP installation. We
install the ballooning script described in Section 3.2.2
and the application comprising the remote service. We
start the application so that it is ready to receive incom-
ing connections, then suspend the VM. We repeat each
experiment three times and report mean results over all
iterations during the three trials. Figures 12 and 13 sum-
marize all results described in this section.

5.2 Benefit of Slingshot

We first measured the benefit of using Slingshot for our
two applications. The left bar in each data set in Figure 5
shows the average time to perform an iteration of the
workload when the service is remotely executed on the
home server. The right bar shows the average time using
Slingshot when a second-class replica executes on the
nearby surrogate. We let each application run for several
iterations before measuring performance; this eliminates
startup transients and shows steady-state performance.

Both the stateless speech service and the stateful VNC
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bars are 90% confidence intervals.

Figure 5. Benefit of using Slingshot

service execute 2.6 times faster with Slingshot than with
remote execution. The shadings within each bar show
the time consumed by server processing, client process-
ing, and communication. For speech, Slingshot increases
client processing time since it manages multiple network
connections and aggregates responses. For VNC, it also
logs requests and responses to local storage. Slingshot’s
performance benefit comes from reducing the time the
application blocks on network communication.

Remote execution performance is affected by both high
latency and limited bandwidth. For speech, a back-of-
the-envelope calculation shows that 229 ms are required
to transfer the 44 KB utterance through the bottleneck
1.5 Mb/s T1 link at the hotspot. Further, since commu-
nication is intermittent, TCP slow start causes several
60 ms round-trip delays during transmission. Thus, the
remote execution results include 511 ms of network com-
munication time. In contrast, Slingshot uses only 77 ms
for network communication.
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Figure 6. Speech replication with warm cache

Latency impacts VNC performance more than band-
width. Because the client waits for remote actions such
as button clicks and key presses to complete before initi-
ating the next action, there are many round-trip delays
during the VNC workload. In addition, client polling
in VNC leads to more round-trip delays than are strictly
necessary. For this workload, remote execution on the
home server requires 15.6 seconds for network commu-
nication, while Slingshot requires only 3.2 seconds.

5.3 Stateless service replication

We next examined the impact of instantiating stateless
second-class replicas. In this experiment, a user with a
first-class replica running on the home server arrives at
the hotspot on the left in Figure 4 and decides to instan-
tiate a replica on the surrogate there. For repeatability,
we do not measure the latency of UPnP service discov-
ery. We examine behavior when the service cache is cold
(i.e. no chunks are initially cached) and warm (i.e. all
chunks are initially cached). The warm cache scenario
is most likely if the user has recently visited the hotspot;
the cold cache scenario is the worst cache state possible.

We first ran three trials without a microdrive attached to
the iPAQ. Since the handheld has limited storage, the ser-
vice state must be loaded from the home server as de-
scribed in Section 3.5. We then ran three trials with the
microdrive; in this case, the state of the speech service is
loaded from the iPAQ as described in Section 3.6. Fig-
ures 6 and 7 show results for representative trials with a
warm and cold cache, respectively.

In Figure 6, the sharp drop in response time for both lines
is a result of the completion of replica instantiation. Be-
fore the replica is instantiated, speech requests must be
serviced by the distant home server; after instantiation,
the new second-class replica provides quicker response
time. Without the microdrive, it takes 28:06 minutes to
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This graph shows how response time changes during the instan-
tiation of a speech replica on the nearby surrogate. No chunks
are in the service cache prior to each experiment.

Figure 7. Speech replication with cold cache

ship the service state from the home server. However,
replica instantiation exhibits only a minimal impact on
application performance—average response time during
replication is only 2% greater than response time with
remote execution on the home server.

When the replica is instantiated from state stored on the
client’s microdrive, the new second-class replica is in-
stantiated in only 3:35 minutes (7.8 times faster). How-
ever, the performance impact of replica instantiation is
more substantial: average response time increases by
20% compared to remote execution. Shipping a large
amount of data over the wireless network causes queu-
ing delays at the access point and on the handheld that
adversely affect application performance. Currently, we
are investigating whether traffic prioritization can mini-
mize the impact of replication on foreground traffic.

