
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

Scalable Face Track Retrieval in Video Archives
using Bag-of-Faces Sparse Representation

Bor-Chun Chen, Yan-Ying Chen, Yin-Hsi Kuo, Thanh Duc Ngo, Duy-Dinh Le, Shin’ichi Satoh, Winston H. Hsu

Abstract—Huge video archives consisting of news programs,
dramas, movies, and web videos (e.g., YouTube) are available
in our daily life. In all these videos, human is usually one of
the most important subjects. Using state-of-the-art techniques,
we can efficiently detect and track faces in the videos. In
order to organize large-scale face tracks, containing sequences
of (detected) consecutive faces in the videos, we propose an
efficient method to retrieve human face tracks using bag-of-faces
sparse representation. Using the proposed method, a face track
is encoded as a single bag-of-faces sparse representation and
therefore allowing efficient indexing method to handle large-scale
data. To further consider the possible variations in face tracks, we
generalize our method to find multiple sparse representations, in
an unsupervised manner, to represent a bag of faces and balance
the trade-off between performance and retrieval time. Experi-
mental results on two real-world (million-scale) datasets confirm
that the proposed methods achieve significant performance gains
compared to different state-of-the-art methods.

Index Terms—Face Track Retrieval, Bag-of-Faces Sparse Rep-
resentation, Multiple Sparse Representations

I. INTRODUCTION

Huge collections of videos are generated everyday in the
form of news program, drama, movies, web videos, family
recordings, etc. How to efficiently manage and mine infor-
mation from these videos is a really important topic for
many researchers. In all of these videos, human is usually
one of the most important subjects; therefore, many studies
focus on manipulating human faces (i.e., retrieval, recognition,
annotation, etc.) in the videos [1], [2], [3], [4].

Different from traditional face recognition in still images,
face recognition in videos can benefit from additional temporal
redundancy because faces detected from consecutive frames at
the similar location are usually of the same person. Using this
extra information, face recognition based on sets of images is
applied to improve the accuracy. Such face sequences detected
from the videos can be regarded as a face track or bag of faces.

With the explosive growth of the videos, besides of face
recognition, the emerging research is to conduct content-based
face track retrieval [5], [6]. However, most of the existing face
recognition methods for image set rely on complex distance
measures between two sets of faces and therefore can not

B.-C. Chen (e-mail: sirius42@cmlab.csie.ntu.edu.tw) and Y.-Y. Chen (e-
mail: yanying@cmlab.csie.ntu.edu.tw) are with the Department of Computer
Science and Information Engineering, National Taiwan University. Y.-H.
Kuo (e-mail: kuonini@cmlab.csie.ntu.edu.tw) and W. H. Hsu (e-mail: win-
ston@csie.ntu.edu.tw) are with the Graduate Institute of Networking and
Multimedia, National Taiwan University, Taipei, Taiwan. T. D. Ngo (e-mail:
ndthanh@nii.ac.jp), D.-D. Le (e-mail: ledduy@nii.ac.jp) and S. Satoh (e-mail:
satoh@nii.ac.jp) are with National Institute of Informatics, Tokyo, Japan. Prof.
Hsu is the contact person.

Inverted index

Bag of faces

(Bag-of-faces) sparse
codewords

���

���

4 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

video or TV series. Due to leveraging the transcript data and
temporal information for people search, those approaches are
hard to apply to user-contributed videos associated with noisy
(or missing) name labels. In addition, these past works do not
discuss the scalability issue for processing large scale videos.
When the amount of videos increases, the total computation
time could also increases exponentially. It limits the practi-
cability of applying these previous searching approaches on
user-contributed videos.

In order to solve the mentioned problems, we propose an
unsupervised people search method for user-contributed videos
by leveraging a face graph to correlate video segments and
informative people names. The face graph is constructed by
generating local face clusters with affinity propagation for
each videos. On such graph, the problem of missing and
noisy people labels originally associated with videos can be
remedied by propagating weighted names from neighboring
clusters. In addition, the representative faces selected by
affinity propagation in generating face clusters are used to
reduce efficiently the computation during face matching. The
representative faces also provide robust face matching results.
Considering the issue of scalability in graph construction,
we apply some hash-based methods which dramatically save
computation time and make this approach more applicable
for large scale searches. Moreover, a people disambiguation
process is applied to fix the ambiguity problem when several
people share a same name. This process allows user to easily
browse video segments for different people even they have
same name.

In summary, comparing to past works for people search in
videos, our method presents the following differences :

• The largest and noisiest dataset. Total duration of all
videos is more than 250 hours. All videos are collected
from user-contributed video websites which makes it the
noisiest dataset.

• Transcript information is not available. The only text
information used is the sparse and erroneous text attached
to video, rather than the complete transcripts with abun-
dant temporal information as in other works.

• Proposing to associate people faces and names across
multiple videos. The association could be used to correct
the poor labels attached with other videos.

• Applying hash-methods to reduce the computation time.
It allows our method to apply on large scale dataset.

• Fixing the ambiguity problem that several people share a
same name by applying a people disambiguation process.

III. NAME PROPAGATION ON FACE GRAPH

Figure 3 shows the steps of our name propagation method.
After collecting videos from web, we detect the frontal faces
and extract candidate names associated with the videos. For
each video, a local clustering process is applied to cluster the
duplicate and near-duplicate faces. Extracted people names for
the video are assigned to the local clusters as initial people
labels. Then we construct a similarity graph for all videos. The
nodes represent local face clusters and the weights of edges
between nodes are measured with the similarities between

Fig. 4. Face processing steps to extract candidate frontal faces. Faces are
detected from videos. Then ASM [19] is applied to remove faces without
apparent facial features. Selected faces are aligned at the same eye level.
Color histograms of the left and right sides of face are compared to choose
symmetrical faces. The remaining faces are processed in gray with histogram
equalization in order to further extract the LBP features.

clusters. Once the graph is constructed, finally, the name
propagation algorithm is applied to compute the likelihood
of people names for clusters by propagating names weighted
by cluster similarities from neighboring clusters. Note that the
above steps are totally unsupervised. In the following sections
we will describe the details.

A. Frontal Face Feature and Name Extraction

As Figure 3 shows, we apply a sequence of procedures
to detect the (frontal) candidate faces for matching. It is
reasonable since all detected faces in videos might be vary
from poses and lighting, which make them cannot be used for
matching easily. First, we adopt the Adaboost-like algorithm
for every 5 frames for face detection. We remove non-frontal
faces in order to improve the matching quality between face
images. Second, we apply active shape model (ASM) [19] to
every possible faces and therefore filter out faces which can
not be correctly located facial features. ASM is a statistical
model widely used to localize facial feature points (e.g., eyes,
mouths, etc.). Leveraging the facial feature points extracted
by ASM, we can rectify the faces by rotating the faces
horizontally. Third, we align the faces at the same eye level
and resize these faces in 144x144 pixels. Fourth, we compare
the color histograms of the left and right sides for each face
to further remove the faces that are not symmetric. Finally,
we normalize the rectified and aligned faces by the process
of histogram equalization to ease the light variation in further
feature extraction.

To represent a face, we use the local binary pattern (LBP)
[9] feature. LBP is an efficient and effective face feature
widely used in face classification. Although there are other
features which perform better than LBP, most of them require
longer computation time to extract. Because the face feature
is not the issue we want to address in this work, we simply
choose LBP for its efficiency and effectiveness. Every face
image in our dataset is represented as a LBP feature vector of
4860 dimension.

Due to the absence of complete transcripts in videos, the
typical name-entity detection could not be applied for name
extration. Thus we collect names of celebrities from [20] [21]
and build a name collection. The candidates of people names
for each video then are simply extracted by matching attached
text of video with the name collection.

4 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

video or TV series. Due to leveraging the transcript data and
temporal information for people search, those approaches are
hard to apply to user-contributed videos associated with noisy
(or missing) name labels. In addition, these past works do not
discuss the scalability issue for processing large scale videos.
When the amount of videos increases, the total computation
time could also increases exponentially. It limits the practi-
cability of applying these previous searching approaches on
user-contributed videos.

