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ABSTRACT
An increasing number of users are contributing the sheer
amount of group photos (e.g., for family, classmates, col-
leagues, etc.) on social media for the purpose of photo shar-
ing and social communication. There arise strong needs for
automatically understanding the group types (e.g., family
vs. classmates) for recommendation services (e.g., recom-
mending a family-friendly restaurant) and even predicting
the pairwise relationships (e.g., mother-child) between the
people in the photo for mining implicit social connections.
Interestingly, we observe that the group photos are com-
posed of atomic subgroups corresponding to certain social
relationships. For this work, we propose a novel framework
to (1) connect faces of different attributes and positions as a
face graph and (2) discover informative subgraphs to repre-
sent social subgroups in group photos. A group photo can be
further represented by a bag-of-face-subgraphs (BoFG) – the
occurring frequency of social subgroups, which is informative
to categorize specific group types or events. We demonstrate
the effectiveness of BoFG in recognizing family photos and
achieve 30.5% relative improvement over the state-of-the-art
low-level features. Moreover, we propose to predict the pair-
wise relationships (e.g., husband-wife) in a face graph by the
co-occurrence information (e.g., co-occurring with a child) in
the mined subgraphs. The experiments demonstrate that
the informative social subgroups significantly outperform
prior work (36% relatively) which considers merely facial
attributes for determining pairwise relationships.
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Couple or Friends?

Siblings or Classmates?

(a)

(b)

(c)

Figure 1: It is difficult to determine the pairwise
relationships, e.g., couple or friends in (a) and sib-
lings or classmates in (b), if the observations are lim-
ited to the pairs only. Interestingly, the ambiguity
greatly decreases when all the faces are considered
simultaneously as shown in (c). The contribution
comes from the contextual cues from all the other
faces. The social links resemble a graph parameter-
ized by facial attributes and topological information.
Therefore, we propose a novel graph representation
to model the potential social subgroups among a
group of people and to predict pairwise relationships
by leveraging atomic subgroups in the group photos.
(Photo courtesy of Spencer Finnley [1].)

1. INTRODUCTION
With the prevalence of capturing devices and photo shar-

ing services, the volume of community-contributed photos
has increased exponentially. Isola et al. [11] pointed out
that the photos containing people are the most memorable,
especially those containing families or friends. The desire of
social communication motivates users to share group photos
on the social media to keep close relationships with others.
In our study from more than 17 million photos collected from
Flickr using the“family”keyword, we found that around 60%
of them contain at least one face. 1

Such freely available media provide a cost-effective way to
obtain demographic information – the statistics for the user
preferences in certain events or locations such as restaurants,
hotels, landmarks, etc., which is essential for marketing, ad-

1All of the images presented in this paper attribute to var-
ious Flickr users under Creative Commons license, and the
images for experiments are downloaded from the public
dataset [9].



vertising, and recommendation systems. Such rich informa-
tion collected from the huge user-contributed photos reveals
diverse activities and preferences and can be treated as mul-
timedia life “logs.” To deal with the big data, many stud-
ies focus on exploiting facial content analysis such as facial
attribute detection (e.g., gender, age, race, etc.) to sup-
port large-scale demographic research. For example, Cheng
et al. [4] adopted the associated contexts (e.g., time, lo-
cation) and the people attributes mined from community-
contributed photos to facilitate profiling consumer activities
for mobile recommendations.

In fact, consumer activities and user intentions are not
limited in individuals. Group recommendation, which rec-
ommends to a group of people instead of individuals, is vital
for daily life. In Li et al.’s work [16], they analyzed the trans-
action logs and discovered that different types of consumer
groups (e.g. family, friends, couple) have quite different pref-
erences when searching for travel accommodations. For ex-
ample, family groups prefer the hotels in downtown areas
while friend groups are more concerned about transporta-
tion convenience. The discoveries evidence the importance
in profiling consumer groups. However, transaction logs are
not easily accessible due to complicated privacy and com-
mercial issues. As a substitute for transaction logs, group
activities can be observed from the growing and freely avail-
able sources – social media. As aforementioned, the large-
scale user-contributed media possess a huge number of group
photos and the associated metadata. Besides, mining from
the rich media not only improves the accessibility but also
escapes from the huge language gaps and culture differences
(cf. Fig. 8 (a)).

It has been evidenced that the social interactions and re-
lationships can be observed from the social contexts in a
photo [21, 9, 25]; for example, a mother stands close to her
child(ren) and they naturally form a subgroup in the group
photo. For group analysis, it has been shown that the cohe-
sive subgroups represent an important construct to study a
group and individuals [7]. For example, the basic properties
of a social group (e.g., a family as Fig. 1 (c)), are organized
by the social subgroups (e.g., a couple as (a) and siblings
as (b)). In other words, the social subgroups provide mean-
ingful features to infer the overall look of a group.

