
A QoS-Aware Heuristic Al
Placemen

Hsiangkai Wang #1, Pangfeng Liu
#Department of Computer Science and Information En

Taipei, Taiwan
1pangfeng@csie.ntu.

2hsiangkai@gmail.
∗institute of Information Science

Taipei, Taiwan
3wuj@iis.sinica.ed

Abstract— This paper studies the QoS-aware replica placement
problem. Although there has been much work on replica place-
ment problem, most of them concerns average system perfor-
mance and ignores quality assurance issue. Quality assurance
is very important, especially in heterogeneous environments. We
propose a new heuristic algorithm that determines the positions
of replicas in order to satisfy the quality requirements imposed by
data requests. The experimental results indicate that the proposed
algorithm finds a near-optimal solution effectively and efficiently
for algorithm can also adapt to various parallel and distributed
environments.

I. INTRODUCTION

Grid computing is an important mechanism for utilizing
computing resources that are distributed in different geograph-
ical locations, but are organized to provide an integrated ser-
vice. A grid system provides computing resources that enable
users in different locations to utilize the CPU cycles of remote
sites. In addition, users can access important data that is only
available in certain locations, without the overheads of repli-
cating it locally. These services are provided by an integrated
grid service platform, which helps users access the resources
easily and effectively. One class of grid computing, and the
focus of this paper, is Data Grids, which provide geographi-
cally distributed storage resources for complex computational
problems that require the evaluation and management of large
amounts of data. For example, scientists working in the field
of bioinformatics may need to access human genome databases
in different remote locations. These databases hold tremendous
amounts of data, so the cost of maintaining a local copy at
each site that needs the data would be prohibitive. In addition,
such databases are usually read-only, since they contain the
input data for various applications, such as benchmarking,
identification, and classification. With the high latency of
the wide-area networks that underlie most Grid systems, and
the need to access/manage several petabytes of data in Grid
environments, data availability and access optimization have
become key challenges that must be addressed.

An important technique that speeds up data access in Data
Grid systems is to replicate the data in multiple locations so
that a user can access the data from a server in his vicinity. It
has been shown that data replication not only reduces access

costs, b
[1], [2]
done o
focused
creatin
[4], [5]
maxim
replica

Alth
problem
quality
average
total a
tion co
overall
require
consist
of thes
may ha
the sys
service
perform

An e
of serv
The dis
assuran
distanc
nearest
shortes
replica
any ra
cost at
placem
provide
l-Gree
ming s

In th
problem
positio
satisfy

1-4244-0344-8/06/$20.00 2006 IEEE 96
gorithm for Replica
t

#2, Jan-Jan Wu ∗3

gineering, National Taiwan University

edu.tw
com

, Adademia Sinia

u.tw

ut also increases data availability in many applications.
, [3]. Although a substantial amount of work has been
n data replication in Grid environments, most of it has

on infrastructures for replication and mechanisms for
g/deleting replicas [4], [5], [6], [7], [3], [8], [2], [9].
, [6], [7], [3], [8], [2], [9]. We believe that, to obtain
um benefits from replication, a strategic placement of
s is essential.
ough there has been much work on replica placement

[10], [11], [12], [13], [14], very few of them concerns
of service. A large part of these work concerns the
system performance, for example, to minimize the

ccessing cost, or to minimize the total communica-
st, etc. Although these metrics are important in the
system performance, they cannot meet the individual

ment adequately. Grid computing infrastructure usually
s of various type of resources and the performance
e resources are quite diverse. Moreover, different sites
ve different service quality requirements according to
tem performance of the sites. Therefore, quality of
is an important factor in addition to overall system
ance.
arly work by Tang and Xu [15] considered the quality
ice in addition to minimize the storage and update cost.
tance between two nodes is used as a metric for quality
ce. A request must be answered by a server within the
e specified by the request. Every request knows the
server that has the replica and the request takes the

t path to reach the server. Their goal has been to find a
placement that satisfies all requests without violating

nge constraint, and minimize the update and storage
the same time. They show that this QoS-aware replica
ent problem is NP-Complete for general graphs, and

two heuristic algorithms – l-Greedy-Insert and
dy-Delete, for general graph. A dynamic program-

olution is given for tree topology [15].
is paper, we study the QoS-aware replica placement

and provide a new heuristic algorithm to decide the
ns of the replicas to improve system performance and
the quality requirements specified by the user simul-

Grid Computing Conference 2006

taneously. Our algorithm efficiently computes near-optimal
solutions, so that it can be deployed in various realistic
environments.

