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Abstract— This paper studies the QoS-aware replica placement
problem. Although there has been much work on replica place-
ment problem, most of them concerns average system perfor-
mance and ignores quality assurance issue. Quality assurance
is very important, especially in heterogeneous environments. We
propose a new heuristic algorithm that determines the positions
of replicas in order to satisfy the quality requirements imposed by
data requests. The experimental results indicate that the proposed
algorithm finds a near-optimal solution effectively and efficiently
for algorithm can also adapt to various parallel and distributed
environments.

I. INTRODUCTION

Grid computing is an important mechanism for utilizing
computing resources that are distributed in different geograph-
ical locations, but are organized to provide an integrated ser-
vice. A grid system provides computing resources that enable
users in different locations to utilize the CPU cycles of remote
sites. In addition, users can access important data that is only
available in certain locations, without the overheads of repli-
cating it locally. These services are provided by an integrated
grid service platform, which helps users access the resources
easily and effectively. One class of grid computing, and the
focus of this paper, is Data Grids, which provide geographi-
cally distributed storage resources for complex computational
problems that require the evaluation and management of large
amounts of data. For example, scientists working in the field
of bioinformatics may need to access human genome databases
in different remote locations. These databases hold tremendous
amounts of data, so the cost of maintaining a local copy at
each site that needs the data would be prohibitive. In addition,
such databases are usually read-only, since they contain the
input data for various applications, such as benchmarking,
identification, and classification. With the high latency of
the wide-area networks that underlie most Grid systems, and
the need to access/manage several petabytes of data in Grid
environments, data availability and access optimization have
become key challenges that must be addressed.

An important technique that speeds up data access in Data
Grid systems is to replicate the data in multiple locations so
that a user can access the data from a server in his vicinity. It
has been shown that data replication not only reduces access
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costs, but also increases data availability in many applications.
[1], [2], [3]. Although a substantial amount of work has been
done on data replication in Grid environments, most of it has
focused on infrastructures for replication and mechanisms for
creating/deleting replicas [4], [5], [6], [7], [3], [8], [2], [9].
[4]1, [5], [6], [71, [3], [8], [2], [9]. We believe that, to obtain
maximum benefits from replication, a strategic placement of
replicas is essential.

Although there has been much work on replica placement
problem [10], [11], [12], [13], [14], very few of them concerns
quality of service. A large part of these work concerns the
average system performance, for example, to minimize the
total accessing cost, or to minimize the total communica-
tion cost, etc. Although these metrics are important in the
overall system performance, they cannot meet the individual
requirement adequately. Grid computing infrastructure usually
consists of various type of resources and the performance
of these resources are quite diverse. Moreover, different sites
may have different service quality requirements according to
the system performance of the sites. Therefore, quality of
service is an important factor in addition to overall system
performance.

An early work by Tang and Xu [15] considered the quality
of service in addition to minimize the storage and update cost.
The distance between two nodes is used as a metric for quality
assurance. A request must be answered by a server within the
distance specified by the request. Every request knows the
nearest server that has the replica and the request takes the
shortest path to reach the server. Their goal has been to find a
replica placement that satisfies all requests without violating
any range constraint, and minimize the update and storage
cost at the same time. They show that this QoS-aware replica
placement problem is NP-Complete for general graphs, and
provide two heuristic algorithms — [-Greedy-Insert and
l-Greedy-Delete, for general graph. A dynamic program-
ming solution is given for tree topology [15].

In this paper, we study the QoS-aware replica placement
problem and provide a new heuristic algorithm to decide the
positions of the replicas to improve system performance and
satisfy the quality requirements specified by the user simul-
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taneously. Our algorithm efficiently computes near-optimal
solutions, so that it can be deployed in various realistic
environments.

The rest of this paper is organized as follows. Section II
describes previous work about replica placement. Section III
describes the system model and notations. Section IV presents
our algorithm and time complexity analysis. Section V
presents our experimental results and provides some analysis
on the results. Section VI summarizes our research results and
major contributions.