In addition, social subgroups also play a critical role in un-
derstanding individuals, because individuals are influenced
the most by the members of their tight subgroup than oth-
ers [8]. For example, if we have identified a social sub-
group as a “couple” relation (as Fig. 1 (a)) and have also
known the identity of a member (e.g., the wife’s name),
the identity of the other (e.g., the husband) can be intu-
itively inferred. Because social subgroups act as the crucial
link to holistic group and individuals, we argue to auto-
matically discover informative social subgroups embedded
in community-contributed group photos. The mined sub-
groups would strongly benefit (1) classifying the holistic
group types and (2) predicting the pairwise relationships
in a (dense) group photo 2.

Intuitively, the correlation of a social group and its so-
cial subgroups resembles that of a graph and its subgraphs.
Using a graph to link faces in a group photo preserves the
social connections among the whole group (e.g., Fig. 1 (c))

2Note that, in this work, we target at group photos with
more people since they contain richer social relationships
and are more challenging for the existing technologies.

and does not limit the social contexts to one or two individ-
uals (e.g., Fig. 1 (a)(b)). Therefore, we represent the faces
in a photo by their gender and age attributes 3, and further
consider the spatial proximity among them to form a face
graph. Also, we enumerate the subgraphs of a face graph
to automatically discover the potential subgroups in a group
photo. Applying on a large number of consumer photos, we
can extract the informative subgroups in the communities,
i.e., a vocabulary of face subgraphs. The mined subgraphs
are informative to represent a group photo by a bag of face
subgraphs (BoFG), which records the occurrence pattern
of meaningful social subgroups appearing in certain group
types or events. Taking family-type image classification as
an example, we demonstrate that learning by BoFG achieved
30.5% relative improvement comparing to the state-of-the-
art low-level features for image classification. The proposed
framework can excel on photos of more group types (e.g.,
nuclear family, friends of different ages, etc.) and further
enables investigating comprehensive demographics in group
photos.

Moreover, the mined subgraphs bring the co-occurrence
information from the other faces, which benefit predicting
pairwise relationships in a face graph. For example, the
pairwise relationship “husband-wife” usually co-occurs with
a child in the same subgraph. We demonstrate that using
the co-occurrence in subgraphs as features can successfully
predict four typical pairwise relationships in a family photo.
Because labeling names in a photo is very tedious, predict-
ing pairwise relationships is precious to help the association
of faces and names for automatic name annotation. In sum-
mary, the primary contributions of this work include:

• Proposing a novel graph representation to model a
group of people in a photo.

• Devising a methodology to automatically discover in-
formative subgraphs, which resemble the meaningful
social subgroups in communities.

• Introducing a novel feature, BoFG, for representing a
group of people and demonstrating its effectiveness in
recognizing family-type photos.

• Investigating the various factors, i.e., subgraph selec-
tion, learning with kernels and sensitivity to normal-
ization, which affect the performance of BoFG.

• Arguing to predict pairwise relationships by the co-
occurrence information in the mined subgraphs.

2. RELATED WORKS
Facial attribute detection is an important technique in fa-

cial photo analysis. Dozens of works demonstrate that the
detected attributes are quite helpful for image retrieval [15],
personalized recommendation [4], and face verification [14].
Facial attributes have been broadly exploited as additional
knowledge to categorize or recognize the person of inter-
est. Since consumer photos usually contain more than one
person, the coming challenge is how to represent a group
of persons. In those cases, simply aggregating or averag-
ing attributes from individuals may lead to information loss.

3Though we only involve gender and age attributes in this
work, there is a potential to extend to dozens of attributes
with reasonable detection accuracies (>80%) [14].
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Figure 2: Framework – The inputs (a) of our approach are consumer photos containing faces with automati-
cally estimated gender and age attributes (extendable to other attributes as well). The faces in a photo are
modeled as a face graph (b) by the proposed graph construction method. From the face graphs, we can auto-
matically discover the informative subgraphs (c) which resemble the social subgroups commonly appearing in
communities. We propose to represent a photo by a bag-of-face-subgraphs (BoFG) (d). BoFG preserves the
occurrence patterns of social subgroups among a group of faces and acts as effective features for classifying
family-type photos by supervised learning (e). (Best seen in color.)

The phenomenon is getting obvious when the group becomes
larger and more diverse in attributes.

The early studies tend to predefine several typical pair-
wise relationships (e.g., mother-child, sibling) between peo-
ple to compensate the lack. Singla et al. [21] used rule-
based approach to identify pairwise relationships in photos
by a predefined knowledge base. Afterwards, Gallagher [9]
gathered real statistics of facial attributes, positions, face
size to correlate the social contexts with certain pairwise
relationships in consumer photos. Wang et al.[25] further
proposed to involve pairwise relationships as cues for learn-
ing the correspondence between facial appearances and their
names. Pairwise relationships were also adopted as an in-
dex for personal photo management [31, 26] and aesthetic
assessment [17] when it comes to group photos. The afore-
mentioned works have evidenced that pairwise relationships
concern the arrangement of face positions in a photo; how-
ever, they only focused on a small set of pairwise relations
and limited the social contexts to one or two individuals.