The rest of this paper is organized as follows. Section II
describes previous work about replica placement. Section III
describes the system model and notations. Section IV presents
our algorithm and time complexity analysis. Section V
presents our experimental results and provides some analysis
on the results. Section VI summarizes our research results and
major contributions.

II. RELATED WORKS

Optimal replica placement problem has been studied ex-
tensively in the literature. The same problem has different
names in different research areas. For example, it is refereed
to as p-median problem in operations research, or database
location problem on Internet and file allocation problem in
computer science. Wolfson and Milo [14] proved that replica
placement problem is NP-Complete for general graphs when
read and update cost are simultaneously considered. They also
provide optimal solutions for special topologies, including
complete graph, tree, and ring. Tu and Xu [12] study the
secure data placement problem in the same model and provide
a heuristic algorithm for general graphs. Krick et al. [11]
consider read, update and storage cost simultaneously in
general graph, and provide an polynomial time approximation
algorithm that has a constant competitive ratio. They also
provide an optimal solution for tree topology in the same
paper. Kalpakis, Dasgupta and Wolfson [10] consider read,
update and storage cost under tree topology. Their algorithm
could cope with the situations even when servers have capac-
ity limits. They describe an O(n3p2) dynamic programming
algorithm for p replicas placed in n incapacitated servers,
and an O(n3p2∧2

max) algorithm for capacitated servers, where
∧max denotes the maximum capacity among all servers. Unger
and Cidon [13] provide a more efficient algorithm to find the
optimal placement under the same model, with only O(n2)
time, where n is the number of servers. However, the algorithm
in [13] cannot deal with server capacity limits. There are
other algorithms that provide optimal solutions under simpler
models for tree topology [16], [17].

Although there has been a lot of work studying the optimal
replica placement problem, very few of them concern quality
of service. The goal in these efforts is usually to minimize the
total replication cost. The replication cost may contain read,
update and storage cost, depending on the system model. The
objective has usually been to improve the average system per-
formance, without any quality-of-service quarantees. An early
effort by Tang and Xu [15] suggested a QoS-aware replica
placement problem to cope with the quality-of-service issues.
Every edge uses the distance between the two end-points as
a cost function. The distance between two nodes is used as a
metric for quality assurance. A request must be answered by
a server that is within the distance specified by the request.
Every request knows the nearest server that has the replica and
the request takes the shortest path to reach the server. Their

goal h
request
the upd
this Qo
for gen
called l

eral gr
topolog

1) l

a
R

t
m
l
n
r
e
l

t
r

2) l

s
h
w
u
s
w
w
s
r
Q
r
t

The
Greed
any l >

due to
the tim
Althou
numbe
are ver

Sinc
empty
replica
two al
in the
replica
Greed
is muc
lot of r

Won
about Q
was to
not con
storage

97
as been to find a replica placement that satisfies all
s without violating any range constraint, and minimize
ate and storage cost at the same time. They show that
S-aware replica placement problem is NP-Complete
eral graphs, and they provide two heuristic algorithms,
-Greedy-Insert and l-Greedy-Delete, for gen-
aph, and a dynamic programming solution for tree
y.

-Greedy-Insert. l-Greedy-Insert starts with
n empty replication set R, and inserts replicas into

until all servers’ QoS requirements are satisfied. In
he first step, the algorithm selects (l + 1) replicas that

aximize the normalized benefits among all possible
ocations. Normalized benefits is defined as the increased
umber of satisfied servers divided by the increased
eplication cost due to the selection. In each step, we
xamine all possible replacement, each of them replaces
replicas with some (l+1) replicas, and choose the one

hat maximizes the normalized benefits. Note that the
emoved replicas and the inserted replicas can overlap.
-Greedy-Delete. l-Greedy-Delete works the oppo-
ite way as the l-Greedy-Insert. We begin with
aving a replica in every node, then it deletes replicas
hose deletion maximizes the replication cost reduction
ntil there is no replica that can be deleted. In the first
tep, l-Greedy-Delete removes the (l + 1) replicas
hose deletion maximizes replication cost reduction
ithout violating the QoS requirements. In each sub-

equent step, the algorithm examines all possibilities of
eplacing (l+1) replicas with l replicas without violating
oS requirements, and chooses the one that maximizes

eplication cost reduction. We repeat the process until
here is no possible alternative left.