II. RELATED WORKS

Optimal replica placement problem has been studied ex-
tensively in the literature. The same problem has different
names in different research areas. For example, it is refereed
to as p-median problem in operations research, or database
location problem on Internet and file allocation problem in
computer science. Wolfson and Milo [14] proved that replica
placement problem is NP-Complete for general graphs when
read and update cost are simultaneously considered. They also
provide optimal solutions for special topologies, including
complete graph, tree, and ring. Tu and Xu [12] study the
secure data placement problem in the same model and provide
a heuristic algorithm for general graphs. Krick et al. [11]
consider read, update and storage cost simultaneously in
general graph, and provide an polynomial time approximation
algorithm that has a constant competitive ratio. They also
provide an optimal solution for tree topology in the same
paper. Kalpakis, Dasgupta and Wolfson [10] consider read,
update and storage cost under tree topology. Their algorithm
could cope with the situations even when servers have capac-
ity limits. They describe an O(n3p?) dynamic programming
algorithm for p replicas placed in n incapacitated servers,
and an O(np?A2, ) algorithm for capacitated servers, where
Amaz denotes the maximum capacity among all servers. Unger
and Cidon [13] provide a more efficient algorithm to find the
optimal placement under the same model, with only O(n?)
time, where n is the number of servers. However, the algorithm
in [13] cannot deal with server capacity limits. There are
other algorithms that provide optimal solutions under simpler
models for tree topology [16], [17].

Although there has been a lot of work studying the optimal
replica placement problem, very few of them concern quality
of service. The goal in these efforts is usually to minimize the
total replication cost. The replication cost may contain read,
update and storage cost, depending on the system model. The
objective has usually been to improve the average system per-
formance, without any quality-of-service quarantees. An early
effort by Tang and Xu [15] suggested a QoS-aware replica
placement problem to cope with the quality-of-service issues.
Every edge uses the distance between the two end-points as
a cost function. The distance between two nodes is used as a
metric for quality assurance. A request must be answered by
a server that is within the distance specified by the request.
Every request knows the nearest server that has the replica and
the request takes the shortest path to reach the server. Their
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goal has been to find a replica placement that satisfies all
requests without violating any range constraint, and minimize
the update and storage cost at the same time. They show that
this QoS-aware replica placement problem is NP-Complete
for general graphs, and they provide two heuristic algorithms,
called [-Greedy-Insert and [-Greedy-Delete, for gen-
eral graph, and a dynamic programming solution for tree

topology.

1) [-Greedy-Insert. [-Greedy-Insert starts with
an empty replication set R, and inserts replicas into
R until all servers’ QoS requirements are satisfied. In
the first step, the algorithm selects (I + 1) replicas that
maximize the normalized benefits among all possible
locations. Normalized benefits is defined as the increased
number of satisfied servers divided by the increased
replication cost due to the selection. In each step, we
examine all possible replacement, each of them replaces
[ replicas with some (I + 1) replicas, and choose the one
that maximizes the normalized benefits. Note that the
removed replicas and the inserted replicas can overlap.

2) [-Greedy-Delete. [-Greedy-Delete works the oppo-
site way as the [-Greedy-Insert. We begin with
having a replica in every node, then it deletes replicas
whose deletion maximizes the replication cost reduction
until there is no replica that can be deleted. In the first
step, [-Greedy-Delete removes the (I + 1) replicas
whose deletion maximizes replication cost reduction
without violating the QoS requirements. In each sub-
sequent step, the algorithm examines all possibilities of
replacing (I41) replicas with [ replicas without violating
QoS requirements, and chooses the one that maximizes
replication cost reduction. We repeat the process until
there is no possible alternative left.

The time complexity of [-Greedy-Insert and I-
Greedy-Delete is O(|V|?) for [ = 0 and O(|V |*+2) for
any [ > 0 [15]. The time complexity for the | = 0 case is
due to shortest path computation. There is a trade-off between
the time complexity and the quality of solution on [ value.
Although the time complexity is a polynomial function of the
number of nodes, the execution time of these two algorithms
are very slow in practice even when [ = 1.

Since [-Greedy-Insert starts by inserting replicas into a
empty replica set, and [-Greedy-Delete starts by deleting
replicas from a full replica set, the execution time of these
two algorithms depends heavily on the number of replicas
in the optimal solution. If the optimal solution has very few
replicas, [-Greedy-Insert becomes more efficient than [-
Greedy-Delete. On the other hand, [-Greedy-Delete
is much more efficient when the optimal solution contains a
lot of replicas.