In order to solve the mentioned problems, we propose an
unsupervised people search method for user-contributed videos
by leveraging a face graph to correlate video segments and
informative people names. The face graph is constructed by
generating local face clusters with affinity propagation for
each videos. On such graph, the problem of missing and
noisy people labels originally associated with videos can be
remedied by propagating weighted names from neighboring
clusters. In addition, the representative faces selected by
affinity propagation in generating face clusters are used to
reduce efficiently the computation during face matching. The
representative faces also provide robust face matching results.
Considering the issue of scalability in graph construction,
we apply some hash-based methods which dramatically save
computation time and make this approach more applicable
for large scale searches. Moreover, a people disambiguation
process is applied to fix the ambiguity problem when several
people share a same name. This process allows user to easily
browse video segments for different people even they have
same name.

In summary, comparing to past works for people search in
videos, our method presents the following differences :

• The largest and noisiest dataset. Total duration of all
videos is more than 250 hours. All videos are collected
from user-contributed video websites which makes it the
noisiest dataset.

• Transcript information is not available. The only text
information used is the sparse and erroneous text attached
to video, rather than the complete transcripts with abun-
dant temporal information as in other works.

• Proposing to associate people faces and names across
multiple videos. The association could be used to correct
the poor labels attached with other videos.

• Applying hash-methods to reduce the computation time.
It allows our method to apply on large scale dataset.

• Fixing the ambiguity problem that several people share a
same name by applying a people disambiguation process.

III. NAME PROPAGATION ON FACE GRAPH

Figure 3 shows the steps of our name propagation method.
After collecting videos from web, we detect the frontal faces
and extract candidate names associated with the videos. For
each video, a local clustering process is applied to cluster the
duplicate and near-duplicate faces. Extracted people names for
the video are assigned to the local clusters as initial people
labels. Then we construct a similarity graph for all videos. The
nodes represent local face clusters and the weights of edges
between nodes are measured with the similarities between

Fig. 4. Face processing steps to extract candidate frontal faces. Faces are
detected from videos. Then ASM [19] is applied to remove faces without
apparent facial features. Selected faces are aligned at the same eye level.
Color histograms of the left and right sides of face are compared to choose
symmetrical faces. The remaining faces are processed in gray with histogram
equalization in order to further extract the LBP features.

clusters. Once the graph is constructed, finally, the name
propagation algorithm is applied to compute the likelihood
of people names for clusters by propagating names weighted
by cluster similarities from neighboring clusters. Note that the
above steps are totally unsupervised. In the following sections
we will describe the details.

A. Frontal Face Feature and Name Extraction

As Figure 3 shows, we apply a sequence of procedures
to detect the (frontal) candidate faces for matching. It is
reasonable since all detected faces in videos might be vary
from poses and lighting, which make them cannot be used for
matching easily. First, we adopt the Adaboost-like algorithm
for every 5 frames for face detection. We remove non-frontal
faces in order to improve the matching quality between face
images. Second, we apply active shape model (ASM) [19] to
every possible faces and therefore filter out faces which can
not be correctly located facial features. ASM is a statistical
model widely used to localize facial feature points (e.g., eyes,
mouths, etc.). Leveraging the facial feature points extracted
by ASM, we can rectify the faces by rotating the faces
horizontally. Third, we align the faces at the same eye level
and resize these faces in 144x144 pixels. Fourth, we compare
the color histograms of the left and right sides for each face
to further remove the faces that are not symmetric. Finally,
we normalize the rectified and aligned faces by the process
of histogram equalization to ease the light variation in further
feature extraction.

To represent a face, we use the local binary pattern (LBP)
[9] feature. LBP is an efficient and effective face feature
widely used in face classification. Although there are other
features which perform better than LBP, most of them require
longer computation time to extract. Because the face feature
is not the issue we want to address in this work, we simply
choose LBP for its efficiency and effectiveness. Every face
image in our dataset is represented as a LBP feature vector of
4860 dimension.

Due to the absence of complete transcripts in videos, the
typical name-entity detection could not be applied for name
extration. Thus we collect names of celebrities from [20] [21]
and build a name collection. The candidates of people names
for each video then are simply extracted by matching attached
text of video with the name collection.

4 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

video or TV series. Due to leveraging the transcript data and
temporal information for people search, those approaches are
hard to apply to user-contributed videos associated with noisy
(or missing) name labels. In addition, these past works do not
discuss the scalability issue for processing large scale videos.
When the amount of videos increases, the total computation
time could also increases exponentially. It limits the practi-
cability of applying these previous searching approaches on
user-contributed videos.

In order to solve the mentioned problems, we propose an
unsupervised people search method for user-contributed videos
by leveraging a face graph to correlate video segments and
informative people names. The face graph is constructed by
generating local face clusters with affinity propagation for
each videos. On such graph, the problem of missing and
noisy people labels originally associated with videos can be
remedied by propagating weighted names from neighboring
clusters. In addition, the representative faces selected by
affinity propagation in generating face clusters are used to
reduce efficiently the computation during face matching. The
representative faces also provide robust face matching results.
Considering the issue of scalability in graph construction,
we apply some hash-based methods which dramatically save
computation time and make this approach more applicable
for large scale searches. Moreover, a people disambiguation
process is applied to fix the ambiguity problem when several
people share a same name. This process allows user to easily
browse video segments for different people even they have
same name.

In summary, comparing to past works for people search in
videos, our method presents the following differences :

• The largest and noisiest dataset. Total duration of all
videos is more than 250 hours. All videos are collected
from user-contributed video websites which makes it the
noisiest dataset.

• Transcript information is not available. The only text
information used is the sparse and erroneous text attached
to video, rather than the complete transcripts with abun-
dant temporal information as in other works.

• Proposing to associate people faces and names across
multiple videos. The association could be used to correct
the poor labels attached with other videos.

• Applying hash-methods to reduce the computation time.
It allows our method to apply on large scale dataset.

• Fixing the ambiguity problem that several people share a
same name by applying a people disambiguation process.

III. NAME PROPAGATION ON FACE GRAPH

Figure 3 shows the steps of our name propagation method.
After collecting videos from web, we detect the frontal faces
and extract candidate names associated with the videos. For
each video, a local clustering process is applied to cluster the
duplicate and near-duplicate faces. Extracted people names for
the video are assigned to the local clusters as initial people
labels. Then we construct a similarity graph for all videos. The
nodes represent local face clusters and the weights of edges
between nodes are measured with the similarities between

Fig. 4. Face processing steps to extract candidate frontal faces. Faces are
detected from videos. Then ASM [19] is applied to remove faces without
apparent facial features. Selected faces are aligned at the same eye level.
Color histograms of the left and right sides of face are compared to choose
symmetrical faces. The remaining faces are processed in gray with histogram
equalization in order to further extract the LBP features.

clusters. Once the graph is constructed, finally, the name
propagation algorithm is applied to compute the likelihood
of people names for clusters by propagating names weighted
by cluster similarities from neighboring clusters. Note that the
above steps are totally unsupervised. In the following sections
we will describe the details.

A. Frontal Face Feature and Name Extraction

As Figure 3 shows, we apply a sequence of procedures
to detect the (frontal) candidate faces for matching. It is
reasonable since all detected faces in videos might be vary
from poses and lighting, which make them cannot be used for
matching easily. First, we adopt the Adaboost-like algorithm
for every 5 frames for face detection. We remove non-frontal
faces in order to improve the matching quality between face
images. Second, we apply active shape model (ASM) [19] to
every possible faces and therefore filter out faces which can
not be correctly located facial features. ASM is a statistical
model widely used to localize facial feature points (e.g., eyes,
mouths, etc.). Leveraging the facial feature points extracted
by ASM, we can rectify the faces by rotating the faces
horizontally. Third, we align the faces at the same eye level
and resize these faces in 144x144 pixels. Fourth, we compare
the color histograms of the left and right sides for each face
to further remove the faces that are not symmetric. Finally,
we normalize the rectified and aligned faces by the process
of histogram equalization to ease the light variation in further
feature extraction.

To represent a face, we use the local binary pattern (LBP)
[9] feature. LBP is an efficient and effective face feature
widely used in face classification. Although there are other
features which perform better than LBP, most of them require
longer computation time to extract. Because the face feature
is not the issue we want to address in this work, we simply
choose LBP for its efficiency and effectiveness. Every face
image in our dataset is represented as a LBP feature vector of
4860 dimension.

Due to the absence of complete transcripts in videos, the
typical name-entity detection could not be applied for name
extration. Thus we collect names of celebrities from [20] [21]
and build a name collection. The candidates of people names
for each video then are simply extracted by matching attached
text of video with the name collection.