The cold cache scenario in Figure 7 exhibits a less
clear difference in performance before and after repli-
cation completes. After the new replica is instantiated,
it fetches chunks of its persistent state on demand from
the home server or iPAQ; this occasionally delays its re-
sponses. Note that the first-class replica on the home
server mitigates the performance impact—if the second-
class replica is substantially delayed by fetching state,
the first-class replica responds faster.

5.4 Instantiation of another stateless replica

We next examined a scenario in which the user of the
speech service moves from one wireless hotspot to an-
other. This experiment begins with the user located at
the middle hotspot in Figure 4. A second-class replica
is running on the surrogate at that hotspot and a first-
class replica is running on the home server. At the begin-
ning of the experiment, the user moves to the left hotspot
and decides to instantiate another replica on the surrogate
at that hotspot. While this new replica is being created,
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Figure 8. Speech: Moving to a new hotspot

both the second-class replica on the distant surrogate and
the first-class replica on the home server service applica-
tion requests. As soon as the new replica is instantiated,
Slingshot terminates the replica on the distant surrogate.
Since we did not have three identical servers with which
to run this experiment, the home server is a slightly less-
powerful Dell Optiplex 370 with 2.8 GHz Pentium 4 pro-
cessor running RedHat 9.

Figure 8 shows how the average time to perform an it-
eration of the speech recognition workload varies during
this experiment—we show only warm cache results here.
Compared to the previous experiment, the time to instan-
tiate a new replica is relatively unchanged. However, re-
sponse time during replication is improved because the
existing second-class replica responds faster to requests
than the replica on the home server. Without the micro-
drive, application response time is reduced by 23% com-
pared to remote execution; with the microdrive, applica-
tion response time is reduced by 2%. These results show
that a surrogate can still provide significant benefit even
when not located at the user’s current hotspot.

5.5 Stateful service replication

We next repeated the experiment in Section 5.3 for the
stateful VNC service. Prior to the experiment, we per-
form 30 iterations of the VNC workload. We then begin
the experiment by instantiating a replica on the nearby
surrogate. Figures 9 and 10 show results from the warm
and cold cache scenarios, respectively.

Without the microdrive and with a warm service cache,
Slingshot takes 4 seconds to checkpoint the VNC
service—this is reflected in the higher response time for
the first iteration. Slingshot takes 22:42 minutes to ship
the checkpoint to the surrogate and 5:02 to replay the
logged operations. During replication, average response
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This graph shows how response time changes during the instan-
tiation of a VNC replica on the nearby surrogate. All chunks are
in the service cache prior to each experiment.

Figure 9. VNC replication with warm cache

time is 20% higher than when using remote execution
on the home server. This increase is due to the back-
ground traffic associated with shipping state from the
home server interfering with the latency-sensitive fore-
ground traffic of VNC.

In contrast to the prior results for the speech service, the
VNC results show little difference between the warm and
cold cache scenarios. In particular, VNC performance
markedly improves in the cold cache scenario as soon
as the client starts using the second-class replica. Most
of the chunks needed by the service are read from the
service database during the replay of logged operations.

When the handheld stores a VNC service checkpoint on
its microdrive, Slingshot takes 3:19 minutes to ship the
state from the client, and 3:18 minutes to replay the log.
These two phases are clearly visible in the “with micro-
drive” line in Figure 9, where response time degrades
by 52% compared to remote execution while state is be-
ing shipped, and by 9% while the log is replayed. Note
that the log replay with the microdrive includes the 30
iterations that occurred prior to the experiment. Since
the microdrive checkpoint is taken when the user leaves
home, all logged operations after that point must be re-
played. However, since shipping state takes less time
with the microdrive, the user generates fewer logged op-
erations during migration. Overall, Slingshot instantiates
the replica over 4 times faster when a checkpoint exists
on the microdrive.

5.6 Instantiation of another stateful replica

We also repeated the experiment in Section 5.4 for VNC.
Prior to the experiment, we create a second-class replica
of the VNC service on the distant surrogate and a first-
class replica on the home server. We then execute 30
iterations of the VNC workload. The experiment begins
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This graph shows how response time changes during the instan-
tiation of a VNC replica on the nearby surrogate. No chunks are
in the surrogate cache prior to each experiment.

Figure 10. VNC replication with cold cache

when we start to instantiate another second-class replica
on the nearby surrogate.