In fact, the social contexts between two persons are only
partial factors in inferring their relationship. In a number
of cases, the pairwise relationship is ambiguous when only
two persons are exposed. For example, it is very difficult
to identify whether the two persons in Fig. 1 (a) are a
couple or just friends. Similarly, we have not enough cues
to identify the relationship between the two kids in Fig. 1
(b). Interestingly, the ambiguity extremely drops when we
observe the holistic faces in the photo (Fig. 1 (c)). Merely
relying on the social contexts from a pair of faces neglects
the connections with other faces in the social group. On the
other hand, if we consider all the faces and the possible social
links among the faces as a graph, each of them can propagate
its contextual cues to the others. Seeing the potential cues,
we propose to exploit the holistic relations in a photo by
a face graph. Graph representation has been adopted for
modeling co-occurrences and geometrical relations among
a set of visual words in image categorization [20]. Due to

the large variations in scene and object images, the graph
representations are much complicated and very possible to
be interfered by cluttered backgrounds. As for face graph,
it is relatively easy to filter out unintended points of interest
by face detection [24].

Resembling to mining the subcomponents in chemical com-
pound [6], we enumerate all the substructures in consumer
photos by subgraph mining [27] to preserve pattern regard-
ing both the facial attributes and the topological proximity.
Furthermore, subgraph selection is introduced to reduce the
representative dimensionality [19], and thus ensures the scal-
ability for the proposed framework. In the rest of this paper,
we will depict how to transform a group photo (Fig. 2 (a))
to a face graph (Fig. 2 (b)) in Sec. 3 and how to discover
informative face subgraphs (Fig. 2 (c)) as a vocabulary over
a set of face graphs. We will further represent every photo
as a bag of face subgraphs (Fig. 2 (d)) for profiling group
types or events in Sec. 4 and predict pairwise relationships
(Fig. 6) in Sec. 5. Finally, we demonstrate the effective-
ness of BoFG for recognizing family-type photos (as Fig.
2 (e)) and the superior performance in predicting pairwise
relationships in Sec. 6.

3. BUILDING A VOCABULARY OF FACIAL
SUBGRAPHS

A rich amount of social subgroups are embedded in a
group photo and also shown effective for understanding group
activities and pairwise relationships [7, 8]. We argue to auto-
matically discover the meaningful subgroups from community-
contributed photos. In our approach, a social subgroup re-
sembles a subgraph in a face graph constructed from a group
photo. We first establish a face graph to model a group of
faces as shown in Fig. 3 (c). Then, we enumerate the po-
tential subgraphs (as Fig. 3 (e)) in a face graph. Apply-
ing graph construction and enumeration to all the collected
photos, we discover and select a small set of informative
subgraphs, which are analogous to the subgroups commonly
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Figure 3: Once the faces in a photo are detected as (a), we depict the basic skeleton of a group as a minimum
spanning tree (MST) (b) weighted by pixel distance of any two faces. The face vertices are then fully
connected as (c), where an edge of two vertices are labeled by the order distance (numbers on the edges) –
the length of the shortest path from one vertex to the other in the MST, which represents the social order to
other members. To discover potential subgraphs (e.g., (d)) of the face graph, we enumerate all the subgraphs
as (e) by subgraph mining. Each of the subgraphs resembles a certain social subgroup. (Best seen in color.
Photo courtesy of Steve Polyak [1].)

Order 0 1 2 3Age 1 5 10 16 28 51 75

Female 1 5 10 16 28 51 75

Male 1 5 10 16 28 51 75

Vertex Labels Edge Labels(a) (b)

Figure 4: For describing a face vertex, the ages are
quantized into seven clusters coupled with gender
attribute, thus resulting in fourteen vertex labels as
(a). The label of an edge between two face vertices
is the order distance between them. (b) denotes the
edge labels with order distance equal to 0, 1, 2, 3.

appearing in consumer photos, as a vocabulary for semantic
representations.

3.1 Graph Construction
We establish a face graph by all the faces in a photo (as

Fig 3 (a)), where each face is regarded as a vertex. All of the
vertices are categorized by their (automatically detected) fa-
cial attributes. For example, the pink circle means a female
who is around 28 years old and the blue square means a
5-year-old boy. The ages are quantized into seven clusters
4 coupled with the gender attribute, thus resulting in four-
teen vertex labels (cf. Fig. 4 (a)). The spatial distance
between any two faces is used as the edge label to represent
the closeness of two persons.

The spatial distance between two people is strongly cor-
related with their interactions and relationship [10]. There-
fore, pixel distance is adopted as an informative cues to mea-
sure the interpersonal relation in a photo [25, 31, 26]. Unfor-
tunately, pixel distance is sensitive to environment factors
like obstacles, atypical poses and culture differences [2]. An-
other critical problem is how to normalize the pixel distance
under various image resolutions and discretize continuous
distance into separate degrees of closeness. These concerns
make pixel distance lose its superiority (also confirmed in
our experiments in Sec. 6.4). Actually, for a group of peo-
ple, “order distance” can be another index to evaluate the
closeness between any two people. Order distance between

4The age categories are decided by the social status of a per-
son, including infant, kid, school-age child, teenager, youth,
middle-aged adult and elder, totally seven clusters as shown
in Fig. 4. Note that the framework can be extended to other
attributes such as race, etc.

two faces means how the group people intervene the space

between them. The concept originates from that people who
do not want to interact would seldom arrange themselves
with the other side-by-side [23]. That is, order distance also
approximates the tendency to interact in a social group.