4 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

video or TV series. Due to leveraging the transcript data and
temporal information for people search, those approaches are
hard to apply to user-contributed videos associated with noisy
(or missing) name labels. In addition, these past works do not
discuss the scalability issue for processing large scale videos.
When the amount of videos increases, the total computation
time could also increases exponentially. It limits the practi-
cability of applying these previous searching approaches on
user-contributed videos.

In order to solve the mentioned problems, we propose an
unsupervised people search method for user-contributed videos
by leveraging a face graph to correlate video segments and
informative people names. The face graph is constructed by
generating local face clusters with affinity propagation for
each videos. On such graph, the problem of missing and
noisy people labels originally associated with videos can be
remedied by propagating weighted names from neighboring
clusters. In addition, the representative faces selected by
affinity propagation in generating face clusters are used to
reduce efficiently the computation during face matching. The
representative faces also provide robust face matching results.
Considering the issue of scalability in graph construction,
we apply some hash-based methods which dramatically save
computation time and make this approach more applicable
for large scale searches. Moreover, a people disambiguation
process is applied to fix the ambiguity problem when several
people share a same name. This process allows user to easily
browse video segments for different people even they have
same name.

In summary, comparing to past works for people search in
videos, our method presents the following differences :

• The largest and noisiest dataset. Total duration of all
videos is more than 250 hours. All videos are collected
from user-contributed video websites which makes it the
noisiest dataset.

• Transcript information is not available. The only text
information used is the sparse and erroneous text attached
to video, rather than the complete transcripts with abun-
dant temporal information as in other works.

• Proposing to associate people faces and names across
multiple videos. The association could be used to correct
the poor labels attached with other videos.

• Applying hash-methods to reduce the computation time.
It allows our method to apply on large scale dataset.

• Fixing the ambiguity problem that several people share a
same name by applying a people disambiguation process.

III. NAME PROPAGATION ON FACE GRAPH

Figure 3 shows the steps of our name propagation method.
After collecting videos from web, we detect the frontal faces
and extract candidate names associated with the videos. For
each video, a local clustering process is applied to cluster the
duplicate and near-duplicate faces. Extracted people names for
the video are assigned to the local clusters as initial people
labels. Then we construct a similarity graph for all videos. The
nodes represent local face clusters and the weights of edges
between nodes are measured with the similarities between

Fig. 4. Face processing steps to extract candidate frontal faces. Faces are
detected from videos. Then ASM [19] is applied to remove faces without
apparent facial features. Selected faces are aligned at the same eye level.
Color histograms of the left and right sides of face are compared to choose
symmetrical faces. The remaining faces are processed in gray with histogram
equalization in order to further extract the LBP features.

clusters. Once the graph is constructed, finally, the name
propagation algorithm is applied to compute the likelihood
of people names for clusters by propagating names weighted
by cluster similarities from neighboring clusters. Note that the
above steps are totally unsupervised. In the following sections
we will describe the details.

A. Frontal Face Feature and Name Extraction

As Figure 3 shows, we apply a sequence of procedures
to detect the (frontal) candidate faces for matching. It is
reasonable since all detected faces in videos might be vary
from poses and lighting, which make them cannot be used for
matching easily. First, we adopt the Adaboost-like algorithm
for every 5 frames for face detection. We remove non-frontal
faces in order to improve the matching quality between face
images. Second, we apply active shape model (ASM) [19] to
every possible faces and therefore filter out faces which can
not be correctly located facial features. ASM is a statistical
model widely used to localize facial feature points (e.g., eyes,
mouths, etc.). Leveraging the facial feature points extracted
by ASM, we can rectify the faces by rotating the faces
horizontally. Third, we align the faces at the same eye level
and resize these faces in 144x144 pixels. Fourth, we compare
the color histograms of the left and right sides for each face
to further remove the faces that are not symmetric. Finally,
we normalize the rectified and aligned faces by the process
of histogram equalization to ease the light variation in further
feature extraction.

To represent a face, we use the local binary pattern (LBP)
[9] feature. LBP is an efficient and effective face feature
widely used in face classification. Although there are other
features which perform better than LBP, most of them require
longer computation time to extract. Because the face feature
is not the issue we want to address in this work, we simply
choose LBP for its efficiency and effectiveness. Every face
image in our dataset is represented as a LBP feature vector of
4860 dimension.

Due to the absence of complete transcripts in videos, the
typical name-entity detection could not be applied for name
extration. Thus we collect names of celebrities from [20] [21]
and build a name collection. The candidates of people names
for each video then are simply extracted by matching attached
text of video with the name collection.

4 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

video or TV series. Due to leveraging the transcript data and
temporal information for people search, those approaches are
hard to apply to user-contributed videos associated with noisy
(or missing) name labels. In addition, these past works do not
discuss the scalability issue for processing large scale videos.
When the amount of videos increases, the total computation
time could also increases exponentially. It limits the practi-
cability of applying these previous searching approaches on
user-contributed videos.

In order to solve the mentioned problems, we propose an
unsupervised people search method for user-contributed videos
by leveraging a face graph to correlate video segments and
informative people names. The face graph is constructed by
generating local face clusters with affinity propagation for
each videos. On such graph, the problem of missing and
noisy people labels originally associated with videos can be
remedied by propagating weighted names from neighboring
clusters. In addition, the representative faces selected by
affinity propagation in generating face clusters are used to
reduce efficiently the computation during face matching. The
representative faces also provide robust face matching results.
Considering the issue of scalability in graph construction,
we apply some hash-based methods which dramatically save
computation time and make this approach more applicable
for large scale searches. Moreover, a people disambiguation
process is applied to fix the ambiguity problem when several
people share a same name. This process allows user to easily
browse video segments for different people even they have
same name.

In summary, comparing to past works for people search in
videos, our method presents the following differences :

• The largest and noisiest dataset. Total duration of all
videos is more than 250 hours. All videos are collected
from user-contributed video websites which makes it the
noisiest dataset.

• Transcript information is not available. The only text
information used is the sparse and erroneous text attached
to video, rather than the complete transcripts with abun-
dant temporal information as in other works.

• Proposing to associate people faces and names across
multiple videos. The association could be used to correct
the poor labels attached with other videos.

• Applying hash-methods to reduce the computation time.
It allows our method to apply on large scale dataset.

• Fixing the ambiguity problem that several people share a
same name by applying a people disambiguation process.

III. NAME PROPAGATION ON FACE GRAPH

Figure 3 shows the steps of our name propagation method.
After collecting videos from web, we detect the frontal faces
and extract candidate names associated with the videos. For
each video, a local clustering process is applied to cluster the
duplicate and near-duplicate faces. Extracted people names for
the video are assigned to the local clusters as initial people
labels. Then we construct a similarity graph for all videos. The
nodes represent local face clusters and the weights of edges
between nodes are measured with the similarities between

Fig. 4. Face processing steps to extract candidate frontal faces. Faces are
detected from videos. Then ASM [19] is applied to remove faces without
apparent facial features. Selected faces are aligned at the same eye level.
Color histograms of the left and right sides of face are compared to choose
symmetrical faces. The remaining faces are processed in gray with histogram
equalization in order to further extract the LBP features.

clusters. Once the graph is constructed, finally, the name
propagation algorithm is applied to compute the likelihood
of people names for clusters by propagating names weighted
by cluster similarities from neighboring clusters. Note that the
above steps are totally unsupervised. In the following sections
we will describe the details.

A. Frontal Face Feature and Name Extraction

As Figure 3 shows, we apply a sequence of procedures
to detect the (frontal) candidate faces for matching. It is
reasonable since all detected faces in videos might be vary
from poses and lighting, which make them cannot be used for
matching easily. First, we adopt the Adaboost-like algorithm
for every 5 frames for face detection. We remove non-frontal
faces in order to improve the matching quality between face
images. Second, we apply active shape model (ASM) [19] to
every possible faces and therefore filter out faces which can
not be correctly located facial features. ASM is a statistical
model widely used to localize facial feature points (e.g., eyes,
mouths, etc.). Leveraging the facial feature points extracted
by ASM, we can rectify the faces by rotating the faces
horizontally. Third, we align the faces at the same eye level
and resize these faces in 144x144 pixels. Fourth, we compare
the color histograms of the left and right sides for each face
to further remove the faces that are not symmetric. Finally,
we normalize the rectified and aligned faces by the process
of histogram equalization to ease the light variation in further
feature extraction.