As shown in Figure 11, the presence of another second-
class replica on the distant surrogate substantially im-
proves performance during replication. Compared to re-
mote execution, Slingshot provides VNC response times
almost twice as fast without the microdrive, and 70%
faster when state is fetched from client storage.

6 Related work

To the best of our knowledge, Slingshot is the first sys-
tem to dynamically instantiate replicas of stateful appli-
cations in order to improve the performance of small,
resource-poor mobile computers. Our work draws upon
several areas of prior work, including virtual machine
and process migration, cyber foraging, fault-tolerant
computing, and remote execution.

After Chen and Noble [9] first suggested that virtual ma-
chine migration could be an effective mechanism for pro-
cess migration, several research groups have built work-
ing prototypes. Our research focus is not on the migra-
tion mechanism itself, but rather on how it can be used
to service the needs of small, mobile clients. We use
the Fauxide and Vulpes components from Intel’s Inter-
net Suspend/Resume [20] to intercept disk I/O requests
made by virtual machines. The difference between ISR
and Slingshot is that ISR executes a user’s computing
environment on a single terminal at a time. In contrast,
Slingshot decomposes a user’s environment into distinct
services and replicates services on multiple computers.
Slingshot hides the perceived latency of migration and
surrogate failures, while letting a user execute applica-
tions anywhere a wireless connection exists.

Sapuntzakis [25] uses virtual machine migration, but fo-
cuses on users who compute at fixed locations, rather
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This graph shows how response time changes during the instan-
tiation of a VNC replica on the nearby surrogate while another
replica executes on the distant surrogate. All chunks are in the
the service caches prior to each experiment.

Figure 11. VNC: Moving to a new hotspot

than the mobile users that Slingshot targets. Slingshot
uses several of the optimizations suggested by Sapuntza-
kis, including ballooning and content-addressable stor-
age. These optimizations have also been suggested by
Waldspurger [28] and Tolia [27], respectively.

Baratto’s MobiDesk [3] is similar to our VNC applica-
tion in that it virtualizes a remote desktop for mobile
clients. However, MobiDesk migrates its desktop service
between well-connected machines in a cluster in order
to minimize downtime during server maintenance or up-
grades. Slingshot uses replication rather than migration,
and utilizes the computational resources of surrogates
located at wireless hotspots. A MobiDesk-like cluster
could serve as the ideal home server for Slingshot ap-
plications. Conversely, although Baratto shows consid-
erable improvement over VNC in remote display perfor-
mance, his results indicate that network latency still de-
grades interactive performance. Thus, surrogates could
improve MobiDesk performance for mobile clients.

Slingshot’s replication strategy is a form of primary-
backup fault tolerance in that the replica on the home
server allows the system to tolerate a fail-stop failure of
any number of second-class replicas. Our approach is
most reminiscent of Hypervisor [6], which used deter-
ministic replay to provide fault tolerance between virtual
machines. In contrast to systems such as Hypervisor and
ReVirt [11] which enforce determinism at the ISA level,
Slingshot enforces determinism at the application level.
This choice was driven by our desire to use a robust com-
mercial virtual machine (VMware) without modification.
Our approach to enforcing determinism was inspired by
Rodrigues’ BASE [24], which provides Byzantine fault
tolerance by wrapping non-deterministic software with a
layer that enforces deterministic behavior. A similar ap-
proach was used in Brown’s operator undo [7].

Slingshot is an instance of cyber foraging [1], the oppor-



Service Remote Slingshot
Execution Steady-State Creating 1st Replica Creating 2nd Replica

Warm Cache Cold Cache Warm Cache Cold Cache
Speech w/o microdrive 0.67 (0.67–0.67) 0.24 (0.24–0.24) 0.69 (0.68–0.70) 0.69 (0.67–0.73) 0.52 (0.51–0.52) 0.52 (0.51–0.52)
Speech with microdrive 0.67 (0.67–0.67) 0.24 (0.24–0.24) 0.80 (0.79–0.81) 0.80 (0.79–0.81) 0.65 (0.65–0.65) 0.65 (0.63–0.68)
VNC w/o microdrive 18.9 (18.9–19.0) 7.4 (7.2–7.5) 22.8 (21.5–23.6) 22.2 (19.9–23.6) 9.8 (9.7–9.9) 10.0 (9.9–10.0)
VNC with microdrive 18.9 (18.9–19.0) 7.4 (7.2–7.5) 24.1 (23.9–24.3) 23.1 (21.6–24.4) 13.8 (13.0–14.4) 14.6 (14.4–14.8)

This figure summarizes the average response time (in seconds) for all experiments. Each entry shows the mean of three trials, with
the low and high trials given in parentheses. The second column shows response time for remote execution on the home server.
The third column shows steady-state performance for Slingshot with a replica on the nearby surrogate. The remaining columns show
response time while instantiating a replica on the nearby surrogate with and without a replica running on the distant surrogate.