time complexity of l-Greedy-Insert and l-
y-Delete is O(|V |3) for l = 0 and O(|V |2l+2) for

0 [15]. The time complexity for the l = 0 case is
shortest path computation. There is a trade-off between
e complexity and the quality of solution on l value.
gh the time complexity is a polynomial function of the
r of nodes, the execution time of these two algorithms
y slow in practice even when l = 1.
e l-Greedy-Insert starts by inserting replicas into a
replica set, and l-Greedy-Delete starts by deleting
s from a full replica set, the execution time of these
gorithms depends heavily on the number of replicas
optimal solution. If the optimal solution has very few
s, l-Greedy-Insert becomes more efficient than l-
y-Delete. On the other hand, l-Greedy-Delete
h more efficient when the optimal solution contains a
eplicas.
, Indranil and Klara proposed a simpler formulation
oS-aware replica placement problem [18]. Their goal

minimize the number of replicas in the system. They did
sider update cost and assumed each server has identical
cost. They propsed a simpler and quicker algorithm to

find the solution and gave another proof of NP-Completeness
property of this problem. I describe their algorithm as follows.
Let A be the all-to-all shortest path matrix. Entry (i, j) denotes
the shortest path distance between server i and server j. B is
an equal size matrix as A. Every entry in row i in B has
identical value that represent the quality requirement of server
i. We then examine every entry of A − B. If the entry is
less than or equals to 0, set the entry to 1, otherwise, set the
entry to 0. Let the 0-1 matrix as C. Column j in C represents
which servers are covered by server j. If we find a set of
columns which cover all rows in the matrix, we find a replica
placement which satisfies all servers’ requests. Every iteration
in the algorithm, we select the column j (server j) with most
rows not covered so far. I call this algorithm Greedy MSC
(Greedy Minimum Set Covering).

In this paper, we propose a simple heuristic algorithm to
find a near optimal placement very efficiently – our algorithm
finds a near-optimal solution in less than two seconds even
when the number of servers is over 1000.

III. SYSTEM MODEL

This section describes our network model. The network is
represented by an undirected graph G = (V, E), where V is
the set of servers, and E ⊆ V ×V denotes the set of network
links among the servers. Each link (u, v) ∈ E is associated
with a cost d(u, v) that denotes the communication cost of
the link. We assume that the graph is connected, so that one
server can connect to any other server via a path. We define the
communication cost of a path as the sum of the communication
cost of the links along the path. Because we assume that
a server knows where to find the nearest replica, we define
d(u, v) between two servers u, v to be the communication cost
of the shortest path between them. Every server u has a storage
cost, s(u), that denotes the cost to put a replica on server u.
The storage cost on different nodes may be different. Figure 1
is an example of our model. The numbers in the circles are
server indices between 0 and n−1, where n is the total number
of servers. The number next to a server is its storage cost. The
number on a link is the communication cost of the link.

Origin Server

Replicated Server

(10)

(6)

6

3
4

5

1

7

02

7

6

7

4

5

8

5

(7)

(9)

(6)
(3)

(10)

(10)

(5)
(7)

(3)

(8)
(12)

Fig. 1. An example of data replication in connected network.

Each server in the network services multiple clients, al-
though we do not place clients into the network graph. A
client sends its requests to its associated server, then the server
processes the request. If the client’s requests can be served

by the
the req
will be
As a r
servers
additio
servers
commu

Ther
networ
server
has the
the ori
set of r

We
The rep
as the s

a)
R is th

b)
origina
The up
issued
update
networ
path tre
tree. A
of the s
request
in R re
request
accord

Give
frequen
defined
update
v. If T

multica
commu
in Figu
R is {1

A. Ser

Ever
require
be serv
assume

98
server, i.e., the local server has the requested data,
uests will be processed locally. Otherwise, the request

directed to the nearest server that has the replica.
esult, we assume that all requests are issued from the

and there are only servers in the network graph. In
n, because the communication cost from the clients to
does not affect the replication decision, we ignore the
nication cost from clients to servers.
e is a special server r, called origin server, in the
k graph. Without lose of generality, we assume that
0 is the origin server. Initially only the origin server
data. A replica server is a server that has a copy of

ginal data. A replication strategy, R ⊆ V − {r}, is a
eplica servers.
use replication cost to evaluate replication strategies.
lication cost T (R) of a replication strategy R is defined
um of the storage cost S(R) and the update cost U(R).

T (R) = S(R) + U(R) (1)

Storage cost: The storage cost of a replication strategy
e sum of all storage cost of the replica servers.