The following challenge is how to estimate the order dis-
tance of any two faces. Measuring pixel distance will not
suffice because people arrange themselves in a free organi-
zation rather than in a strict line. We have to shape the
basic skeleton of a group at first. Here, we propose to use
a minimum spanning tree (MST) to find the basic structure
as shown in Fig 3 (b). We first leverage the pixel distance
of two face vertices as the weights to find a unique MST.
This way, we preserve the influence of pixel distance in es-
timating order distance. Once the MST of a group is ob-
tained, the order distance of two faces can be estimated by
the shortest path starting from one vertex to the other on
the MST. As shown in Fig. 3 (b), the order is counted from
0, which means no face intervenes in between, and steps up
progressively as the number of intermediate faces increases.
For example, the order distance between the green and blue
squares is 2.

In the face graph construction (Fig 3 (c)), all the faces
are fully connected using the order distances as edge labels.
For example, the edge labels for the edge with order dis-
tance equal to 0, 1, 2, 3 would be denoted as the symbols
in Fig. 4 (b). Due to the space limitation, we only show
four edge labels in the notation. In real implementation,
the number of edge labels depends on the number and the
structure of people in a photo. A larger group may require
more edge labels to denote the growing order distance. Due
to the nature of group photos, the range of order distance is
bounded 5. After graph construction, a group photo would
be translated into a face graph (as Fig. 3 (c)) represented by
a 4-tuple G = (V,E,L, l). V is a set of vertices. E ⊆ V ×V

is a set of edges. L is a set of labels. l is a mapping for
assigning labels to V and E, where l : V ∪E→L.

3.2 Enumeration of Subgraphs
In real life, a group of people comprises many smaller

subgroups, which are important characteristics of the group

5In our investigation, the informative subgraphs discovered
from consumer photos seldom contain the edges with order
distance larger than 4. Therefore, removing the edges with
order distance > 4 only has little effects on mining results.



itself [7]. The subgroups resemble the subgraphs in the
face graphs constructed from the numerous consumer pho-
tos. For example, Fig. 3 (a) is a family, and the faces of
the family form a face graph G in Fig. 3 (c). A subgraph
G′ = (V ′, E′, L′, l′) of G should satisfy the criteria, V ′⊆V ,
E′⊆E, L′⊆L and l′ = l. By definition, G′ in Fig. 3 (d) is
a subgraph of G. Semantically speaking, G′ is a subgroup
of parents-child and G is the whole family. In this way, we
further enumerate all the subgraphs of a face graph G. After
subgraph enumeration, a face graph would be decomposed
into a set of subgraphs as shown in Fig. 3 (e). An enu-
merated subgraph indicates a social subgroup, which is not
limited in two or three people. The subgraph G′ in a face
graph G contains |V ′| people, where 0 < |V ′|≤|V |.

To gather various types of social subgroups, we propose
to extract the informative social subgraphs from consumer
photos. We categorize the subgraphs which preserve the
same structure and correspondences in terms of facial at-
tributes (the labels of vertices) and order distance (the labels
of edges). To examine the mapping between two subgraphs,
we exploit graph isomorphism which allows us to identify
identical subgraph representations among face graphs (pho-
tos). In graph theory, an isomorphism of graphs G and H

is a bijection f between the vertex sets of G and H , where
f : V (G)→V (H). That means any two vertices vα and vβ
of G are adjacent in G if and only if f(vα) and f(vβ) are
adjacent in H . We write G∼=H . For example, the subgraph
G1 in Fig. 5 (a) and the subgraph G2 in Fig. 5 (b) are iso-
morphic (G1

∼=G2) and are categorized as the same type of
subgraph in a vocabulary. The subgraphs G3 and G4 in Fig.
5 (b) are isomorphic as well (G3

∼=G4). Similar to calculat-
ing text terms in a document, we can count subgraphs of the
same type in an image. To accelerate the mining process,
we adopt the subgraph mining algorithm [27] which com-
bines enumerating and checking into one procedure. The
algorithm transfers graphs to tree-based codes and apply
depth first search to speed up the mining process. Finally,
the face graphs of a set of consumer photos M would gen-
erate a subgraph-image matrix T of |M |×|S|, where S is
a subgraph vocabulary mined from M , ∀si, sj⊆S, ∄si∼=sj .
The m-th row in T contains the frequency of occurrence of
subgraph appearing in the m-th image. The i-th column in
T comprises the frequency of occurrence of i-th subgraph
appearing in each image.

Actually, enumerating subgraphs is time-consuming when
the number of vertices in a graph is huge. The computation
load is relatively light in our approach since the number
of people in a group photo is not as many as the vertices in
complicated networks. Besides, the process would be done in
the training phase and the mined subgraphs are general for
different learning tasks. However, the subgraph matching in
the test phase is inevitable. The effort increases along with
the size of subgraph vocabulary (S). To ensure scalability,
we further introduce the subgraph selection and representa-
tion in the next section.