To represent a face, we use the local binary pattern (LBP)
[9] feature. LBP is an efficient and effective face feature
widely used in face classification. Although there are other
features which perform better than LBP, most of them require
longer computation time to extract. Because the face feature
is not the issue we want to address in this work, we simply
choose LBP for its efficiency and effectiveness. Every face
image in our dataset is represented as a LBP feature vector of
4860 dimension.

Due to the absence of complete transcripts in videos, the
typical name-entity detection could not be applied for name
extration. Thus we collect names of celebrities from [20] [21]
and build a name collection. The candidates of people names
for each video then are simply extracted by matching attached
text of video with the name collection.

����	 Face track

Fig. 1. Illustration of the proposed method. (a) The sheer amount of videos
is available nowadays and millions of faces can be detected and tracked in the
videos. (b) We aim to efficiently retrieve face tracks extracted from videos as
the query and the target large-scale collections. In our work, each face track
is represented by a bag-of-faces sparse representation – exploiting temporal
redundancy in the videos. Non-zero entries of the sparse representation are
then used as codewords for building inverted index and enabling scalable and
effective retrieval in large-scale data.

easily work with current index frameworks, which are essential
as witnessing the exponential growth of the video collections.

To overcome this problem, we propose a novel coding
method to encode the bag of faces into a single sparse repre-
sentation. As shown in Figure 1, each bag of faces is repre-
sented by a sparse representation, using the non-zero entries in
the sparse representation as discrete codewords, inverted index
is built with millions of faces extracted from videos and can
enable scalable retrieval over large-scale database. To improve
the retrieval performance, we further generalize the proposed
coding method to find multiple sparse representations which
might accommodate possible face variations in the bag of faces
and further balance the trade-off between performance and
retrieval time.

In order to evaluate the performance of the proposed meth-
ods, we conduct extensive experiments on two real-world
datasets. One of the datasets is constructed from TRECVid
[7] videos during 2004 to 2006; another dataset is constructed
from a Japanese news program “NHKnews7” during 2001
to 2011. These datasets contain faces in unconstrained envi-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

ronments 1 and are really challenging for content-based face
retrieval. In the experiments we show that the proposed method
can achieve significant performance gains over the prior state-
of-the-art face recognition methods for face tracks or image
sets while maintaining an highly scalable structure.

To sum up, our contributions include:
• We propose an novel coding method to encode the face

track as a bag-of-faces sparse representation to solve face
track retrieval problem in large-scale videos.

• We generalize the proposed coding method to enable
multiple sparse representations for bag of faces, accom-
modate possible face variations, and balance the trade-off
between performance and retrieval time.

• We conduct extensive experiments by the proposed meth-
ods on two face track datasets constructed from real-
world videos and compare the results with state-of-the-
art face retrieval methods for image sets. The datasets are
publicly available 2 for future studies on face retrieval in
videos.

II. RELATED WORK

Faces are always the subjects of interest for researchers
because they are close to our daily life. Although studies
on face recognition have shown promising on datasets in
controlled environments, performance on real-world datasets
is still unsatisfactory because face appearances have large
variations in pose, expression, illumination, etc.

To overcome this issue, recently many studies focus on face
recognition from sets of images. Instead of recognizing people
using single image, they use a set of face images from the
same person for recognition. In [8], X. Liu and T. Chen use
adaptive Hidden Markov Models to model the faces extracted
from the videos. In [9], Lee et al. use probabilistic appearance
manifolds to model the faces. Some studies represent a set of
images as a parametric distribution function such as Gaussian
[10] or Gaussian Mixture Model [11] and use KL-Divergence
to measure the distance between two sets. Some other studies
use linear subspace [2], [12], [13] or mixture of linear subspace
[14], [15] to represent a set of faces and use principal angles
[16] to measure the distance between the two subspaces. In [4],
Satoh proposes to use minimum distances between samples
in two sets as the set distance; a similar idea is adopted by
Cevikalp and Triggs [1], but instead of directly using samples
in the set, they model the image set using an affine hull
and find the closest points in the affine hull by solving a
convex optimization problem. Hu et al. [17] further propose
to find sparse approximated nearest point distance between
points in affine hull to improve the performance. Although
many effective methods are proposed to compute distance
between two set of face images, they all ignore the scalability
issues including (1) retrieval efficiency (by linear search versus
by indexing), (2) the memory consumption (dense features
versus sparse features), (3) similarity measurement (real values

1Unconstrained environments mean that the wild photos are taken in real
life where the parameter settings of environment, e.g., lighting, angle, position,
are unconstrained.

2http://satoh-lab.ex.nii.ac.jp/users/ndthanh/NIIFacetrackDatasets/

versus binary values), which should be considered to meet the
scalability requirements of online large-scale retrieval system.
Therefore, these methods can not be directly applied for face
track retrieval in videos as the dataset grows.

Recently, some studies are trying to solve content-based face
image retrieval problem. In [18], Wu et al. propose an identity-
based quantization method for large-scale face image retrieval.
Theodorakopoulos et al. [19] propose local sparse coding to
represent a face by patch-based overcomplete dictionaries and
to express pairwise similarities between faces. Chen et al.
[20] propose to use sparse coding with identity constraints
to improve the retrieval performance. Motivated by these
methods, we propose to use bag-of-faces sparse representation
to represent a face track extracted from the video. A face
track is represented by a single sparse representation using
the proposed method, and therefore efficient indexing method
(i.e. inverted indexing) can be directly applied on large-scale
dataset for real-time face track retrieval in large-scale videos.

III. SYSTEM OVERVIEW

We first use the face tracking method proposed in [21] to
track faces in the videos, faces in the same track are grouped
as a bag of faces. For each face in one bag, we apply facial
landmark detection and extracted 149 dimension pixel-wise
features at 13 different landmark locations to describe the
faces as in [3]. Methods described in Section IV are then
used to encode each bag of faces into one or more sparse
representations. Inverted indexing is then built using non-
zero entries in sparse representations as codewords for better
performance and efficiency in retrieval [22], [23]. The system
diagram is illustrated in Figure 2.

IV. PROPOSED METHOD

For construction of face tracks, we take temporal informa-
tion to extract faces shown in consecutive video frames. Note
that, within a track, we do not consider their temporal orders
because faces of a person in different tracks comprise different
expressions and motion, which have no exact correspondences
between their temporal orders. In the following subsections,
we first describe how to find sparse representation of a single
(face) image using sparse coding. Secondly, we describe
how we generalize sparse coding framework to find sparse
representation of a bag of faces. Finally, we describe how
to improve retrieval performance by using multiple sparse
representations for a bag of faces when the bag of faces
contains large variations.

A. Sparse representation for single face image (SR)

Sparse representation has been proved very effective for
face related work. Wright et al. [24] propose to use sparse
representation for face recognition and achieve state-of-the-
art performance. In [20], Chen et al. propose to use sparse
representation of image patch as codewords for face image
retrieval and demonstrated its effectiveness over prior common
features in two open benchmarks. Here we show how to
derive the sparse representation of a single face image for face
image retrieval as shown in Figure 2(a). Let p be the number

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

(a) SR (b) BoF-SR

(c) MBoF-SR

Face image

Image patches

Patch-level
codewords

Final sparse
representation

Bag of faces

Bag of patches at
different facial landmarks

Landmark-level
codewords

Final bag-of-faces
sparse representation

Bag of faces

Multiple bags of patches
at different facial landmarks

Landmark-level
multiple codewords

Final multiple bag-of-faces
sparse representation

V(p)

V(1)

m

m

Fig. 2. (a) Using sparse coding for face retrieval with still image. Several patches are extracted from a face image at different facial landmarks (e.g.,
eyes corners, nose tips, mouth corners, etc.). For each patch, a sparse representation v(i) is found using Equation (1). All sparse representations are then
concatenated together to form the final sparse representation to describe the face image. (b) The proposed bag-of-faces sparse representation method for face
tracks. Patches extracted from the same facial landmark in bag of faces (from the same face track) are grouped together as a bag of patches and are used
to find a sparse representation by Equation (2). Sparse representations at different locations are then concatenated together to form the final representation
for the bag of faces. (c) Because the bag might contain faces with large variations, multiple sparse representations (indexed by m) are computed based on
Algorithm 1 at each facial landmark. For instance, two sparse representations can be found to represent the bag of faces at the mouth location; in an automatic
and approximate manner, one is used to represent faces in the bag with mouth closed and the other is with mouth opened. All sparse representations are
aggregated together to represent the bag of faces. Equation (6) is then adopted to compute the distance between two bags (i.e., face tracks). Note that the
sparse codewords can be indexed to facilitate large-scale face retrieval in video archives.