Won, Indranil and Klara proposed a simpler formulation
about QoS-aware replica placement problem [18]. Their goal
was to minimize the number of replicas in the system. They did
not consider update cost and assumed each server has identical
storage cost. They propsed a simpler and quicker algorithm to



find the solution and gave another proof of NP-Completeness
property of this problem. I describe their algorithm as follows.
Let A be the all-to-all shortest path matrix. Entry (¢, j) denotes
the shortest path distance between server ¢ and server j. B is
an equal size matrix as A. Every entry in row ¢ in B has
identical value that represent the quality requirement of server
i. We then examine every entry of A — B. If the entry is
less than or equals to O, set the entry to 1, otherwise, set the
entry to 0. Let the 0-1 matrix as C'. Column j in C represents
which servers are covered by server j. If we find a set of
columns which cover all rows in the matrix, we find a replica
placement which satisfies all servers’ requests. Every iteration
in the algorithm, we select the column j (server j) with most
rows not covered so far. I call this algorithm Greedy MSC
(Greedy Minimum Set Covering).

In this paper, we propose a simple heuristic algorithm to
find a near optimal placement very efficiently — our algorithm
finds a near-optimal solution in less than two seconds even
when the number of servers is over 1000.

III. SYSTEM MODEL

This section describes our network model. The network is
represented by an undirected graph G = (V, E), where V is
the set of servers, and £ C V x V denotes the set of network
links among the servers. Each link (u,v) € E is associated
with a cost d(u,v) that denotes the communication cost of
the link. We assume that the graph is connected, so that one
server can connect to any other server via a path. We define the
communication cost of a path as the sum of the communication
cost of the links along the path. Because we assume that
a server knows where to find the nearest replica, we define
d(u,v) between two servers u, v to be the communication cost
of the shortest path between them. Every server u has a storage
cost, s(u), that denotes the cost to put a replica on server u.
The storage cost on different nodes may be different. Figure 1
is an example of our model. The numbers in the circles are
server indices between 0 and n—1, where n is the total number
of servers. The number next to a server is its storage cost. The
number on a link is the communication cost of the link.

@ Origin Server

62
%ﬁg‘g‘:‘ Replicated Server

Fig. 1. An example of data replication in connected network.
Each server in the network services multiple clients, al-
though we do not place clients into the network graph. A
client sends its requests to its associated server, then the server
processes the request. If the client’s requests can be served
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by the server, i.e., the local server has the requested data,
the requests will be processed locally. Otherwise, the request
will be directed to the nearest server that has the replica.
As a result, we assume that all requests are issued from the
servers and there are only servers in the network graph. In
addition, because the communication cost from the clients to
servers does not affect the replication decision, we ignore the
communication cost from clients to servers.

There is a special server r, called origin server, in the
network graph. Without lose of generality, we assume that
server 0 is the origin server. Initially only the origin server
has the data. A replica server is a server that has a copy of
the original data. A replication strategy, R C V — {r}, is a
set of replica servers.

We use replication cost to evaluate replication strategies.
The replication cost T'(R) of a replication strategy R is defined
as the sum of the storage cost S(R) and the update cost U(R).

T(R) = S(R) + U(R) (1

a) Storage cost: The storage cost of a replication strategy
R is the sum of all storage cost of the replica servers.

S(R) = Z s(v)

vER

2

b) Update cost: In order to maintain data consistency, the
original server r issues update requests to every replica server.
The update frequency p denotes the number of update requests
issued by r per time period. We assume that there is an
update distribution tree T', which connects all the servers in the
network. For example, in our experiments, we use a shortest
path tree rooted at the origin server as the update distribution
tree. As in Figure 1, we use bold lines to represent the edges
of the shortest path tree. The origin server r multicasts update
requests through links on this tree until all the replica servers
in R receive the update requests. Every node receives update
requests from its parent and relays these requests to its children
according to the update distribution tree.

Given the network, the update distribution tree, the update
frequency p, the update cost of a replication strategy R is
defined as follows. Let p(v) be the parent of node v in the
update distribution tree, and T, be the subtree rooted at node
v. If T, N R # 0, the link (v,p(v)) participates the update
multicast. As a result, the update cost is the sum of the
communication costs from these links (v, p(v)). For example,
in Figure 1 if the update rate is 1 and the replication strategy
R is {1,5,6}, then the update cost is 11 + 13 + 9 = 33.