4. BAG-OF-FACE-SUBGRAPHS
The subgraph vocabulary enables interpreting a group

photo by a bag-of-subgraphs; for example, the m-th photo in
M can be represented by the m-th row in subgraph-image
matrix T . Extending the proposed bag-of-face-subgraphs
(BoFG) as features for classification tasks would confront
two challenges: (1) how to reduce costly graph matching in

the test phase, (2) how to translate bag-of-facial-subgraphs
into an effective feature representation.

4.1 Subgraph Selection
We conduct feature (subgraph) selection for reducing the

substantially large subgraph vocabulary generated in Sec.
3.2. The huge amount of subgraphs would be a big prob-
lem for scalability in learning models. Besides, it may incur
intensive computation for graph matching in the classifica-
tion (test) phase, and thus makes it infeasible to analyze the
large-scale social media. Seeing the requirements, we inves-
tigate two approaches for subgraph selection, (1) document
frequency and (2) sequential covering, to reduce the size of
subgraph vocabulary.

4.1.1 Document Frequency (DF)
Document frequency (df), is a manner of feature selection

commonly used in text categorization [30] and visual-words
based image classification [28]. dfi is the number of photos
that contain the i-th facial subgraph. According to df , the
subgraphs are selected by how common they are in the whole
training data set without considering the class labels. The
approach does not require class labels, and therefore saves
the effort to re-select subgraphs for different classification
tasks.

4.1.2 Sequential Covering (SC)
In addition to document frequency, we introduce a feature

selection approach, sequential covering [19], by taking into
account the class labels. Sequential covering algorithm pro-
ceeds by iteratively selecting the most discriminative sub-
graph from the candidates, by measuring its individual clas-
sification capability as provided the class labels. Here we
treat a subgraph s as a feature (and classifier quality mea-
sure C(s)) and iteratively select a subgraph s∗ which has
maximum discriminative capability (classification accuracy)
in the remaining training images compared with the other
candidate subgraphs in S.

s
∗←max

s

|M|∑

m

Cm(s)

|M |
,

S←S\s∗,

W←W∪s∗, (1)

where W is the selected subgraphs, Cm(s) is the result of
the m-th training image classified by s. Cm(s) = 1, if the
m-th image is correctly classified, otherwise Cm(s) = 0. The
process would repeat iteratively until the designated num-
ber of subgraphs is selected. To speed up the selection pro-
cess, we first take document frequency in the training images
as the initial ranking. The subgraphs are initially ordered
by the confidence scores (i.e., DFs) [18]. The prefiltering
step greatly reduces the number of checking processes on
the training images.

4.2 Feature Representation of Group Photos
Image categorization and retrieval are research problems

of great interest; therefore, dozens of image features are
proposed for solving different challenges. For example, His-
tograms of Oriented Gradient (HoG) descriptor [5] shows its
superiority to extract subtle edge features for human detec-
tion. Pyramid HoG (PHoG) [3] further preserves the traits
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Figure 5: Representativeness of BoFG for different
social groups (e.g., family vs. non-family). The first
and second photos are with the same group type
(e.g., family), thus generating very similar BoFG
features ((a) and (b)). The third group photo con-
tains much different social subgroups, therefore, the
feature vector (c) generated from the photo is quite
different.

of spatial layout in the image representation. The aforemen-
tioned works have demonstrated that local shape patterns
and spatial information are effective for scene classification.
As for understanding human activities or group types of a
photo, the occurrences of social subgroups should be more
critical than the visual shape patterns. Our experiments
also confirmed that in Sec. 7.

Our approach, BoFG, stands as better representation when
considering the facial attributes, the social links, and the
spatial proximity for a group of people. Motivated by vi-
sual words [22] that extract the local patterns of a image,
face subgraphs represent local relation approximated by the
people attributes. The feature representation of bag-of-face-
subgraphs is analogous to that of the bag-of-visual-words
[28] and is applicable for group photo classification. The
bag-of-face-subgraphs of a group photo are represented by a
feature vector fj ,

fj = (t1, ..., ti, ...t|W |)
T
, (2)

ti =
nij

nj

, (3)

where W is the selected subgraphs in Eq. 1. nij is the
frequency of occurrence of the i-th subgraph appearing in
image j. nj is the number of subgraphs in the image j.

The feature vector fj contains the histogram information
of each subgraph, and is normalized by the total number of
subgraphs in image j. Subgraph frequency ti resembles term
frequency (tf) in text domains and likewise each face sub-
graph is a term and each image is a document. The feature
representation is visualized in Fig. 5 (a)(b)(c). The first
and second photos are of the same group type (i.e., family)
and possess similar social subgroups, thus generating very
similar feature vectors ((a) and (b)). On the other hand, the
third group photo contains much different social subgroups.
Therefore, the feature vector (c) is quite different from (a)
and (b). Accordingly, BoFG can capture the informative
cues of social subgroups in a group of faces.
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Figure 6: (a) shows the mined informative sub-
graphs (from supervised learning) containing dif-
ferent pairwise relationships including mother-child,
father-child, couple and sibling (denoted by gray
triangles and their connected line). For “sibling”
relation, the informative subgraphs often contain a
woman or a man, which are possibly their mother
or father. When a query pair of faces (b) arrives, we
predict its relationship by checking the presence of
the informative subgraphs belonged to each pairwise
relationship. (Best seen in color.)