S(R) =
∑

v∈R

s(v) (2)

Update cost: In order to maintain data consistency, the
l server r issues update requests to every replica server.
date frequency μ denotes the number of update requests
by r per time period. We assume that there is an
distribution tree T , which connects all the servers in the
k. For example, in our experiments, we use a shortest
e rooted at the origin server as the update distribution

s in Figure 1, we use bold lines to represent the edges
hortest path tree. The origin server r multicasts update
s through links on this tree until all the replica servers
ceive the update requests. Every node receives update
s from its parent and relays these requests to its children
ing to the update distribution tree.
n the network, the update distribution tree, the update
cy μ, the update cost of a replication strategy R is
as follows. Let p(v) be the parent of node v in the

distribution tree, and Tv be the subtree rooted at node
v ∩ R �= ∅, the link (v, p(v)) participates the update
st. As a result, the update cost is the sum of the
nication costs from these links (v, p(v)). For example,
re 1 if the update rate is 1 and the replication strategy
, 5, 6}, then the update cost is 11 + 13 + 9 = 33.

U(R) = μ×
∑

v �=r, Tv∩R�=∅

d(v, p(v)) (3)

vice Quality Requirement

y server u has a service quality requirement q(u). The
ment mandates that all requests generated by u will
iced by a server within q(u) communication cost. We
that every server in the network knows the nearest

replica server from itself. If a request is serviced by the
nearest replica server within q(u), the request is satisfied,
otherwise, the request is violated. If all requests in the system
are satisfied, the replication strategy is called feasible. The
QoS-aware replica placement problem is to find the feasible
replication strategy such that the replication cost in Equation 1
is minimized.

For example, in Figure 1, if the quality requirement is 8 for
all servers and the replication strategy is {1, 5, 6}. It is easy to
verify that the replication strategy together with origin server
can satisfy all requests within the network. The storage cost
is 7+8+5 = 20, the update cost is 33, so the replication cost
is 53.

IV. HEURISTIC ALGORITHMS

In this section, we propose a new heuristic algorithm, called
Greedy-Cover, that finds good solutions for QoS-aware
replica placement problem in general graphs. We start with
definitions. The cover set c(u) of a server u is the set of
servers that are within the QoS requirement q(u) from u.

c(u) = {v|d(v, u) ≤ q(u)} (4)

Each server has its own cover set. If a server w ∈ c(u) has
a replica on it, u could be satisfied by the server w. Thus,
every server in c(u) is a candidate server to place a replica in
order to satisfy server u. We first observe that if c(u) ⊆ c(v),
we do not need to consider c(v). If we put a replica on server
w ∈ c(u), the server w can satisfy u and v simultaneously.

We then observe that if |c(v)| > |c(u)|, v is more likely
to be satisfied than u is. Consequently, v has more chance
to be satisfied during processing other cover sets. The reason
is that if c(v) has more elements, it is more likely that c(v)
will overlap with other cover sets. Consequently v is likely
to be covered by other cover sets. Our intuition is that if we
place the replica so that the server with the smallest cover
set is satisfied first, this replica may satisfy other servers with
larger cover sets as well. That is, we may find a replication
strategy with less replica servers, and the replication cost may
be reduced. Based on these observations and intuition, we
propose the Greedy-Cover algorithm.

The first step in Greedy-Cover is to find the cover
set of each server in the network. Second, we remove all
super cover sets c(v) that contains some other cover set,
c(u). That is, if c(u) ⊆ c(v), u �= v, we remove v from
those servers that must be satisfied. In each subsequent step,
Greedy-Cover chooses the smallest cover set c, examines
every server s, and puts a replica on a server s in c with
the highest normalized benefit. Normalized benefits is defined
as the increased number of satisfied requests divided by the
increased replication cost due to the selection [15]. If the newly
placed replica satisfies other cover sets, these cover sets are
removed. After Greedy-Cover updates the set of cover sets,
only those unsatisfied cover sets remain. Greedy-Cover
then chooses the smallest cover set among those remaining
cover sets and repeats the process until all cover sets are

satisfie
given i

Algor
rithm
Data
Resu
begi

fi
b
m
o
f
b

e
r
w

e
end

A. Tim

We
Greed
the cov
could b
Since e
the cov

In th
super c
super c
cover s
to chec
O(|V |3

99
d. The pseudo code of algorithm Greedy-Cover is
n Algorithm 1.