of landmark location in faces. Given a set of p dictionaries
used to encode the p image patches and 149-dimensional
pixel-wise features extracted from these patches, we find a
sparse representation for each patch by solving the following
optimization problem:

minimize
v(1)...v(p)

p∑
i=1

(||x(i) −D(i)v(i)||
2

2 + λ||v(i)||1), (1)

where p is the total number of patches in the face image,
x(i) is the feature vector extracted from patch at location i
(e.g., left eye and nose) of the image, D(i) ∈ Rd×k is a
dictionary contains k codewords with d dimensions and is
used to encode the patch extracted from location i of the
face. v(1), v(2), . . . , v(p) are the sparse representations of the
image patches from location 1, 2, . . . , p respectively. Since the
objective function is convex over D(i) while v(i) is fixed and
vice versa. We solve the optimization problem by iteratively
minimizing D(i) and v(i) by an efficient online algorithm [25].
Using sparse coding, a patch feature is encoded as a sparse
linear combination of the column vectors of the dictionary.
After the sparse representations are found, each non-zero
entries of v(i) is considered as a codeword of the image for
inverted indexing; note that the positive and negative value are
consider as different codewords and the dimension of v(i) is
k, therefore the size of the vocabulary (number of different
codewords) is 2 × p × k. The above problem is a set of

unconstrained L1-regularized least square problem which can
be solved efficiently using many different algorithms such as
LARS [26].

B. Bag-of-faces sparse representation (BoF-SR)

For bags of faces, because number of faces is different in
each bag, instead of finding a sparse representation for each
patch, we propose to aggregate all the patches extracted from
the same location and find a sparse representation for each
bag-of-patches at certain location as shown in Figure 2(b). To
find the sparse representation at each location, we solve the
following optimization problem generalize from Equation (1):

minimize
v(1)...v(p)

p∑
i=1

(
1

n

n∑
j=1

||x(i)j −D
(i)v(i)||

2

2
+ λ||v(i)||1),

(2)
where n is the number of faces in the bag, x(i)j is the feature
extracted from jth face at location i. By solving the above
optimization problem, x(i)1 , x

(i)
2 , . . . , x

(i)
n are represented by

a single sparse representation v(i) where v(i) minimize the
average of reconstruction error for all patches at location i in
the bag. The idea is to find a best sparse representation v(i) to
encode all the patches at certain location in the bag of faces.
Each v(i) in the above problem can be solved separately with
an unconstrained L1-regularized sum of least square problem,
which can be viewed as a larger L1-regularized least square

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

��� ���

Fig. 3. Two examples of bag of faces that are hard to represent by single
sparse representation. (a) The bag of faces contains two facial expressions
– looking at the camera and looking at the script. (b) The bag of faces
contains some noises due to possible tracking errors. In these cases, using
multiple bag-of-faces sparse representations (i.e., codebooks) can achieve
better performance.

problem and can also be solved with LARS algorithm [26].
Note that when there is only one face in the bag, the above
problem is reduced to Equation (1). The size of the vocabulary
for a bag of faces is the same as the case in single image, and
the size of database is reduced from millions of faces to tens
of thousands of bags. Therefore, we can achieve very efficient
online retrieval response.

C. Multiple sparse representations for bag of faces (MBoF-
SR)

Using the above method, we can find a sparse representation
of each bag of faces and achieve efficient retrieval speed,
but sometimes a single sparse representation can not well
characterize all the patches at a single location. Figure 3 shows
two failure cases. Figure 3 (a) is a bag of faces extracted from
a news video with a person in speech. There are two types
of expressions in the bag of faces, one is when the person is
looking at the camera, the other is when she is looking at the
scripts. Figure 3 (b) is another bag of faces containing the same
person; in the bag of faces, some of the faces are noisy due to
face tracking errors. In these two cases, some patches extracted
at the same facial landmark are quite different, therefore, we
propose to use multiple sparse representations to represent
the bag of faces where each sparse representation is used to
represent a subset of the patches in the bag of patches at certain
landmark location as shown in Figure 2 (c). We formulate this
into the following optimization problem:

minimize
V (i),S(i),∀i

p∑
i=1

(
1

n

n∑
j=1

||x(i)j −D
(i)V (i)s

(i)
j ||

2

2

+ λ
m∑

k=1

||v(i)k ||1)

subject to ||s(i)j ||0 = 1, ||s(i)j ||1 = 1, s
(i)
j ≥ 0,∀i, j,

(3)

where V (i) = [v
(i)
1 , v

(i)
2 , . . . , v

(i)
m] are m sparse representations

for patches at location i, S(i) = [s
(i)
1 , s

(i)
2 , . . . , s

(i)
n], and

s
(i)
j ∈ {0, 1}m is a zero-one vector indicating which column

of V (i) is used to represent x(i)j . For instance, if s(i)j = e2
3,

then V (i)s
(i)
j = v

(i)
2 ; therefore, x(i)j is reconstructed by

D(i)v
(i)
2 . The idea is to find multiple sparse representations

and each of the representation can represent a subset of
patches in the bag of patches that contains large variations. By
minimizing the above objective function, we simultaneously
find multiple sparse representations for bag-of-patches at each
location (V (i)) and decide the sparse representations are used
to represent which patches (S(i)).

The above problem is not convex because the feasible set
(i.e. the set contains all the possible solution that satisfy the
constraints in the problem) is not convex; therefore it is hard
to find optimal solution of this problem. Here we propose an
algorithm to find a suboptimal solution by iterative minimize
V (i) and S(i).

When S(i) is fixed in the Equation (3), we can find each col-
umn of V (i) separately by solving the following unconstrained
convex optimization problem:

minimize
v
(i)
j

1

n

∑
k,∀s(i)k =ej

||x(i)k −D
(i)v

(i)
j ||

2

2
+ λ||v(i)j ||1,

(4)
when V (i) is fixed, we can find each s

(i)
j by solving the

following optimization problem:

minimize
s
(i)
j

||x(i)j −D
(i)V (i)s

(i)
j ||

2

2

subject to ||s(i)j ||0 = 1, ||s(i)j ||1 = 1, s
(i)
j ≥ 0.

(5)

The size of feasible set in Equation (5) is only m; therefore,
we can solve it by simply trying all possible value for s(i)j .
The algorithm for solving Equation (3) is summarized in
Algorithm 1. In each iteration, we alternatively divide the bag
of patches at each location into different subset using S(i)

and find the suitable sparse representation for each subset of
patches. The algorithm will converge because in each iteration
the objective function in Equation (3) will decrease and there
is only a finite set of possible S(i). Note that although the
algorithm will converge, it does not guarantee to find the
optimal solution, and the result depends on the initial value
of S(i), but we find that in practice we can usually find a
good set of sparse representations for the bag of faces and
will converge in several iterations.

After the above procedure, each bag is represented by
p sets of sparse representations, B1 = {V (1)

1 , . . . V
(p)
1 },

B2 = {V (1)
2 , . . . V

(p)
2 }, the similarity between two bags is

then defined as follow:

S(B1, B2) =

p∑
i=1

max
j,k

c(v
(i)
1,j , v

(i)
2,k), (6)

where c(a, b) indicates the number of overlapping codewords
between two sparse vectors,

c(a, b) = ||max((a ◦ b),0)||0, (7)

“◦” denote the element-wise multiplication between two vec-
tors. Note that using Equation (7), only coding value with the

3Here ei is a m dimensional vector with all zeros except ith dimension is
one as defined in most linear algebra literature.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

same sign will be considered as the same codewords. That
is, we consider coding value with different signs as different
codewords. By considering the sign of coding values, we
effectively get sparse representation with 2 × k dimensions.
It can be viewed as sparse coding using a larger dictionary
[−D D] with 2×k entries. Equation (6) computes the sum of
maximum number of overlapping codewords at each location
between two bags of faces.