5. PREDICTING PAIRWISE RELATIONSHIPS
Through the studies, users are reluctant to annotate pho-

tos and even the faces in photos. The phenomenon makes
automatically predicting pairwise relationship (e.g., mother-
child, father-child) by image content more important. Be-
sides annotation by face recognition, which is still very chal-
lenging for (wild) consumer photos, once the pairwise rela-
tionships are identified, the unknown identities are poten-
tial to be automatically inferred by partial name labels and
their existing social relationships. Traditionally, predicting
pairwise relationships relied on the social contexts between
the two people, such as relative distance, face size, gender
and age attributes [21, 25]. As mentioned in Fig. 1 (a)(b),
the social contexts between two people are really limited,
and thus lead to poor performance in recognition. However,
more contextual cues can be inferred when all the faces are
considered in a holistic way as shown in (c). Therefore, we
hypothesize that inferring the pairwise relationships by the
proposed face graph is promising.

The face graph of a group photo may contain many faces
which might inevitably confuse co-occurrence measurement.
On the other hand, informative subgraphs are potential to
filter out unintended information, and also preserve the co-
occurring relationships. Therefore, we exploit the subgraphs
co-occurring with the designated pairwise relationship as the
features. In the training phase, we manually label pairwise
relationships on a face graph according to their social rela-
tionships in the photo. By subgraph mining (as the process
in Sec. 3.2) from the labeled face graphs, we discover the
informative subgraphs containing the edges labeled with the
designated relationship. As shown in Fig. 6 (a), the mined
informative subgraphs are different for different designated
pairwise relationships (denoted by gray triangles and their
connected lines). Taking “sibling” as an example, the infor-
mative subgraphs often contain a woman (circle) or a man
(rectangle), which are possibly their mother or father.

When predicting a pair q (as shown in 6 (b)), we first
construct the face graph Gq as the process in Sec. 3.1. In



Gq , we use graph matching to check the presence of informa-
tive subgraph si, mined from the training images. Finally,
the pairwise relationship r∗ is predicted by Naive Bayesian
classifier by taking the image frequency P (si|rl) of the in-
formative subgraph si in the image collections containing rl
pairwise relationship:

r
∗ = argmaxrl

∏

i

P (si|rl), (4)

Because the subgraphs in Gq is relatively few, appropriately
smoothing P (si|rl) is required. In the experiments, we will
demonstrate its superiority against prior work in predicting
four typical pairwise relationships.

6. EXPERIMENTS
In this section, we will (1) evaluate the effectiveness of

BoFG for classifying family-type photos and then (2) eval-
uate the capability of informative subgraphs for predicting
pairwise relationships (in Sec. 6.6). The techniques of face
detection and facial attribute detection have been developed
for years either in academic studies or commercial products.
The previous work [14] has shown that the classification ac-
curacy of facial attributes can achieve more than 80% on
average. However, to prevent the evaluation from the er-
ror caused by face attributes, we experiment on the public
data set [9], which provides group photos and the associ-
ated attributes of the faces. The data set is collected from
social media (Flickr) with specific keywords, and catego-
rized to family images, group images and wedding images.
We leverage the keywords as the soft ground truth to ob-
tain family-type images. Totally, 1,167 family images and
1,263 non-family images are retained for experiments which
are conducted with 5-fold cross-validation. Note that, we
evaluate the proposed approach by the photos containing
at least three faces because those groups are more complex
and very challenging for analysis and prediction. For groups
containing less than three people, the prediction can be in-
tuitively conducted by their attributes and distance directly
[25]. Moreover, the proposed approach involves facial at-
tributes rather than face identities; therefore, the discovered
informative subgraphs are general and cross-family. In other
words, our method operates on a per photo basis rather than
a per family basis. We further investigate vital factors such
as (1) different learning approaches, (2) the mined infor-
mative subgraphs , (3) sensitivity to normalization and (4)
subgraph selection to evaluate classifying family photo by
BoFG.

6.1 Classification
The analysis from text categorization [12] has concluded

that Support Vector Machines (SVMs) is excellent in clas-
sification for BoW-like representations. The proposed bag-
of-facial-subgraphs is in the similar paradigm, therefore we
adopt SVMs as the learning method for family photo clas-
sification. To maximize the performance, we evaluate three
common SVM kernels for group classification.

Linear : K(x, y) = x
T
y,

RBF : K(x, y) = e
−γ‖x−y‖2

,

RBF − χ
2 : K(x, y) = e

−
∑

γ
(xk−yk)2

1
2
(xk+yk) ,

where x, y are BoFG feature vectors and γ > 0. RBF kernel
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Figure 7: Performance comparisons for social group
type classification (family vs. non-family) by differ-
ent features. Chi-square kernel shows its superior-
ity over both linear and RBF kernels as it has been
found excellent in histogram representations (e.g.,
BoW [28], BoFG). Note that, the accuracy for using
low-level feature PHoG is only 67.94 %.

can map the training data to high dimensional space non-
linearly, therefore can handle the case when the mapping
between class label and feature vector is nonlinear. RBF-
χ2 kernel is another type of non-linear kernel, which are
commonly used in image classification.

