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Summary

Ultrasound (US) is a useful diagnostic tool to distinguish benign from malignant masses of the breast. It is a very
convenient and safe diagnostic method. However, there is a considerable overlap benignancy and malignancy in
ultrasonic images and interpretation is subjective. A high performance breast tumors computer-aided diagnosis
(CAD) system can provide an accurate and reliable diagnostic second opinion for physicians to distinguish benign
breast lesions from malignant ones. The potential of sonographic texture analysis to improve breast tumor clas-
sifications has been demonstrated. However, the texture analysis is system-dependent. The disadvantages of these
systems which use texture analysis to classify tumors are they usually perform well only in one specific ultrasound
system. While Morphological based US diagnosis of breast tumor will take the advantage of nearly independent to
either the setting of US system and different US machines. In this study, the tumors are segmented using the newly
developed level set method at first and then six morphologic features are used to distinguish the benign and
malignant cases. The support vector machine (SVM) is used to classify the tumors. There are 210 ultrasonic images
of pathologically proven benign breast tumors from 120 patients and carcinomas from 90 patients in the ultrasonic
image database. The database contains only one image from each patient. The ultrasonic images are captured at the
largest diameter of the tumor. The images are collected consecutively from August 1, 1999 to May 31, 2000; the
patients’ ages ranged from 18 to 64 years. Sonography is performed using an ATL HDI 3000 system with a L10-5
small part transducer. In the experiment, the accuracy of SVM with shape information for classifying malignancies
is 90.95% (191/210), the sensitivity is 88.89% (80/90), the specificity is 92.5% (111/120), the positive predictive
value is 89.89% (80/89), and the negative predictive value is 91.74% (111/121).

Introduction

Breast cancer has affected one of every eight women in
United States and one of every ten women in Europe [1].
Early diagnoses of breast cancer are important. How-
ever, carly diagnosis requires an accurate and reliable
diagnostic procedure that allows physicians to distin-
guish benign breast tumors from malignant ones. Al-
though there are many diagnostic modalities, biopsy is
the best way to do the differential diagnosis. For the
lawful and safe reasons, surgeons perform an even
increasing number of breast biopsies. However, it is
invasive and expensive. Biopsies are sometimes avoid-
able for the reason that probability of positive findings at
biopsy for cancer is low, between 10% and 31% [2-4].
Ultrasound (US) is a useful diagnostic tool to distinguish
benign from malignant masses of the breast [5]. How-
ever, there is a considerable overlap benignancy and
malignancy in ultrasonic images and interpretation is

subjective. Stavros et al. [6] reported the frequency with
which certain morphological features were associated
with breast cancer. Several of malignant features referred
to the margin of the mass. Descriptors of mass margins
associated with a high likelihood of malignancy include:
(a) Angular margins in which obtuse or acute pointed
junctions form between the mass and surrounding tissue;
(b) Speculation in which alternating hypoechoic and
hyperechoic lines radiate in multiple directions from the
mass into the surrounding tissue; (¢) Microlobulation
characterized by greater than 3 lobulations of the mass
surface.

Many techniques have been explored in the segmen-
tation of medical images; however, segmentation of
ultrasonic images is difficult due to the existence of noise
and speckle. The conventional edge-based [7] and region-
based methods [8,9] cannot work well in segmenting
ultrasonic images. The newly developed level set ap-
proach is a kind of deformable model. This method was
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begun by Osher and Sethian [10] in the Sethian’s Ph.D.
thesis. Comparing with other classical deformable
model, such as snake [11], the principle of the level set
approach is an active contour energy minimization that
solves the computation of geodesics or minimal distance
curves. It is governed by the curvature-dependent speeds
of moving curves or fronts. At present, there have been
many successful ultrasound segmentation researches
using the level set approaches proposed [12—-14].

Support vector machines (SVM) [15-17] have been
recently proposed as a very effective method for pattern
recognition, machine learning and data mining. It is
considered a good candidate because of its high gener-
alization performance. Intuitively, given a set of points
which belongs to either one of two classes, a SVM can
find a hyperplane leaving the largest possible fraction of
points of the same class on the same side, while maxi-
mizing the distance of either class from the hyperplane.
According to [15], this hyperplane, called optimal sep-
arating hyperplane (OSH), can minimize the risk of
misclassifying examples of the test set. In this study we
evaluated a set of breast US images using SVM and
shape information for classifying breast tumors. Tumors
are first segmented by the level set method and then six
morphologic features are used.