ithm 1: The pseudo code of Greedy-Cover algo-

: G = (V, E), every node’s QoS requirement
lt: feasible replication strategy

n
nd all-pairs shortest path distance
uild shortest path tree rooted at v0

ark v0 as satisfied // because v0 has
rigin copy

or i← 0 to |V | − 1 do // this for loop
uilds cover set

if vi was not satisfied by v0 then
for j ← 0 to |V | − 1 do

if distance[i, j] ≤ vi’s QoS then
add j to vi’s cover set

end
end

end
nd
emove super cover sets
hile there exists unsatisfied cover sets do

select min cover set from unsatisfied cover sets
Max N ← −1 // initialize maximum
normalized benefit
for vi in min cover set do

put a replica on vi

Ni ← normalized benefits of the newly
placed replica
if Ni > Max N then

Max N ← Ni

best server ← vi
end
take off the newly placed replica from vi

end
mark best server is replicated
remove cover sets satisfied by best server

nd

e Complexity

analyze the time complexity of the three phases of
y-Cover. In the first phase, Greedy-Cover finds
er set of every server in the network. Every cover set
e identified by checking |V | servers in the network.
very server has a cover set, it takes O(|V |2) to find all
er sets in the network.
e second phase, Greedy-Cover identifies and deletes
over sets in the network. In order to identify all the
over sets, Greedy-Cover needs to check all pairs of
ets, which have O(|V |2) possibilities. It takes O(|V |)
k a pair of cover sets, so it takes Greedy-Cover
) time to identify and delete the super cover sets.

In the last phase, Greedy-Cover inserts replicas into
the network iteratively until all servers are satisfied. First,
Greedy-Cover selects the smallest cover set, which can be
done by an initial round of sorting the cover sets by size. After
finding the smallest cover set c, Greedy-Cover calculates
normalized benefits for all servers in c and puts a replica
on the server with the maximum normalized benefits. Both
the calculations of increased satisfied servers and increased
replication cost due to a newly placed replica take O(|V |)
time, so it takes O(|V |) time to compute the normalized benefit
for a replica. The size of a cover set is O(|V |) and there are
O(|V |) cover sets to consider in the worst case. As a result, it
takes Greedy-Cover O(|V |log|V |+ |V |3) = O(|V |3) time
to finish the last phase.

V. PERFORMANCE EVALUATION

This section describes our experimental results. For compar-
ison purpose Tang and Xu [15] formulate the replica placement
as an integer programming problem. They then relax the re-
quirements for an integer solution, and consequently transform
the integer program into a linear program. Since the solution
of this linear program is a lower bound for the solution of
the original replica placement problem, this “super” optimal
solution is used as a performance measurement criteria [15].
We compare the solution from our heuristic algorithm with
this super optimal solution. The ratio of cost from the heuristic
algorithm to cost from the super optimal solution is referred
to as normalized replication cost.

We now explain the process of how to obtain this super
optimal solution [15]. Let V = {r, v1, v2, . . . , vn−1} be the set
of servers. The replica placement problem can be expressed
as the following integer program.

to minimize
∑

n>i>0

(si × xi + d(vi, p(vi))× yi) (5)

subject to

n > ∀i > 0 ∧ d(vi, r) > q(vi),
∑

d(vi,vj)≤q(vi)

xj ≥ 1 (6a)

n > ∀i > 0, yi ≥ xi

(6b)

n > ∀i, j > 0 ∧ p(vj) = vi, yi ≥ yj (6c)

n > ∀i > 0, xi, yi ∈ {0, 1}
(6d)

The variable xi is 1 if a replica is placed at server vi, and
0, otherwise, and the variable yi is 1 if yi receives data update
requests from its parent p(vi) in the update distribution tree
T [15]. If we relax the integer requirement we have a linear
program, which has a better optimal solution than the original
integer program. Note that an optimal solution from the linear
program may not even be a feasible solution for the integer
program, but it serves as a lower bound on the total replication
cost and could be used to measure how close we are from the
optimum. We define normalized replication cost to be the the

ratio b
the line

In o
accord
random
connec
is inse
p(u, v)
distanc
distanc
parame
higher
ratio o
edges [

In o
and the
α and
graphs
numbe
origin
tree by
Finally
QoS re

A. The

First
of Gr
Greed
ure 2 il
QoS re
Figure
the bes
is only
aggress
ter solu
assigns
configu
1-Gree
causes
likely t