>

v#r, TyNRAD

U(R) = p x d(v, p(v)) (€)

A. Service Quality Requirement

Every server u has a service quality requirement g(u). The
requirement mandates that all requests generated by u will
be serviced by a server within ¢(u) communication cost. We
assume that every server in the network knows the nearest



replica server from itself. If a request is serviced by the
nearest replica server within g(u), the request is satisfied,
otherwise, the request is violated. If all requests in the system
are satisfied, the replication strategy is called feasible. The
QoS-aware replica placement problem is to find the feasible
replication strategy such that the replication cost in Equation 1
is minimized.

For example, in Figure 1, if the quality requirement is 8 for
all servers and the replication strategy is {1,5,6}. It is easy to
verify that the replication strategy together with origin server
can satisfy all requests within the network. The storage cost
is 74845 = 20, the update cost is 33, so the replication cost
is 53.

IV. HEURISTIC ALGORITHMS

In this section, we propose a new heuristic algorithm, called
Greedy-Cover, that finds good solutions for QoS-aware
replica placement problem in general graphs. We start with
definitions. The cover set c¢(u) of a server u is the set of
servers that are within the QoS requirement ¢(u) from w.

c(u) = {v]d(v,u) < q(u)} C

Each server has its own cover set. If a server w € ¢(u) has
a replica on it, u could be satisfied by the server w. Thus,
every server in c(u) is a candidate server to place a replica in
order to satisfy server u. We first observe that if ¢(u) C ¢(v),
we do not need to consider c¢(v). If we put a replica on server
w € c(u), the server w can satisfy u and v simultaneously.

We then observe that if |c(v)| > |c(u)|, v is more likely
to be satisfied than u is. Consequently, v has more chance
to be satisfied during processing other cover sets. The reason
is that if ¢(v) has more elements, it is more likely that ¢(v)
will overlap with other cover sets. Consequently v is likely
to be covered by other cover sets. Our intuition is that if we
place the replica so that the server with the smallest cover
set is satisfied first, this replica may satisfy other servers with
larger cover sets as well. That is, we may find a replication
strategy with less replica servers, and the replication cost may
be reduced. Based on these observations and intuition, we
propose the Greedy-Cover algorithm.

The first step in Greedy-Cover is to find the cover
set of each server in the network. Second, we remove all
super cover sets c(v) that contains some other cover set,
c(u). That is, if ¢(u) C c(v),u # v, we remove v from
those servers that must be satisfied. In each subsequent step,
Greedy-Cover chooses the smallest cover set ¢, examines
every server s, and puts a replica on a server s in ¢ with
the highest normalized benefit. Normalized benefits is defined
as the increased number of satisfied requests divided by the
increased replication cost due to the selection [15]. If the newly
placed replica satisfies other cover sets, these cover sets are
removed. After Greedy-Cover updates the set of cover sets,
only those unsatisfied cover sets remain. Greedy-Cover
then chooses the smallest cover set among those remaining
cover sets and repeats the process until all cover sets are
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satisfied. The pseudo code of algorithm Greedy-Cover is
given in Algorithm 1.

Algorithm 1: The pseudo code of Greedy-Cover algo-
rithm
Data: G = (V, E), every node’s QoS requirement
Result: feasible replication strategy
begin
find all-pairs shortest path distance
build shortest path tree rooted at vy
mark vg as satisfied // because vy has
origin copy
fori —0to |V|—1do
builds cover set
if v; was not satisfied by vy then
for j—0to |V|—1do
if distanceli, j] < v;’s QoS then
| add j to v;’s cover set
end
end
end

// this for loop

end
remove super cover sets

while there exists unsatisfied cover sets do
select min_cover_set from unsatisfied cover sets

Max_N «— —1 // initialize maximum
normalized benefit

for v; in min_cover_set do

put a replica on v;

N; < normalized benefits of the newly
placed replica

if N; > Max_N then
Max_N «— Nz

best_server «— v;
end

take off the newly placed replica from v;

end
mark best_server is replicated
remove cover sets satisfied by best_server

end

end

A. Time Complexity

We analyze the time complexity of the three phases of
Greedy-Cover. In the first phase, Greedy-Cover finds
the cover set of every server in the network. Every cover set
could be identified by checking |V| servers in the network.
Since every server has a cover set, it takes O(|V]?) to find all
the cover sets in the network.