Materials and methods
Image data acquisition and feature extraction

The US breast image databases include only histologi-
cally confirmed cases; 90 malignant tumors and 120 be-
nign tumors which were recorded from August 1, 1999 to
May 31, 2000. The ages of the patients were ranged from
18 to 64 years. All the digital images were obtained prior
to biopsy using by an ATL HDI 3000 system with a L10-5
small part transducer which is a linear-array transducer
with a frequency of 5-10 MHz and a scan width of
38 mm. All the images were supplied by one of the author
(Dr. Moon). The region of interest (ROI) which contains
the tumor was selected by one of the author (Dr. Chen).
Through out this study, only the ROI sub-images are used
to investigate the texture characteristics of benign and
malignant lesions. Note that only one lesion is extracted
from a patient.

The monochrome ultrasonic images are quantized
into 8 bits, i.e. 256 gray levels and the features were
stored via the magneto—optical (MO) disks. Then these
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images can be analyzed in a personal computer and
serve as our experimental data. All solid nodules at US
belong over C3 according to ACR (American College of
Radiology) Breast Imaging Reporting and Data System
(BI-RADS) category. We will utilize these images as our
breast images database to further investigate the shape
characteristics of benign and malignant tumors.

Morphologic feature extraction

Benign tumors usually have smooth shape and malig-
nant tumors tend to have irregular border. According to
this hypothesis, six morphologic features were extracted
from each tumor to account for such sonographic
features. These features are form_factor, roundness,
aspect_ratio, convexity, solidity, and extent, respec-
tively. Each feature is defined as follows:
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where Area and Perimeter is the area and perimeter of
the tumor, Max_Diameter and Min_Diameter are the
maximal and minimal dimensions of a tumor at different
projection angles, as shown in Figure1l, Con-
vex_Perimeter and Convex_Area are the perimeter and
area of the convex hull of a tumor, N is the number of
tumors in database, and Bounding_Rectangle is the area
of the minimal rectangle including the tumor. We show
the convex hull and bounding rectangle of a tumor in
Figures 2 and 3, respectively.

By the way, when we find Max_ Diameter,
Min_Diameter, and Bounding_Rectangle, the US ima-
ges should be rotated at different angles and then the
maximal and minimal features can be found. Because of
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Figure 1. The maximal and minimal diameters of a tumor. (a) Maximal diameter (b) minimal diameter.
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Figure 2. The convex hull and contour of a tumor.
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Figure 3. The bounding rectangle of a tumor.

the symmetry property and computation reduction, we
only consider the rotation angles from 0° to 180° and the
interval is 10°. We illustrate the rotated tumors at
different angles in Figure 4.

Tumor segmentation

Due to the noise and speckles in the ultrasonic images,
first, some noise filtering and edge-enhanced method are
needed to reduce the noise and enhance the edge infor-
mation in ultrasonic images. And then, the segmentation
method will work more efficiently. In this section, the
pre-processing and segmentation methods used in this
paper are described.

Anisotropic diffusion filtering

There are several fundamental requirements of the noise
filtering methods for medical images. First, it should not
to lose the important information for object boundaries
and detailed structures, second, it should efficiently
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remove the noise in the homogeneous regions, and third,
it should enhance morphological definition by sharp-
ening discontinuities [18].

The anisotropic diffusion filter [19] can get rid of the
major drawback of the conventional spatial filters and
improve the image quality significantly while preserve the
important boundary information. The power of the
anisotropic smoothing scheme lies in its dealing with
local estimates of the image structures. Smoothing is
formulated as a diffusive process, suppressed or stopped
at boundaries by selecting locally adaptive diffusion
strengths. Hence, in this filter, the smoothing operation
could be prevented from across edges, the discontinuities
can be preserved, and a weak slope remains nearly un-
changed if the slope falls within the monotonically
increasing part of the gradient values.