We
be sim
show t
Greed
than 20
networ
request
satisfie
insert a
cost as

Whe
est nor
Delet
more t
of rep
Greed

100
etween the cost from an algorithm and the cost from
ar program, and use this ratio as a performance metric.
ur experiments, the network topology was generated
ing to Waxman model [19]. In this model, N nodes are
ly placed into an s-by-s square. We then repeatedly
t nodes until the network becomes connected. A link
rted to connect two nodes u and v with probability

= βe−d(u,v)/αL, where d(u, v) is the Euclidean
e between u and v, L =

√
2s is the largest possible

e between two nodes in the square, and α and β are
ters in the range (0, 1]. Larger value of β introduces
edge density, and the value of α controls the relative
f the number of short edges to the number of long
19]. The cost of edge (u, v) is set to d(u, v).
ur experiments the number of points N is set to 100

size of the domain s is set to 1000. The parameters
β are set to 0.05 and 0.7 respectively. We generate 100
using GT-ITM modeling tools [20] and the average

r of edges in is 332. We assume that server 0 is the
server, from which we construct an update distribution
connecting every server to server 0 by a shortest path.

, the default storage cost is set to 1000 and the default
quirement is set to 1000.

effects of QoS

, we compared the normalized replication cost
eedy Cover with l-Greedy-Insert and l-
y-Delete under different QoS requirements. Fig-
lustrates the normalized replication cost under different
quirements when the storage cost is set to 1000. From
2, we observe that 1-Greedy-Delete always finds
t placement and the performance of Greedy Cover
second to 1-Greedy-Delete. 1-Greedy-Delete
ively tries to reduce the replication cost, so it finds bet-
tion than other algorithms. Initially, Greedy-Delete
a replica to every server, which ensures a feasible

ration. Starting from this feasible state, in each iteration
dy-Delete searches for a replica set whose deletion

the maximum reduction in the total cost, so it is more
o get achieve low cost.
expected the performance of 1-Greedy-Insert will
ilar to 1-Greedy-Delete. However, the experiments
hat the cost of 1-Greedy-Insert is nearly twice of 1-
y-Delete when QoS values are large, e.g., larger
00. When the QoS parameter increases to 3000, the

k in average needs less than one replica to satisfy
s from all servers. However, if there are servers not
d by the origin server, 1-Greedy-Insert will always
t least 2 replicas in the first step, so it has twice storage
the other algorithms.
n QoS is less than 2000, Greedy MSC has the high-
malized replication cost, even higher than 0-Greedy
e. When QoS is 3000, the cost ratio increases to
han 2. From Table I, we observe that the number
licas from Greedy MSC is almost the same to 1-
y-Delete, which is the best among all algorithms.

Consequently, the high cost ratio of Greedy MSC is not due
to the number of replicas, but due to the update cost. In other
words, the position of these replicas causes high normalized
replication cost. This is because that Greedy MSC selects the
candidate server only according to the number of unsatisfied
servers, but fails to consider update cost.

Table I shows the average number of replicas 1-
Greedy-Insert, 1-Greedy-Delete, Greedy Cover
and Greedy MSC under different QoS requirements in 100
Waxman model graphs. From Table I we find similar perfor-
mance trend as in Figure 2. When QoS is 2500 and 3000, the
average number of replicas of 1-Greedy-Insert is twice
as those of the other two algorithms. This is consistent with
our previous observation of 1-Greedy-Insert in Figure 2.

From Table I we also find that 1-Greedy-Insert uses slightly
more replicas than the other two algorithms. This is because
l-Greedy-Insert makes decisions based on normalized
benefits, not on the number of servers that will be satisfied. A
placement having a larger normalized benefit value does not
guarantee that more servers will be satisfied by this selection,
and a selection with smaller value of normalized benefits may
be able to satisfy all unsatisfied servers’ requests in the same
iteration. This causes 1-Greedy-Insert puts more replicas
than the other algorithms do.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500 3000

N
or

m
al

iz
ed

 R
ep

lic
at

io
n

C
os

t

QoS

Constant Storage Cost: 1000

0-Greedy-Insert
0-Greedy-Delete
1-Greedy-Insert

1-Greedy-Delete
Greedy-Cover
Greedy-MSC

Fig. 2. Performance comparison under different QoS requirement, storage
cost = 1000

QoS 1-Insert 1-Delete GC MSC
250 68.15 68.19 68.17 68.42
500 37.21 37.17 37.20 38.34