To efficiently compute the similarity measure in Equa-
tion (6), we use a modified version of inverted index. For
each entry in inverted list, we maintain a Bag-ID that denotes
which bag this codeword belongs to, and a Representation-ID,
ranging from 1 to m, denotes which sparse representation of
the bag this codeword comes from. For each sparse representa-
tion in query face track, we retrieve the index and compute the
number of overlapping codewords between query and every
sparse representation in the index and will derive m different
scores for each Bag-ID. We keep the best score among these
m scores. After m runs with different sparse representations
in query face track, we can find the maximum number of
overlapping codewords between query sparse representations
and sparse representations in the index. Since the number of
sparse representation is m times more than the case with single
sparse representation, the average length of posting lists in
inverted index is m times longer; therefore, it takes m2 time
to retrieve the index and compute the score.

Algorithm 1 Algorithm for finding sets of sparse representa-
tions
Input: A set of dictionaries D(1), . . . , D(p) ∈ Rd×k; fea-

tures extracted from the bag of faces at each location
X(1), . . . , X(p) ∈ Rd×n;n (the size of the input bag of
faces); m (the number of output sparse representations)

Output: A set of sparse representations for each location
V (1), . . . , V (p) ∈ Rk×m;

1: for i = 1 to p do
2: Randomly choose S(i) that satisfy the constraint in

Equation (3)
3: repeat
4: for j = 1 to m do
5: Solving Equation (4) using LARS algorithm
6: end for
7: for j = 1 to n do
8: Solving Equation (5) by trying all elements in

feasible set
9: end for

10: until converge
11: end for

V. EXPERIMENTS

A. Dataset

We use two different datasets to evaluate our system. The
first one is extracted from TRECVid [7] news videos during
2004 to 2006. Around 20 millions faces are detected from
the videos; the detected faces are then tracked and grouped
as around 157K bags of faces. As reported in Table I, 1,497

TABLE I
THE STATISTICS OF EXPERIMENTAL DATASETS – TRECVID AND NHK

NEWS VIDEOS; THE DETAILS ARE EXPLAINED IN SECTION V-A.

Datasets Annotated Tracks Faces Identities
TRECVid 1,497 405K 41
NHKnews7 5,567 1.25M 111

bags of faces with 405K faces from 41 well known people are
annotated for evaluation. The second one is extracted from a
news program broadcast in Japan “NHK news7” during 2001
to 2011. 5,567 bags of faces with 1.25 million faces from 111
people are annotated for evaluation. To our best knowledge,
this dataset is one of the largest datasets available for face track
retrieval task and is really challenging because it contains not
only variations from illumination, pose, expression variation
but also biological variations between faces of the same person
due to long time period. Throughout the experiments for
each dataset, in a leave-one-out manner, each bag of faces is
alternatively used as query while remaining bags are used as
database for computing the average precision. Mean average
precision (MAP), which is a common measurement adopted
in many literatures for retrieval task, is then computed for all
queries.

B. Compared algorithms

We compare our methods to several state-of-the-art methods
in the experiments including:
• SR: patch-level sparse representation from a single image

as shown in Figure 2 (a) [20]. We simply pick the first
face in the bag to represent the bag of faces. This baseline
is used to illustrate the effectiveness of the bag-of-faces
representation.

• MSM: mutual subspace method proposed in [2]. We first
use PCA to find subspace bases and use the average of
top ten canonical correlations for computing distance.

• Min-Min: minimum distance between samples from two
sets as proposed in [4]. We use one minus cosine simi-
larity as our distance measure.

• AHISD: affine hull image set distance proposed in [1].
• CHISD: convex hull image set distance proposed in [1].

For both AHISD and CHISD, we use the linear version
and retain 98% energy by PCA. For CHISD, we set C =
100 for SVM training as in [1].

• BoF-SR: bag-of-faces sparse representation proposed in
this paper.

• MBoF-SR: multiple bag-of-faces sparse representation
proposed in this paper.

Note that we use the same pixel-wise feature extracted from
13 different facial landmarks for all the above methods. For
SR, BoF-SR and MBoF-SR, we use random samples from
NHKnews7 dataset as our dictionary entries. The advantage
for using random sampling is the time efficiency to construct
dictionaries of large size, which is a major superiority in repre-
senting large-scale visual data. In terms of representativeness,
Coates and Ng [27] found that using randomly sampled image
patches as dictionary can achieve similar performance as that

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

by using learned dictionary (< 2.7% relative improvement in
their experiments) if the sampled patches provide a set of over-
complete basis that can represent input data. Therefore, in the
experiments, we adopt random sampling to efficiently obtain a
large dictionary to meet the needs of representing large-scale
video data.

For MSM, Min-Min, AHISD and CHISD, we use linear
search to derive ranking results, since these methods cannot
well work with current indexing frameworks; for SR, BoF-
SR and MBoF-SR, we use inverted indexing. For AHISD and
CHISD, we use the MATLAB implementation provided by the
author of [1], other methods (MSM, SR, BoF-SR, MBoF-SR)
are carefully implemented in MATLAB; inverted indexing is
implemented with C++. All the experiments operate on a 2.4
GHz Intel Xeon server.

C. Evaluation of the proposed methods

Table II shows the performance of the proposed methods
compared to other state-of-the-art methods. In BoF-SR and
MBoF-SR, we use λ = 0.125 and k = 1000. In MBoF-SR,
we use eight sparse representations to represent the bag of
faces (m = 8); discussions on the parameters will be shown
in the following sections. SR performs much worse than other
methods because it only uses single face image. Therefore, we
can see that using bag of faces can really help the performance
since it exploits more information. Among all other methods,
Min-Min shows salient performance but it takes a long time
for retrieval and, therefore, are not applicable for large-scale
data. Note that AHISD performs worse than other baseline
methods, it is because when size of the bags is big, affine hull
representation might be too strong and every affine hull in the
dataset is really close to each other in the feature space.

Using BoF-SR we can achieve 8% absolute improvement
compared to other state-of-the-art methods on Trecvid dataset
and 8.6% improvement on NHKnews7 dataset while having
the fastest online retrieval time (0.01s on Trecvid dataset).
MBoF-SR can further improve the performance by 2.5% on
Trecvid dataset and 5.2% on NHKnews7 dataset and still have
a reasonable online retrieval time. Table II also shows the
top rank precision (P@10) of all the methods. The proposed
methods can achieve not only the best MAP compared to
other methods but also best P@10 on both datasets. Note
that the time shows in the Table II only contains the online
retrieval time and does not include the time for face tracking,
feature extraction and computing representation for bag of
faces because the time is independent with the size of the
datasets.

For MSM, Min-Min, AHSID and CHISD, we need to
use linear search to derive the ranking results; therefore,
the retrieval time is linear to the dataset size. On the other
hand, SR, BoF-SR, MBoF-SR can achieve sub-linear retrieval
time by using inverted indexing. For AHISD and CHISD, the
retrieval time on NHKnews7 is too long. For a single query, it
takes more than 1,000 seconds to finish. To evaluate all 5,567

4Because the features used in [28] (Local Binary Pattern) are different
from those in this work (pixel-wise features), the results of MSM are slightly
different.

queries in the dataset, it will take more than two months to
finish; therefore, we do not show the performance here.

D. Impact of the parameters in BoF-SR

Figure 4 shows the performance of BoF-SR using different
parameters on two datasets. We run experiments with λ from
0.125 to 4, k from 200 to 1000 on both datasets. We find that
when k is too small (green line with cross in Figure 4) the
performance is worse because the dictionary does not have
enough discriminative capability to represent the bag of faces.
When dictionary is large enough, the performance is similar
regardless the size of the dictionary. The performance is better
when λ is small, because more (denser) codewords are used
to represent the bag of faces. However, the performance tends
to saturate when λ is too small because the sparsity of the
representations tends to stay the same. Note that there is a
trade-off between performance and retrieval time, when λ is
large, the number of codewords will drop because the sparsity
of the representations increase, therefore, the retrieval time
is faster. Throughout the following experiments, we set λ =
0.125 and k = 1000 for both BoF-SR and MBoF-SR on both
datasets.