Stick method

In order to obtain a better segmentation result in ultra-
sonic images, conventional edge-detection algorithms
usually use a low-pass filter to reduce the speckle noise,
at the cost of blurring the edges. However, if the contrast
of the edge is high, the influence of blurring can be
reduced and not significantly impact the segmentation
result [20]. Hence, the edge information should be en-
hanced for a better segmentation result.

In this study, the anisotropic diffusion filter is used to
avoid the blurry problem of conventional low-pass filter
and then the stick method is applied to further reduce
noise and enhance the edge information. In the ultra-
sonic images, boundaries between tissue layers will ap-
pear as all sorts of lines; therefore, the edge detection
problem can be modeled as a line process [21]. The stick
[21], as a set of short line segments of variable orienta-
tion, is able to locally approximate the boundaries and
to reduce speckles as well as improve the edge infor-
mation in the ultrasound images.

(c) (d)

Figure 4. The rotated tumors at different angles. (a) 0° (b) 30° (c) 60° (d) 90° (e) 120° (f) 150° (g) 180°.
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(a) (b) 2=¢(x,y,1=0)

(c) (d)
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Figure 5. Level set curve propagation. (a) and (b) show the curve y and
the corresponding surface ¢(x,y) at =0, and (c) and (d) show the
curve y and the corresponding surface ¢(x,y) at time .

Automatic thresholding method

In an ultrasonic image, the region of the tumor ap-
pears to be darker and the background is brighter.
After the image processed through the anisotropic
diffusion filter and stick method, we use the thres-
holding scheme to turn an ultrasound gray level image
into a binary one to separate the tumor from its
background. We adopt an automatic threshold-deter-
mination method, proposed by N. Otsu [22], which
can choose the threshold to minimize the intraclass
variance of the black and white pixels automatically.
We also apply an additional control scheme to allow
the user to change the threshold value when the user is
not satisfied with the threshold value assigned by this
automatic method.

Level set method

The level set method [10,23] is a numerical technique for
computing and analyzing the front propagation. It

Figure 6. The tumor segmentation with the proposed method. (a) The
original image (b) the image after the anisotropic diffusion filter (c) the
image after the stick method (d) the image which combines the
thresholded and original images (e) the result of level set method.

offers a highly robust and accurate method for tracking
interfaces moving under complex motions. Instead of
propagating the front directly, it embeds the front as the
zero level set of a higher order function called the level
set function. (see Appendix 1)

In the proposed method, the original ultrasonic im-
age is first processed by the anisotropic diffusion filter-
ing, stick method, and thresholding method. After the
thresholding method, we achieve a binary image and
then combine it with the original image. When com-
bining, the proportion of each image is 0.5. Finally, we
utilize the level set method to segment the tumor in the
combined image. A segmentation result is shown in
Figure 6.

Classification with support vector machine model

SVM is a very good classification tool because of its high
generalization performance. It has been proved as a very
effective method for many applications. The concept of
SVM and the general case of nonlinear separating sur-
faces were introduced in Appendix 2.

In this study, we use nonlinear SVM with Gaussian
radial basis kernel as our classifier. The shape infor-
mation is used as the inputs to find an OSH for distin-
guishing the benign tumors from malignant ones.

Result

In our experiments, we totally use 210 pathology-proven
cases (including 120 benign breast tumors and 90
malignant ones) to test the classification accuracy of the
proposed method. These ultrasonic images are ran-
domly divided into five groups. We first set the first
group as a testing group and use the remaining four
groups to train the SVM. After training, the SVM is
then tested on the first group. Then we set the second
group as a testing group and the remaining four groups
are trained and then the SVM is tested on the second.
This process is repeated until all five groups have been
set in turn as a testing group.

In this work, we first use some preprocessing and
level set methods to segment the tumor of an ultrasonic
image. And then we use a nonlinear SVM with Gaussian
radial basis kernel as our classifier where C and 7y are 3
and 0.074, respectively. Six morphologic features are
used as the input of the SVM to classify the experi-
mental cases. In Figure 8, we compare the six morpho-
logic features between benign tumors and malignant
ones. These simulations are made on a single CPU Intel
Pentium-VI 2 GHz personal computer with Microsoft
Windows XP operating system. We list the experimental
result in Table 1 and show the ROC analysis in
Figure 9.