Figure 12. Summary of response time results

Service Creating 1st Replica Creating 2nd Replica
Warm Cache Cold Cache Warm Cache Cold Cache

Speech w/o microdrive 28:06 (27:50–28:27) 27:55 (27:50–28:04) 28:10 (28:05–28:11) 27:57 (27:57–27:58)
Speech with microdrive 3:35 (3:32–3:40) 3:27 (3:26–3:28) 3:39 (3:34–3:45) 3:33 (3:32–3:34)
VNC w/o microdrive 27:48 (27:07–28:28) 27:58 (27:12–28:45) 31:16 (30:57–31:31) 31:08 (31:00–31:25)
VNC with microdrive 6:37 (6:20–7:13) 7:29 (6:59–8:27) 8:59 (8:01–10:00) 8:20 (6:47–9:00)

This figure summarizes the time (in minutes) to create a new replica on the nearby surrogate for all experiments. Each entry shows
the mean of three trials, with the low and high trials given in parentheses. The second and third columns show the time to instantiate
a replica when no replica runs on the distant surrogate. The last two column show results with a replica on the distant surrogate.

Figure 13. Summary of replication time results

tunistic use of surrogates to augment the capabilities of
mobile computers. Previous work in Spectra [12] exam-
ined how a cyber foraging system could locate the best
server and application partitioning to use given dynamic
resource constraints. In contrast, Slingshot takes this se-
lection as a given and provides a mechanism for utiliz-
ing surrogate resources. More recently, Balan [2] and
Goyal [16] have also proposed cyber foraging infrastruc-
ture. Compared to these systems, the major capability
added by Slingshot is the ability to execute stateful ser-
vices on surrogate computers. Data staging [13] and fluid
replication [19] use surrogates to improve the perfor-
mance of distributed file systems. They share common
goals with Slingshot such as minimization of latency and
ease of management—however, Slingshot applies these
principles to computation rather than storage.

The applications we have investigated so far have been
easy to partition because they were designed for client-
server computing. Potentially, Slingshot could use one of
several methods that automatically partition applications.
For instance, Coign [18] partitions DCOM applications
into client and server components. Globus [14], Con-
dor [5], and Legion [17] dynamically place functionality,
but target grid rather than mobile computing.

7 Conclusions and future work

Handhelds can improve interactive response time by
leveraging surrogate computers located at wireless
hotspots. Slingshot’s use of replication offers several im-
provements over a strategy that simply migrates remote
services between computers. Replication provides good

response time for mobile users who move between wire-
less hotspots; while a new replica is being instantiated,
other replicas continue to service user requests. Replica-
tion also lets Slingshot recover gracefully from surrogate
failure, even when running stateful services.

Slingshot minimizes the cost of operating surrogates. For
these computers to be of maximum benefit, they must
be located at wireless hotspots, rather than in machine
rooms that are under the supervision of trained operators.
Slingshot uses off-the-shelf virtual machine software to
eliminate the need to install custom operating systems,
libraries, or applications to service mobile users. All
application-specific state associated with each service is
encapsulated within its virtual machine. Further, Sling-
shot’s replication strategy means that surrogates need not
provide 24/7 availability. If a surrogate fails or is re-
booted, no state is lost.

Harnessing surrogate computation is a complex problem.
Slingshot currently provides several pieces of the puzzle,
including the use of replication to improving response
time and the elimination of hard surrogate state to im-
prove ease of management. Other pieces of the puzzle
remain. Slingshot does not yet address the privacy issues
inherent to running computation on third-party hardware.
Trusted computing efforts [15] provide promise in this
area. Slingshot does not provide a mechanism for se-
curely controlling replica instantiation and termination.
Other areas of potential investigation are load manage-
ment and policies for creating and destroying replicas.
We believe that Slingshot will be an extremely useful
platform on which to conduct such investigations.
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