E. Number of sparse representations in MBoF-SR

In Figure 5, we show the performance and retrieval time
on MBoF-SR using different m. When m increases, the
performance on both datasets increases; it evidences the ef-
fectiveness of the proposed MBoF-SR. When there are more
sparse representations used to represent the bag of faces, it
can be described better. The retrieval time required by MBoF-
SR is m2 times compared to BoF-SR, so when m increases,
retrieval time also increases. Nevertheless, when m is small,
the retrieval time increases slowly while the performance gains
more significantly; therefore, we can choose a small m to
achieve better performance with a reasonable retrieval time.

F. Size of the bag

We also conduct experiments by varying bag sizes (i.e.,
numbers of faces per bag). Table III shows the MAP perfor-
mance on Trecvid dataset with different bag sizes. We take first
n faces from the bag of faces to compute the result. If the total
number of faces is smaller than n, all faces are used for the
experiments. We gain more performance gains as increasing
the bag size since more redundancies in faces can be exploited.
However, the proposed methods consistently have the best
performance for all different sizes. Performance on AHISD
and CHISD drops when using all the images in the bags. This
is probably because when size of the bag is huge, affine hull
or convex hull representation is too strong and most of the
bags become really close to each other in the feature space and
thus lacks discriminative capability. Also note that the retrieval
time required by the proposed methods (BoF-SR, MBoF-
SR) does not change much while it increases dramatically
when using Min-Min, AHISD and CHISD. The scalability and
effectiveness are both ensured in the proposed methods. The
example retrieval results by the proposed MBoF-SR are shown

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

TABLE II
COMPARISONS WITH DIFFERENT METHODS ON THE TWO VIDEO DATASETS. USING SINGLE FACE OBTAIN WORSE PERFORMANCE COMPARED WITH
THOSE USING A BAG OF FACES BECAUSE THE LATTER CONTAINS MORE VISUAL CUES. THE PROPOSED METHODS (BOF-SR, MBOF-SR) ACHIEVE

BETTER PERFORMANCE IN TERMS OF MAP AND P@10 COMPARED WITH ALL OTHER PRIOR METHODS FOR MEASURING SIMILARITIES BETWEEN BAGS
OF FACES. THE PROPOSED METHODS ALSO CONSUME MUCH LESS TIME FOR RETRIEVAL. NOTE THAT ALL OTHER METHODS (MSM, MIN-MIN, AHISD

AND CHISD) REQUIRE LINEAR SEARCH TO DERIVE RANKING RESULTS AND THEREFORE THE (AVERAGE) RETRIEVAL TIME (PER QUERY) GROWS
LINEARLY WITH THE SIZE OF DATASET; METHODS USING SPARSE REPRESENTATIONS (SR, BOF-SR AND MBOF-SR) BENEFIT FROM INVERTED

INDEXING AND CAN ACHIEVE SIGNIFICANT RETRIEVAL EFFICIENCY.

Dataset/Methods Trecvid NHKnews7
MAP P@10 Time (s) MAP P@10 Time (s)

SR [20] 49.8% 74.5% 0.01 22.5% 63.5% 0.03
MSM4[2] 72.3% 86.6% 0.83 56.3% 87.2% 2.84
Min-Min [4] 75.9% 88.0% 128 59.8% 91.3% 342
AHISD [1] 55.6% 73.9% 347 – – est. 1041
CHISD [1] 67.6% 83.8% 639 – – est. 1917
BoF-SR 83.9% 91.3% 0.01 68.4% 94.7% 0.03
MBoF-SR (m = 8) 86.4% 92.4% 0.59 73.6% 95.5% 1.59

0.75%

0.76%

0.77%

0.78%

0.79%

0.8%

0.81%

0.82%

0.83%

0.84%

0.125%0.25%0.5%1%2%4%

MAP$

λ$�

k=1000%
k=800%
k=600%
k=400%
k=200%

0.59%
0.6%

0.61%
0.62%
0.63%
0.64%
0.65%
0.66%
0.67%
0.68%
0.69%
0.7%

0.125%0.25%0.5%1%2%4%

MAP$

λ$�

k=1000%
k=800%
k=600%
k=400%
k=200%

(a) Trecvid (b) NHKnews7

λ λ

Fig. 4. The performance of the proposed BoF-SR with different parameters on the two datasets. When the size of the dictionary is too small (e.g., k = 200),
the performance on the both datasets becomes worse due to limited discriminative capability. When λ (in Equation 4) decreases, the accuracy (MAP) improves
on the both datasets because more codewords are used to represent the bag of faces. There is a trade-off between performance and retrieval time; more
codewords will affect the retrieval efficiency. Note that, for these parameterizing setups, the proposed methods still outperform the prior state-of-the-art
methods.

TABLE III
THE COMPARISONS (ACCURACY AND EFFICIENCY) WITH DIFFERENT PRIOR METHODS WITH VARYING BAG SIZE (NUMBER OF FACES) ON TRECVID

DATASET. NUMBERS IN THE PARENTHESES ARE THE AVERAGE RETRIEVAL TIME (IN SECOND AND PER QUERY). WHEN THE BAG SIZE IS SMALL, THE
PERFORMANCE OF ALL METHODS DROPS BECAUSE FEW FACE CUES ARE EXPLOITED. HOWEVER, THE PROPOSED METHODS CONSISTENTLY ACHIEVE

THE BEST PERFORMANCE WITH ALL DIFFERENT BAG SIZES. NOTE THAT THE RETRIEVAL TIME FOR MIN-MIN, AHISD AND CHISD INCREASES WITH
THE SIZE OF THE BAGS AND IS NOT FEASIBLE FOR LARGE-SCALE VIDEO ARCHIVES. ON THE OTHER HAND, THE RETRIEVAL TIME FOR THE PROPOSED

METHODS DO NOT CHANGE MUCH WITH THE BAG SIZE.

Bag Size/Methods MSM [2] Min-Min [4] AHISD [1] CHISD [1] BoF-SR MBoF-SR
25 66.0% (0.86s) 69.6% (11.1s) 68.5% (12.3s) 68.1% (13.5s) 76.9% (0.01s) 80.5% (0.28s)
50 69.7% (0.87s) 72.9% (21.3s) 70.3% (35.5s) 70.4% (33.4s) 79.9% (0.01s) 83.2% (0.29s)
100 71.4% (0.98s) 75.3% (41.4s) 70.8% (76.5s) 71.7% (64.9s) 82.0% (0.01s) 85.0% (0.30s)
All 72.3% (0.83s) 75.9% (128s) 55.6% (347s) 67.6% (639s) 83.9% (0.01s) 86.4% (0.59s)

in Figure 7. A query bag ((a) or (b)) usually carries diverse face
appearances of the same person with apparent visual variations
in poses, facial expressions, etc. The proposed MBoF-SR
can comprehensively depict these intra-class variations, e.g.,
varied poses in query (a) and different facial expressions
in query (b), by multiple sparse representations and further
improve the retrieval accuracy compared to retrieval by single
representation (cf. Table II).

G. Time of Encoding Face Track

TABLE IV
THE TIME FOR ENCODING A FACE TRACK WITH A VARYING NUMBER OF

MULTIPLE SPARSE REPRESENTATIONS. M INDICATES THE NUMBER OF
SPARSE REPRESENTATIONS AND TIME IS MEASURED BY SECONDS.

m 1 (BoF-SC) 2 3 4 5 6 7 8
Time 1.1 5.8 14.1 17.5 24.4 28.4 35.3 36.8

Table IV shows the average encoding time required by
MBoF-SC with different m (the number of sparse representa-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 8

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.82"

0.83"

0.84"

0.85"

0.86"

0.87"

1" 2" 3" 4" 5" 6" 7" 8"

Second'

MAP�

m�

MAP"
Time"

(a) Trecvid
m

M
AP

Ti
m
e(
(s
ec
on

ds
)

0"
0.2"
0.4"
0.6"
0.8"
1"
1.2"
1.4"
1.6"
1.8"

0.65"
0.66"
0.67"
0.68"
0.69"
0.7"

0.71"
0.72"
0.73"
0.74"
0.75"

1" 2" 3" 4" 5" 6" 7" 8"

Second'

MAP�

m�

MAP"
Time"

(b) NHKnews7
m

M
AP

Ti
m
e(
(s
ec
on

ds
)

Fig. 5. The performance and retrieval time of the proposed MBoF-SR with different number of sparse representation models (m) for the bag of faces on the
two datasets. Using MBoF-SR, we can achieve 2.5% and 5.2% absolute improvements in MAP respectively. When m is large, more sparse representations
are considered and can better describe the bag of faces, however, with the cost of more retrieval time. When m is small (e.g., 2), the retrieval time is small
but still brings significant improvement. m equals 2 or 3 might be a reasonable setup for balancing retrieval accuracy and efficiency for large-scale video
archives.