To estimate the performance of the experimental
result, five objective indices are used. These indices are
accuracy, sensitivity, specificity, positive predictive va-
lue, and negative predictive value. In our experiment,



Figure 7. Separating hyperplane. (The dashed lines identify the
margin.)
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Figure 8. Comparison of six morphologic features between benign
tumors and malignant ones.

the accuracy of SVM with shape information for clas-
sifying malignancies is 90.95% (191/210), the sensitivity
is 88.89% (80/90), the specificity is 92.5% (111/120), the
positive predictive value is 89.89% (80/89), and the
negative predictive value is 91.74% (111/121). We also
list these indices in Table 2. According to the Table 2
and Figure 9, we can conclude that the classification
ability for breast tumors with shape information is very
well.

Conclusion

Recent progress of computer-aided diagnosis (CADX)
system demonstrated that the application of CADx
system could increase the diagnostic confidence for a
physician and provides one possible solution to improve
the positive predictive value of breast biopsy. Although
these proposed CAD system, examples from our pre-
vious works [24-26], could be readily adaptable to US
machine; there is no available data to be verified whe-
ther a designed system was suitable to another US
machine without any change or through the adjustment
of the parameters by using intelligent selection algo-
rithms according to the different US machines. In fact,
with the rapid development of US technologies, many
different ultrasonic systems are used in the current
medical diagnosis. Subsequently, we successfully pro-
posed adjustment schemes for different ultrasonic sys-
tems were used to transform needed information for the
differential diagnosis [27]. However, this method still
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Table 1. Classification of breast tumors by SVM with shape feature

Sonographic Benign® Malignant®
classification

Benign TN 111 FN 10
Malignant FP9 TP 80
Total 120 90

Note: TP, True Positive; TN, True Negative; FP, False Positive; FN,
False Negative
# Histological finding.

Table 2. The objectively indices result for the proposed method

Index Performance

Accuracy 90.95%

Sensitivity 88.89%

Specificity 92.50%

PPV 89.89%

NPV 91.74%
Note:

Accuracy = (TP+TN) / (TP+TN+FP+FN)
Sensitivity = TP / (TP +FN)

Specificity = TN / (TN + FP)

Positive Predictive Value = TP / (TP + FP)
Negative Predictive Value = TN / (TN +FN)
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Figure 9. The ROC analysis of the proposed method.

need collect different US machine data as well as ma-
chine setting parameters in advance. It could not be
readily adaptable to new US machines. The aim of this
study using automatic ultrasound segmentation and
morphology based method is to improve this drawback;
we believe that is valuable for future development of
ultrasonic CAD system. The morphologic features de-
scribe the shape and contour of the lesion and the tex-
ture features characterize the image properties evolved
from the intension distribution such as echogenicity and
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echotexture. Texture features are helpful to classify
benign and malignant tumors on sonography. The
potential of sonographic texture analysis to improve
breast tumor diagnosis has already been demonstrated
[28-30]. However, the texture analysis is system-depen-
dent. In other words, the disadvantages of these systems
which use texture analysis to classify tumors are they
usually perform well only in one specific ultrasound
system. While Morphological based US diagnosis of
breast tumor will take the advantage of nearly inde-
pendent to either the setting of US system and different
US machines. A CAD based on the shape analysis was
proposed by Chen et al. [31] with good system perfor-
mance. However, it relies on physicians to manually
segment tumors. In this study, we further improved with
an automatic tumor segmentation and shape analysis
CAD system.

Appendix 1

Let 7(0) be a closed initial planar curve in a Euclidean plane %>, and let
7(2) be the family of curves which is generated by the movement of the
initial curve y(0) in the direction of its normal vector N. Moreover, we
assume that the speed of this movement is a scalar function F of the
curvature K.