In the second phase, Greedy-Cover identifies and deletes
super cover sets in the network. In order to identify all the
super cover sets, Greedy-Cover needs to check all pairs of
cover sets, which have O(|V'|?) possibilities. It takes O(|V|)
to check a pair of cover sets, so it takes Greedy-Cover
O(|V|?) time to identify and delete the super cover sets.



In the last phase, Greedy-Cover inserts replicas into
the network iteratively until all servers are satisfied. First,
Greedy-Cover selects the smallest cover set, which can be
done by an initial round of sorting the cover sets by size. After
finding the smallest cover set ¢, Greedy-Cover calculates
normalized benefits for all servers in ¢ and puts a replica
on the server with the maximum normalized benefits. Both
the calculations of increased satisfied servers and increased
replication cost due to a newly placed replica take O(|V])
time, so it takes O(|V]) time to compute the normalized benefit
for a replica. The size of a cover set is O(]V|) and there are
O(]V']) cover sets to consider in the worst case. As a result, it
takes Greedy-Cover O(|V|log|V|+ [V |?) = O(]V|?) time
to finish the last phase.

V. PERFORMANCE EVALUATION

This section describes our experimental results. For compar-
ison purpose Tang and Xu [15] formulate the replica placement
as an integer programming problem. They then relax the re-
quirements for an integer solution, and consequently transform
the integer program into a linear program. Since the solution
of this linear program is a lower bound for the solution of
the original replica placement problem, this “super” optimal
solution is used as a performance measurement criteria [15].
We compare the solution from our heuristic algorithm with
this super optimal solution. The ratio of cost from the heuristic
algorithm to cost from the super optimal solution is referred
to as normalized replication cost.

We now explain the process of how to obtain this super
optimal solution [15]. Let V' = {r,v1,v2,...,v,_1} be the set
of servers. The replica placement problem can be expressed
as the following integer program.

to minimize Z (s; X i + d(vi, p(v;)) X ;) (5)

n>t>0

subject to

n>Vi>0Ad(vi,r) > q(vy),

>

d(vi,v;)<q(vi)

z; > 1 (6a)

n>Vi>0, Yi = T

(6b)

n > Vi, j>0Ap(v;) = v, Yi > yj (6¢)
n>Vi>0, zi,yi € {0,1}

(6d)

The variable z; is 1 if a replica is placed at server v;, and
0, otherwise, and the variable y; is 1 if y; receives data update
requests from its parent p(v;) in the update distribution tree
T [15]. If we relax the integer requirement we have a linear
program, which has a better optimal solution than the original
integer program. Note that an optimal solution from the linear
program may not even be a feasible solution for the integer
program, but it serves as a lower bound on the total replication
cost and could be used to measure how close we are from the
optimum. We define normalized replication cost to be the the

ratio between the cost from an algorithm and the cost from
the linear program, and use this ratio as a performance metric.

In our experiments, the network topology was generated
according to Waxman model [19]. In this model, N nodes are
randomly placed into an s-by-s square. We then repeatedly
connect nodes until the network becomes connected. A link
is inserted to connect two nodes u and v with probability
p(u,v) = Be~dwv)/oL where d(u,v) is the Euclidean
distance between u and v, L = \/2s is the largest possible
distance between two nodes in the square, and « and [ are
parameters in the range (0, 1]. Larger value of [ introduces
higher edge density, and the value of « controls the relative
ratio of the number of short edges to the number of long
edges [19]. The cost of edge (u,v) is set to d(u,v).

In our experiments the number of points N is set to 100
and the size of the domain s is set to 1000. The parameters
« and [ are set to 0.05 and 0.7 respectively. We generate 100
graphs using GT-ITM modeling tools [20] and the average
number of edges in is 332. We assume that server O is the
origin server, from which we construct an update distribution
tree by connecting every server to server 0 by a shortest path.
Finally, the default storage cost is set to 1000 and the default
QoS requirement is set to 1000.