Although SVMs is a very powerful algorithm for learn-
ing high-dimensional features, it is deficient in feature selec-
tion and can only work on fixed (provided) features (sub-
graphs). Due to the high computation cost from subgraph
enumeration, Kudo et al. [13] proposed a boosting-based
algorithm to couple the subgraph mining and classification,
which avoids wasting time to enumerate non-discriminative
subgraphs. In the experiments, the aforementioned kernel-
based and boosting-based approaches are both applied to
compare the effects from different learning methods on the
proposed feature representation.

6.2 Effects from Learning Approaches
As shown in Fig. 7, linear kernel results in the worse ac-

curacy by BoFG features, partially due to the number of
training data is relatively few comparing with the adopted
high-dimensional features. On the other hand, RBF kernel
can non-linearly map training data to the high-dimensional
space, therefore leads to better classification results. In our
experiments, Chi-square kernel shows its superiority to both
linear and RBF kernels, because the proposed features are
basically organized by histograms of informative subgraphs.
Actually there is no big difference in accuracy generated by
linear and non-linear kernels, because the proposed feature
representations are sparse and discriminative. Therefore,
similar to the cases in document vector or visual word vector,
they are more linearly separable [29]. The classification ac-
curacy of the boosting-based approach also achieve 88.67%,
which is on par with SVMs with linear kernel. We also train
a family photo classifier by SVMs using low-level (and com-
petitive) PHoG feature. The classification accuracy only
achieved 67.94%, mainly due to the lack of (semantic) social
cues addressed by BoFG.

6.3 Mined Informative Subgraphs for Family
In Fig. 8, we display the mined informative subgraphs for

the two different classes organized by the number of vertices
(|V ′|) in them. Block (a) is the most informative subgraphs
in family photos and block (b) holds the counterparts. Ob-
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Figure 8: Block (a) is the most informative subgraphs (G′) in family photos and block (b) holds the counter-
parts. Both of them are grouped by the number of vertices (|V ′|). Obviously, the informative subgraphs in
family photos contain faces with larger age gaps (e.g., a-2, a-3, a-4). Besides, the order distance between two
faces are much smaller; that is, the families tend to stand closer to each other. Also, the couple-like subgroups
frequently co-occur with kids in family photos (e.g., a-2). On the other hand, the informative subgraphs in
non-family groups are mostly comprised of young people with smaller age gaps. People of the same gender
stand together more frequently than that in family photos. They might like to arrange themselves in a row
(e.g., b-3, b-4); therefore, the order distance is relatively larger. (Best seen in color.)

viously, the informative subgraphs in family photos contain
faces with larger age gaps (e.g., Fig. 8 a-2, a-3, a-4). Be-
sides, the order distance between two faces are much smaller
(most are equal to 0). That is, the families tend to stand
closer to each other. Also, the couple-like subgroups fre-
quently co-occur with kids in family photos (e.g., a-2). The
seniors tend to stand in the center of a family group (e.g.,
a-4) such that have smaller order distance and usually link
to the others. On the other hand, the informative subgraphs
in non-family groups are mostly comprised of young people
with smaller age gaps (due to the collected dataset photos).
People of the same gender stand together (e.g., b-4) more
frequently than that in family photos. They might like to
arrange themselves in a row; therefore, the order distance is
relatively larger (e.g., b-3, b-4).

The classification results in Fig. 9 confirm the same dis-
coveries in the mined subgraphs. The positions of peo-
ple in family photos are much concentrated, comparing to
the structure of the non-family group (e.g., friends or col-
leagues). Furthermore, the people in family photos usually
form a smaller subgroup implicitly, such as a couple or a
parent-child relations, therefore result in many subgraphs
with members of opposite sexes. We also show some failure
cases not consistent with the learned rules. Fig. 10 (a)(b)
are two photos misclassified as families. Those photos also
match the subgraphs existing in most family photos, which

contain closer subgroups or more subgroups with people of
different genders. On the other hand, Fig. 10 (c)(d) show
two false negatives misclassified as non-families, where they
have relatively smaller age and gender differences in most
subgroups. Besides, their positions are less centralized.

We also found that, in some photos, family groups are
mixed with non-family groups (e.g., Fig. 10 (b)) thus result-
ing in uncertainty. Actually, a group of mixed types is com-
monly seen in certain events such as graduation ceremony
or wedding party. Analyzing photos by social subgroups can
further clarify the organizations of a group. In such cases,
the detailed subgroup information would be useful for softly
categorizing a group in a photo.