The main idea in the level set approach is to represent the front
y(f) as the level set [23] of a function ¢. In other words, given a
moving closed hypersurface p(7), that is, p(r = 0): [0,00) — R", we
wish to produce a formulation for the motion of the hypersurface
propagating along its normal direction with speed F. Hence, the idea
of the level set methodology is to embed this propagating interface as
the zero level set of a higher dimension function ¢. The function ¢ is
defined as follows. Let ¢(x,t = 0) for x is a point in RY, be defined
by

d(x,t = 0) = +d, (7)

where d is the distance from x to y(z = 0), and the sign is chosen if the
point x is outside (plus) or inside (minus) the initial hypersurface
y(t = 0). Thus, we have an initial function ¢(x,7 = 0): R —R with the
property that

7t =0) = (x[¢(x,2 = 0) = 0). (3)

The goal is to produce an equation for the evolving function ¢(x,?),
which contains the embedded motion of y(¢) as the level set [23]. To do
so, let x(¢) be the path of a point on the propagating front. That is
x(t =0) is a point on the initial front y(z = 0), and x,n = F(x(¢)) with
the vector x, normal to the front at x(7). Since the evolving function ¢
is always zero on the propagating hypersurface, we must have

P(x(1),1) = 0. (9)

By the chain rule,

¢+ V(x(1), 1) - x'(t) = 0. (10)

Since F supplies the speed in the outward normal direction, then
X'(t) - n = F where n = V¢/|V¢| and we have the evolution equation
for ¢, namely

b+ FIV¢| =0, (11)

with a given value of ¢(x,t=0). This is the level set equation
introduced by Osher and Sethian [10].

To help illustrate these ideas, Figure 5 shows the outward propa-
gation of an initial curve and the accompany motion of the level set
function ¢. Suppose the initial front y at t=0 is a circle in the

xy-plane, as shown in Figure 5(a). Thus, the circle is the level set [23] of
an initial surface z = ¢(x,p,r = 0) in R>, as shown in Figure 5(b). We
can then match the moving curves y(¢) in such a way that the level set
[23] always yields the moving front, as shown in Figures 5(c) and (d).

Appendix 2

If there is a training example set S, {(x;,1:),<;<y}, Where x; € R" and
¥ € {—1,1} is a class label. The goal of SVM is to define a hyperplane
which divides S such that all the points with the same label are on the
same side of the hyperplane while maximizing the distance between the
two classes and the hyperplane, as shown in Figure 7. This means to
find a pair (w, b) such that

yiw-xi+b)>1, i=1,...,N (12)

where w e R" and b € R.

According to Equation (12), we can know the minimal distance
between the closest point and the hyperplane is 1/|/w]||. Besides, the
OSH is a hyperplane which the distance to the closest point is maximal.
Hence, in order to find the OSH, we must minimize ||w||> under con-
straint Equation (12).

If we denote with & = (0,20, ...,0y) the N nonnegative Lagrange
multipliers associated with constraint Equation (12), the problem of
finding OSH is Equivalent to the maximization of the function

1
W(a) = Z %= Z 00 YiyiXi - X,

i=1 ij=1

(13)

N
where o; > 0 and under constraint  y;o; = 0.
i=1
Once the vector a = (5@,&2, ...,ay) solution of Equation (13) has
been found, the OSH (W, ) has the following expansion:

N
w= E 0 YiXis
=1

while 5 can be determined from & and from the Kiihn—Tucker
conditions [32]

(14)

&,(yl(V_VXI+B)_1):O7 1217277]\] (15)

By the way, the corresponding training examples (x;,);) with non-
zero coefficients o; are called support vectors. At last, the decision
function of classifying a new data point x can be written as:

S(x) = sgn(z %yiX; - X + b). (16)
i=1

The training example set that we want to classify is usually linearly
nonseparable. To achieve better generalization performance, the input
data can first be mapped into a high-dimensional feature space. Then
the OSH is constructed in the feature space.

If ®(x) denotes a mapping function that maps x into a high-
dimensional feature space, Equation (13) is then rewritten as follows:

N
W(a)zz:ai—%Zaiajyiy@(xi)Aq’(Xj) (17)
i=1

Now, let K(x;,x;) = ®(x;) - ®(x;) we can rewrite Equation (17) as

N N
1
(o) = Z % =5 Z o021y K (X1, X; ), (18)
p =

where K is called a kernel function and must satisfy Mercer’s theorem
[15]. Finally, the decision function becomes

N
S(x)= sgn(z o yiK (X;, X) + b). (19)
=1
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