TABLE V
THE ENCODING TIME WITH DIFFERENT BAG SIZES. THE ENCODING TIME

INCREASES BECAUSE MORE ITERATIONS ARE REQUIRED FOR MEASURING
THE CODEWORD RESPONSES; HOWEVER, THIS IS STILL ACCEPTABLE IN

THE APPLICATION SCENARIO BECAUSE ENCODING CAN BE PROCESSED IN
THE OFF-LINE STAGE.

bag size 25 50 100 full
Time 13.6 18.9 25.1 36.8

tions), and Table V shows the encoding time with different
bag sizes as m = 8 and sparse representations are used.
With either m or the bag size increases, the encoding time
increases because more iterations are required for measuring
the codeword responses. This is acceptable in the application
scenario because encoding can be processed in the off-line
stage. Note that m = 1 yields the results of BoF-SC.

H. Effect of dictionary construction

Figure 6 shows the comparisons between retrieval perfor-
mance on Trecvid dataset using randomly sampled dictionary
and learned dictionary with different dictionary size k by
BoF-SR. For randomly sampled dictionary, we sample k face
features from NHKnews7 dataset as dictionary entries. For
learned dictionary, we sample 10, 000 face features from
NHKnews7 dataset and use online dictionary learning algo-
rithm in [25] to train our dictionary. As shown in Figure 6,
when the dictionary size is small (e.g., k = 200), using
the learned dictionary achieves better performance; this is
because the learned dictionary is optimized to approximate
the data. However, when dictionary size becomes larger, using
randomly sampled dictionary can achieve similar performance
as the learned one. This suggests that when dictionary size
is large enough, randomly sampled dictionary can sufficiently
represent the input data. The similar results can be found in
[27].

!"#$

!"#%$

!"#&$

!"#'$

!"#($

!"#)$

&!!$ (!!$ *!!$ #!!$ %!!!$

+,-!

.!

/01234$56783109:$

;<091<2$56783109:$

Fig. 6. Retrieval performance of Trecvid dataset using different dictionaries.
When dictionary size is small (e.g., k = 200), using learned dictionary
achieves better performance. However, when dictionary becomes larger, the
randomly sampled dictionary can achieve similar performance as the learned
one.

VI. CONCLUSIONS

To solve scalable face retrieval problem in large-scale video
archives, we propose a effective and efficient method – bag-
of-faces sparse representation to encode the bag of faces into
discrete codewords. To further improve the performance, we
generalize the bag-of-faces sparse representation to find mul-
tiple sparse representations in an unsupervised and automatic
manner. Using the proposed methods, multiple bag-of-faces
sparse representations and faces are encoded and simultane-
ously obtained by solving an optimization problem. Extensive
experiments on two real-world datasets show that the proposed
methods can not only achieve significant performance over
the prior state-of-the-art methods but also require much less
retrieval time.

REFERENCES

[1] H. Cevikalp and B. Triggs, “Face recognition based on image sets,”
IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[2] O. Yamaguchi, K. Fukui, and K.-I. Maeda, “face recognition using tem-
poral image sequence,” International Symposium of Robotics Research,
1998.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

Query bag of faces Retrieval results

1 2 3 4 5 6 7

1 2 3 4 5 6 7

(a)

(b)

Fig. 7. Example retrieval results from Trecvid dataset (a) and from NHKnews7 dataset (b) using the proposed method MBoF-SR. Query bags of faces carry
more diverse face appearances of the same identity because of the visual variations in pose, facial expression, lighting, etc. MBoF-SR can comprehensively
depict these intra-class variations, e.g., varied poses in query (a) and different facial expressions in query (b), by multiple sparse representations and further
improve the retrieval accuracy compared to retrieval by single representation (cf. Table II).

[3] M. Everingham, J. Sivic, and A. Zisserman, “”hello! my name is ...
buffy” automatic naming of characters in tv video,” British Machine
Vision Conference, 2006.

[4] S. Satoh, “Comparative evaluation of face sequence matching for
content-based video access,” IEEE International Conference on Auto-
matic Face and Gesture Recognition, 2000.

[5] T. N. Nguyen, T. D. Ngo, D.-D. Le, S. Satoh, B. H. Le, and D. A.
Duong, “An efficient method for face retrieval from large video datasets,”
International Conference on Image and Video Retrieval, 2010.

[6] J. Sivic, M. Everingham, and A. Zisserman, “Person spotting: Video
shot retrieval for face sets,” International Conference on Image and
Video Retrieval, 2005.

[7] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and
trecvid,” ACM International Conference on Multimedia Information
Retrieval, 2006.

[8] X. Liu and T. Chen, “Video-based face recognition using adaptive hidden
markov models,” IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

[9] K.-C. Lee, J. Ho, M.-H. Yang, and D. Kriegman, “Video-based face
recognition using probabilistic appearance manifolds,” IEEE Conference
on Computer Vision and Pattern Recognition, 2003.

[10] G. Shakhnarovich, J. W. Fisher, and T. Darrell, “Face recognition from
long-term observations,” European Conference on Computer Vision,
2002.

[11] O. Arandjelović, G. Shakhnarovich, J. Fisher, R. Cipolla, and T. Darrell,
“Face recognition with image sets using manifold density divergence,”
IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[12] K. Fukui and O. Yamaguchi, “face recognition using multi-viewpoint
patterns for robot vision,” International Symposium of Robotics Re-
search, 2003.

[13] T. Kim, J. Kittler, and R. Cipolla, “Discriminative learning and recog-
nition of image set classes using canonical correlations,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2007.

[14] Ruiping Wang, S. Shan, X. Chen, and W. Gao, “manifold-manifold
distance with application to face recognition based on image set,” IEEE
Conference on Computer Vision and Pattern Recognition, 2008.

[15] R. Wang and X. Chen, “Manifold discriminant analysis,” IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2009.

[16] H. Hotelling, “Relations between two sets of variates,” Biometrika, 1936.
[17] Y. Hu, A. Mian, and R. Owens, “Sparse approximated nearest points

for image set classification,” IEEE Conference on Computer Vision and
Pattern Recognition, 2011.

[18] Z. Wu, Q. Ke, J. Sun, and H.-Y. Shum, “Scalable face image retrieval
with identity-based quantization and multi-reference re-ranking,” IEEE
Conference on Computer Vision and Pattern Recognition, 2010.

[19] I. Theodorakopoulos, I. Rigas, G. Economou, and S. Fotopoulos, “Face
recognition via local sparse coding,” International Conference on Com-
puter Vision, 2011.

[20] B.-C. Chen, Y.-H. Kuo, Y.-Y. Chen, K.-Y. Chu, and W. Hsu, “Semi-
supervised face image retrieval using sparse coding with identity con-
straint,” ACM Multimedia, 2011.

[21] T. D. Ngo, D.-D. Le, S. Satoh, and D. A. Duong, “Robust face tracking
finding in video using tracked points,” Proc. Intl. Conf. on Signal-Image
Technology and Internet-Based Systems, 2008.

[22] Hervé Jégou and Matthijs Douze and Cordelia Schmid, “Packing bag-
of-features,” International Conference on Computer Vision, 2009.

[23] Jun Yang and Yu-Gang Jiang and Alexander G. Hauptmann and Chong-
Wah Ngo, “Evaluating Bag-of-Visual-Words Representations in Scene
Classification,” International Workshop on Multimedia Information Re-
trieval, 2007.

[24] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2009.

[25] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” International Conference on Machine Learning,
2009.

[26] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of statistics, 2004.

[27] Adam Coates and Andrew Ng, “The importance of encoding versus
training with sparse coding and vector quantization,” Proceedings of the
28th International Conference on Machine Learning, 2011.

[28] H. T. Vu, T. D. Ngo, T. N. Nguyen, D.-D. Le, S. Satoh, B. H. Le,
and D. A. Duong, “Fast face sequence matching in large-scale video
databases,” IEEE International Conference on Image Processing, 2011.