A. The effects of QoS

First, we compared the normalized replication cost
of Greedy Cover with [-Greedy-Insert and I-
Greedy-Delete under different QoS requirements. Fig-
ure 2 illustrates the normalized replication cost under different
QoS requirements when the storage cost is set to 1000. From
Figure 2, we observe that 1-Greedy-Delete always finds
the best placement and the performance of Greedy Cover
is only second to 1-Greedy-Delete. |-Greedy-Delete
aggressively tries to reduce the replication cost, so it finds bet-
ter solution than other algorithms. Initially, Greedy-Delete
assigns a replica to every server, which ensures a feasible
configuration. Starting from this feasible state, in each iteration
1-Greedy-Delete searches for a replica set whose deletion
causes the maximum reduction in the total cost, so it is more
likely to get achieve low cost.

We expected the performance of 1-Greedy-Insert will
be similar to 1-Greedy-Delete. However, the experiments
show that the cost of 1-Greedy-Insert is nearly twice of 1-
Greedy-Delete when QoS values are large, e.g., larger
than 2000. When the QoS parameter increases to 3000, the
network in average needs less than one replica to satisfy
requests from all servers. However, if there are servers not
satisfied by the origin server, 1-Greedy-Insert will always
insert at least 2 replicas in the first step, so it has twice storage
cost as the other algorithms.

When QoS is less than 2000, Greedy MSC has the high-
est normalized replication cost, even higher than 0-Greedy
Delete. When QoS is 3000, the cost ratio increases to
more than 2. From Table I, we observe that the number
of replicas from Greedy MSC is almost the same to 1-
Greedy-Delete, which is the best among all algorithms.
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Consequently, the high cost ratio of Greedy MSC is not due
to the number of replicas, but due to the update cost. In other
words, the position of these replicas causes high normalized
replication cost. This is because that Greedy MSC selects the
candidate server only according to the number of unsatisfied
servers, but fails to consider update cost.

Table I shows the average number of replicas 1-
Greedy-Insert, 1-Greedy-Delete, Greedy Cover
and Greedy MSC under different QoS requirements in 100
Waxman model graphs. From Table I we find similar perfor-
mance trend as in Figure 2. When QoS is 2500 and 3000, the
average number of replicas of 1-Greedy-Insert is twice
as those of the other two algorithms. This is consistent with
our previous observation of 1-Greedy-Insert in Figure 2.

From Table I we also find that 1-Greedy-Insert uses slightly
more replicas than the other two algorithms. This is because
[-Greedy-Insert makes decisions based on normalized
benefits, not on the number of servers that will be satisfied. A
placement having a larger normalized benefit value does not
guarantee that more servers will be satisfied by this selection,
and a selection with smaller value of normalized benefits may
be able to satisfy all unsatisfied servers’ requests in the same
iteration. This causes 1-Greedy-Insert puts more replicas
than the other algorithms do.

Constant Storage Cost: 1000

2.4
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o
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a
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[
g 16t
©
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Fig. 2. Performance comparison under different QoS requirement, storage
cost = 1000

QoS 1l-Insert I-Delete GC MSC
250 68.15 68.19 68.17 68.42
500 37.21 37.17 37.20 38.34
1000 12.68 12.28 12.63 13.25
1500 5.62 5.00 5.24 5.34
2000 3.11 2.15 2.33 2.26
2500 2.10 1.11 1.22 1.13
3000 1.10 0.53 0.56 0.53
TABLE 1

AVERAGE NUMBER OF REPLICAS UNDER DIFFERENT QOS REQUIREMENT,
THE DISTRIBUTION OF QOS IS CONSTANT
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Constant Storage Cost: 1000
19 T

T
0-Greedy-Insert —=—
0-Greedy-Delete —«—
1-Greedy-Insert —&—,
1-Greedy-Delete
Greedy-Cover
Greedy-MSC

Normalized Replication Cost

Uniform QoS (10’s exponent)

Fig. 3. Performance comparison when QoS values are taken from a uniform
distribution.