1000 12.68 12.28 12.63 13.25
1500 5.62 5.00 5.24 5.34
2000 3.11 2.15 2.33 2.26
2500 2.10 1.11 1.22 1.13
3000 1.10 0.53 0.56 0.53

TABLE I

AVERAGE NUMBER OF REPLICAS UNDER DIFFERENT QOS REQUIREMENT,

THE DISTRIBUTION OF QOS IS CONSTANT

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

N
or

m
al

iz
ed

 R
ep

lic
at

io
n

C
os

t

Fig. 3.
distributi

[0
[0,

[0
[0,

[0

AVERAG

Figu
and th
uniform
a mean
when Q
QoS is
cost of
than w
relative
algorith
case w

B. The

Figu
ized re
of repl
longer

101
3 3.5 4 4.5 5

Uniform QoS (10’s exponent)

Constant Storage Cost: 1000

0-Greedy-Insert
0-Greedy-Delete
1-Greedy-Insert

1-Greedy-Delete
Greedy-Cover
Greedy-MSC

Performance comparison when QoS values are taken from a uniform
on.

QoS 1-Insert 1-Delete GC MSC
, 2 × 103] 26.00 25.96 26.04 26.71
2 × 103.5] 10.98 10.87 10.95 11.21
, 2 × 104] 4.33 4.12 4.14 4.20
2 × 104.5] 2.22 1.77 1.77 2.95
, 2 × 105] 1.12 0.66 0.66 0.66

TABLE II

E NUMBER OF REPLICAS UNDER DIFFERENT QOS REQUIREMENT,

THE DISTRIBUTION OF QOS IS UNIFORM

re 3 and Table II show the normalized replication cost
e average number of replicas when QoS is from a

distribution. When the QoS uniform distribution has
value of 1000, the network needs more replicas than
oS is set to a constant 1000. On the other hand, when
from a uniform distribution the normalized replication
Greedy Cover is closer to 1-Greedy-Delete

hen the QoS is set to a constant 1000. Finally, the
order of the normalized replication cost from all

ms under uniform distribution of QoS is similar to the
hen QoS is a constant.

effects of α

α 1-Insert 1-Delete GC MSC
0.05 12.68 12.28 12.63 13.25
0.10 4.15 3.58 3.71 3.83
0.15 2.25 1.27 1.43 1.26
0.20 1.54 0.75 0.81 0.75

TABLE III

AVERAGE NUMBER OF REPLICAS UNDER DIFFERENT α

re 4 illustrates the relationship between α and normal-
plication cost and Table III shows the average number
icas. When α increases, both the probability of using
edges to connect nodes and the number of edges in

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

0.05 0.1 0.15 0.2

N
or

m
al

iz
ed

 R
ep

lic
at

io
n

C
os

t

alpha

0-Greedy-Insert
0-Greedy-Delete
1-Greedy-Insert

1-Greedy-Delete
Greedy-Cover
Greedy-MSC

Fig. 4. Performance comparison for different α values.

the graph increase. As a result it is easier to satisfy the QoS
requirement with only a few replicas.

The normalized replication cost of 1-Greedy-Insert
increases abruptly when α is larger than 0.15. When α

is 0.15, about half of the 100 graphs can be satisfied by
one replica, and when α is 0.2, almost all graphs can be
satisfied by one replica. When the average number of replicas
required is less than one, the cost introduced by first step
of 1-Greedy-Insert dominates the total cost. so that the
normalized replication cost of 1-Greedy-Insert suddenly
increases when α reaches 0.15.

The performance trend of varying α (Figure 4) is similar
to that of varying QoS requirements (Figure 2). The effect
of increasing α is similar to increasing QoS values of every
server – both increase the chance that a server is satisfied by
replicas. As a result we find similar phenomena in Figure 4
as in Figure 2. For example, when the servers in a network
are more easily satisfied, the normalized replication cost of 1-
Greedy-Insert becomes higher, 1-Greedy-Delete is
always better than Greedy Cover, and a larger l value
brings a better solution.

C. Execution time

Table IV compares average execution time from 100
graphs from 1-Greedy-Insert, 1-Greedy-Delete and
Greedy Cover under different QoS values. We do not
consider 0-Greedy-Insert and 0-Greedy-Delete be-
cause their normalized replication costs are much higher
than Greedy Cover. The Greedy Cover uses only a
few millisecond in average to calculate a placement, but 1-
Greedy Insert or 1-Greedy Delete requires a signif-
icant amount of time to complete. We conclude that Greedy
Cover is much more efficient than the two algorithms.