6.4 Sensitivity in Pixel vs. Order Distance
BoFG adopts order distance as the edge labels and are free

of different photo variations (e.g., size, face number, etc.).
As for pixel distance, the sensitivity to normalization scale
is relatively high. In the experiments, we reveal that pixel
distance normalized by different scales results in unstable
classification performance. We quantized the pixel distance
into different scale ranged from 5 to 15 degrees. The nor-
malized distance degrees are then used as the edge labels.
Fig. 11 shows the classification accuracy using BoFG con-
structed by pixel distance and constructed by order distance.
All of them are learned by the boosting-based approach. As
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Figure 9: Example photos for social group classifi-
cation. The positions of people in family photos are
much concentrated, comparing to the structure of
the non-family groups (e.g., friends or colleagues).
Furthermore, the people in family photos usually
contain smaller subgroups, such as a couple or a
parent-child relationship.
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Figure 10: Failure cases for social group classifica-
tion. (a)(b) are the examples misclassified as fam-
ilies, where the photos contain more closer sub-
groups with people of opposite sexes. (c)(d) are
two cases misclassified as non-families, where they
have smaller age and gender differences in most sub-
groups.

it shows, the results of pixel distance fluctuate by varying
normalization scales and somehow are affected by the test
photos. The proposed order distance can escape from the
instability and perform robustly across consumer photos.

6.5 Effects of Subgraph Selection
The large number of features (subgraphs) would inevitably

incur heavy computation cost in learning models and on-line
classification. This problem is especially critical for social
media, where the data are growing exponentially. To reduce
the size of subgraph vocabulary, we further select the in-
formative subgraphs by document frequency and sequential
covering (Sec. 4.1). As Fig. 12 shows, both subgraph se-
lection methods can effectively retain only 10% subgraphs
but still ensure the same classification accuracy (89.75%
with 4,315 subgraphs), therefore make the proposed frame-
work more scalable. The performance of sequential covering
(Fig. 12, DF+SC) is slightly better than document fre-
quency (Fig. 12, DF). The difference may come from the
utilities of the given class labels, which are provided in se-
quential covering only. Interestingly, increasing the number
of subgraphs is not always a gain for learning. As the ex-
periment shows, the classification accuracy notably degrades
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Figure 11: The pixel distance adopted in prior work
suffers from the high variations in photo sizes, face
scales, number of people, etc. The proposed order
distance is more robust to the variances.
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Figure 12: Both the subgraph selection methods,
document frequency (DF) and sequential covering
(SC), can effectively retain only 10% subgraphs but
still ensure the classification accuracy and therefore
make the proposed framework more scalable. No-
tably, besides efficiency, subgraph selection is vital
since avoiding the overfitting problem commonly ob-
served in learning from high-dimensional features.

while the number of features is larger than 30,000. The drops
should be attributed to the overfitting problem in learning
from high dimensional features.

6.6 Performance of Predicting Pairwise Rela-
tionships

We use the family photos in [9] for experiments and pre-
dict the four pairwise relationships, including couple, mother-
child, father-child, sibling. Totally 1,332 pairwise relation-
ships are labeled in 772 photos (at least 250 labels for each
pairwise relationship). We use one half of the labeled data
for training and one half for testing. To verify the supports
from the informative subgraphs, we remove the attributes of
the two people involved in a pairwise relationship. That is,
the social contexts between the two people are blind both
in the training and testing phases. The confusion matrix in
Fig. 13 shows that solely relying on the information from
the subgroups on the face graph can successfully infer the
pairwise social relationships and achieve very impressive ac-
curacy. The results also support that the additional infor-
mation augmented by face graph can compensate errors in
estimating social contexts between the pair of faces. We
also derive superior performance (36% relative improvement
on the average) as comparing with the confusion matrix of
classification in [25] which are experimented on the same
database [9]. For example, the recognition of “sibling” re-
lationship in [25] is less accurate and is probably due to
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Figure 13: The confusion matrix for predicting pair-
wise relationships. The results outperform those
reported in [24] since the informative subgroups
provide supplemental supports for determining the
pairwise relationship. For example, the most gain is
in “sibling” since the co-occurring parent-like sub-
groups bring more supports.

the social contexts (relative distance, gender, etc.) between
sibling is very ambiguous; as for our work, the co-occurred
subgraphs, which frequently have the links to their parents,
can provide further supports in recognizing pairwise rela-
tionships.

7. CONCLUSION
We saw the sheer amount of consumer photos, which mostly

contain groups of people. In this paper, we propose a novel
graph feature, bag-of-face-subgraphs for describing the so-
cial subgroups in a group photo. The informative subgraphs
are automatically discovered from community-contributed
photos, which reflect the social subgroups commonly ap-
pearing in the communities. BoFG preserves the occurrence
pattern of social subgroups that are effective for analyzing
human-related activities and group types. We demonstrate
the capability to classify family-type photos and achieved
great improvement (30.5% relatively) against prior works
using state-of-the-art low-level visual features. The pro-
posed framework considers subgraph selection for ensuring
the scalability as well. Furthermore, the co-occurrence cues
in the informative subgraphs can also help predicting pair-
wise relationships, which benefit inferring unknown identi-
ties in group photos and show salient improvement over the
prior work (36% relatively). In the near future, we will in-
vestigate more social contexts (e.g., face angles) and people
attributes (e.g., race) to enrich the potential social interac-
tions in the emerging group photos. Moreover, we will ex-
tend the social groups discovered from the user-contributed
photos to inferring implicit interactions in social networks.
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