QoS l-Insert 1-Delete GC MSC

[0,2 x 107] 26.00 2596 26.04 26.71

[0,2 x 10%] 10.98 10.87 1095 11.21

[0,2 x 10%] 433 412 414 420

[0,2 x 10*°] 222 177 177 295

[0,2 x 10°] 1.12 0.66 0.66  0.66
TABLE 1I

AVERAGE NUMBER OF REPLICAS UNDER DIFFERENT QOS REQUIREMENT,
THE DISTRIBUTION OF QOS IS UNIFORM

Figure 3 and Table II show the normalized replication cost
and the average number of replicas when QoS is from a
uniform distribution. When the QoS uniform distribution has
a mean value of 1000, the network needs more replicas than
when QoS is set to a constant 1000. On the other hand, when
QoS is from a uniform distribution the normalized replication
cost of Greedy Cover is closer to 1-Greedy-Delete
than when the QoS is set to a constant 1000. Finally, the
relative order of the normalized replication cost from all
algorithms under uniform distribution of QoS is similar to the
case when QoS is a constant.

B. The effects of «

« l-Insert 1-Delete GC MSC
0.05 12.68 1228 12.63 13.25
0.10 4.15 3.58 3.71 3.83
0.15 2.25 1.27 1.43 1.26
0.20 1.54 0.75 0.81 0.75

TABLE III

AVERAGE NUMBER OF REPLICAS UNDER DIFFERENT «

Figure 4 illustrates the relationship between « and normal-
ized replication cost and Table III shows the average number
of replicas. When « increases, both the probability of using
longer edges to connect nodes and the number of edges in



0-Greedy-Insert

Greedy-MSC —=— |

Normalized Replication Cost
o

11 L L
0.05 0.1 0.15 0.2
alpha

Fig. 4. Performance comparison for different o values.

the graph increase. As a result it is easier to satisfy the QoS
requirement with only a few replicas.

The normalized replication cost of 1-Greedy-Insert
increases abruptly when « is larger than 0.15. When «
is 0.15, about half of the 100 graphs can be satisfied by
one replica, and when « is 0.2, almost all graphs can be
satisfied by one replica. When the average number of replicas
required is less than one, the cost introduced by first step
of 1-Greedy-Insert dominates the total cost. so that the
normalized replication cost of 1-Greedy-Insert suddenly
increases when « reaches 0.15.

The performance trend of varying « (Figure 4) is similar
to that of varying QoS requirements (Figure 2). The effect
of increasing « is similar to increasing QoS values of every
server — both increase the chance that a server is satisfied by
replicas. As a result we find similar phenomena in Figure 4
as in Figure 2. For example, when the servers in a network
are more easily satisfied, the normalized replication cost of 1-
Greedy-Insert becomes higher, 1-Greedy-Delete is
always better than Greedy Cover, and a larger [ value
brings a better solution.

C. Execution time

Table IV compares average execution time from 100
graphs from 1-Greedy-Insert, 1-Greedy-Delete and
Greedy Cover under different QoS values. We do not
consider 0-Greedy-Insert and 0-Greedy-Delete be-
cause their normalized replication costs are much higher
than Greedy Cover. The Greedy Cover uses only a
few millisecond in average to calculate a placement, but 1-
Greedy Insert or 1-Greedy Delete requires a signif-
icant amount of time to complete. We conclude that Greedy
Cover is much more efficient than the two algorithms.

Although the solution quality of 1-Greedy-Delete is
slightly better than Greedy Cover, the difference is very
small. In constant and uniform QoS case, the difference is
9% and 1% respectively. Greedy Cover is a very ef-
ficient and effective algorithm for QoS replica placement

since it runs much faster than 1-Greedy-Insert and 1-
Greedy-Delete and produces solutions that are almost as
good.

Despite that Greedy MSC runs faster than Greedy
Cover, the difference is small. However, from previous
experiments the placements produced by Greedy MSC have
very high normalized replication cost, due to the fact that
it considers only the number of replicas. Although Greedy
MSC is efficient, it is not effective due to its poor solution
quality.

QoS I-Insert 1-Delete GC MSC

250  1.020s 0.421s 0.0059s  0.0027s

1000  0.143s 2.164s 0.0035s  0.0010s

2500  0.008s 4.807s 0.0001s  0.0003s
TABLE IV

AVERAGE EXECUTION TIME OF 100 GRAPHS UNDER DIFFERENT QOS

From Table IV we find that the execution time of 1-
Greedy-Insert and 1-Greedy-Delete are strongly af-
fected by QoS parameters. When QoS requirement is stringent,
i.e., the QoS value is small, 1-Greedy-Insert requires
more iterations to find the solution than 1-Greedy-Delete.
From Table I we know that when QoS equals 250, the network
needs about 70 replicas to satisfy all servers’ requests. 1-
Greedy-Insert starts from a state in which none of servers
has a replica and every iteration of 1-Greedy-Insert
increases the number of replicas by one. On the other hand,
1-Greedy-Delete places a replica in every server initially
and decreases the number of replicas by one in every iteration.
Therefore 1-Greedy-Insert spends more time than 1-
Greedy-Delete when QoS requirement is stringent. On
the contrary, when QoS requirement is less stringent, like
2500, the situation is reversed. In Table IV, we could see
1-Greedy-Insert just spends eight milliseconds and 1-
Greedy-Delete needs more than 4 seconds when QoS
equals 2500.

Table V illustrates the relationship between the number
of servers and execution time of 1-Greedy-Insert, I-
Greedy-Delete and Greedy Cover. We observe that
Greedy Cover uses less than 2 seconds even when the
number of servers is 1100. 1-Greedy-Insert uses 88
seconds in the same setting. In addition, from previous ex-
periments Greedy Cover produces better solution than 1-
Greedy-Insert does, so Greedy Cover is a superior
algorithm to 1-Greedy-Insert.

Although 1-Greedy-Delete has the best placement
quality among three algorithms, it is much slower than 1-
Greedy-Insert and Greedy Cover. When the number
of servers is 500, 1-Greedy-Delete needs more than
1 hour to complete. Although the execution time of 1-
Greedy-Insert increases as the number of servers in-
creases, it does not grow so rapidly as 1-Greedy-Delete
does. The reason is that when the number of servers in-
creases in a fix-sized region, the requests are much eas-
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ier to be satisfied, consequently 1-Greedy-Insert re-
quires less number of iterations than 1-Greedy-Delete
does. Although a larger number of servers makes both 1-
Greedy-Insert and 1-Greedy-Delete spend more time
per iteration, 1-Greedy-Insert requires less number of
iterations than 1-Greedy-Delete does, so the execution
time of 1-Greedy-Delete grows much faster than 1-
Greedy-Insert.

Table V indicates that both 1-Greedy-Insert and 1-
Greedy-Delete are easily influenced by the number of
servers in the network. On the contrary, Greedy Cover is
very stable and scalable. Greedy Cover can be deployed
to large network systems with more than 1000 nodes, and
deliver near optimal solution within a reasonable computation
overhead.

# of servers 1-Insert 1-Delete GC MSC
100 0.586s 1.100s  0.006s 0.001s
300 10.599s 274.900s 0.184s 0.015s
500 25.594s  4198.000s 0.572s  0.027s
700 41.585s N/A  1.029s 0.038s
900 67.950s N/A  1.256s 0.051s
1100 88.358s N/A  1.821s 0.101s

TABLE V

AVERAGE EXECUTION TIME OF 10 GRAPHS UNDER DIFFERENT NUMBER
OF NODES, QoS =500

VI. CONCLUSION

Data replication is an important technique to speed up data
access in Data Grid. Grid computing infrastructure usually
consists of various type of resources and the performance
of these resources are quite diverse. So to provide quality
assurance for different data access requirements is more and
more important. We consider this problem as QoS-aware
replica placement problem.

In this paper, we have presented an effective and efficient
algorithm Greedy-Cover to solve the QoS-aware replica
placement problem. The algorithm is very simple and easy
to adapt to variant environments. Greedy Cover’s perfor-
mance is stable. It is not heavily influenced by QoS values.
Experiment results indicate that Greedy-Cover efficiently
finds near-optimal solutions in all parameter combinations.
Moreover, Greedy-Cover is scalable, and is able to com-
pute a near-optimal solution in two seconds when the number
of servers equals 1100. In addition, when the quality of service
guarantee becomes more stringent, the performance advantage
of Greedy-Cover over other algorithms in the literature
becomes more significant.
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