Although the solution quality of 1-Greedy-Delete is
slightly better than Greedy Cover, the difference is very
small. In constant and uniform QoS case, the difference is
9% and 1% respectively. Greedy Cover is a very ef-
ficient and effective algorithm for QoS replica placement

since i
Greed
good.

Desp
Cover
experim
very h
it cons
MSC is
quality

Q

1
2

AVER

From
Greed
fected
i.e., th
more it
From T
needs
Greed
has a
increas
1-Gree
and dec
Theref
Greed
the co
2500,
1-Gree
Greed
equals

Tabl
of serv
Greed
Greed
numbe
second
perime
Greed
algorith

Alth
quality
Greed
of serv
1 hour
Greed
creases
does. T
creases

102
t runs much faster than 1-Greedy-Insert and 1-
y-Delete and produces solutions that are almost as

ite that Greedy MSC runs faster than Greedy
, the difference is small. However, from previous
ents the placements produced by Greedy MSC have

igh normalized replication cost, due to the fact that
iders only the number of replicas. Although Greedy

efficient, it is not effective due to its poor solution
.

oS 1-Insert 1-Delete GC MSC
250 1.020s 0.421s 0.0059s 0.0027s
000 0.143s 2.164s 0.0035s 0.0010s
500 0.008s 4.807s 0.0001s 0.0003s

TABLE IV

AGE EXECUTION TIME OF 100 GRAPHS UNDER DIFFERENT QOS

Table IV we find that the execution time of 1-
y-Insert and 1-Greedy-Delete are strongly af-

by QoS parameters. When QoS requirement is stringent,
e QoS value is small, 1-Greedy-Insert requires
erations to find the solution than 1-Greedy-Delete.
able I we know that when QoS equals 250, the network
about 70 replicas to satisfy all servers’ requests. 1-
y-Insert starts from a state in which none of servers
replica and every iteration of 1-Greedy-Insert
es the number of replicas by one. On the other hand,
dy-Delete places a replica in every server initially
reases the number of replicas by one in every iteration.

ore 1-Greedy-Insert spends more time than 1-
y-Delete when QoS requirement is stringent. On

ntrary, when QoS requirement is less stringent, like
the situation is reversed. In Table IV, we could see
dy-Insert just spends eight milliseconds and 1-
y-Delete needs more than 4 seconds when QoS
2500.
e V illustrates the relationship between the number
ers and execution time of 1-Greedy-Insert, 1-
y-Delete and Greedy Cover. We observe that
y Cover uses less than 2 seconds even when the

r of servers is 1100. 1-Greedy-Insert uses 88
s in the same setting. In addition, from previous ex-
nts Greedy Cover produces better solution than 1-
y-Insert does, so Greedy Cover is a superior
m to 1-Greedy-Insert.

ough 1-Greedy-Delete has the best placement
among three algorithms, it is much slower than 1-
y-Insert and Greedy Cover. When the number
ers is 500, 1-Greedy-Delete needs more than

to complete. Although the execution time of 1-
y-Insert increases as the number of servers in-
, it does not grow so rapidly as 1-Greedy-Delete
he reason is that when the number of servers in-
in a fix-sized region, the requests are much eas-

ier to be satisfied, consequently 1-Greedy-Insert re-
quires less number of iterations than 1-Greedy-Delete
does. Although a larger number of servers makes both 1-
Greedy-Insert and 1-Greedy-Delete spend more time
per iteration, 1-Greedy-Insert requires less number of
iterations than 1-Greedy-Delete does, so the execution
time of 1-Greedy-Delete grows much faster than 1-
Greedy-Insert.

Table V indicates that both 1-Greedy-Insert and 1-
Greedy-Delete are easily influenced by the number of
servers in the network. On the contrary, Greedy Cover is
very stable and scalable. Greedy Cover can be deployed
to large network systems with more than 1000 nodes, and
deliver near optimal solution within a reasonable computation
overhead.

of servers 1-Insert 1-Delete GC MSC
100 0.586s 1.100s 0.006s 0.001s
300 10.599s 274.900s 0.184s 0.015s
500 25.594s 4198.000s 0.572s 0.027s
700 41.585s N/A 1.029s 0.038s
900 67.950s N/A 1.256s 0.051s

1100 88.358s N/A 1.821s 0.101s

TABLE V

AVERAGE EXECUTION TIME OF 10 GRAPHS UNDER DIFFERENT NUMBER

OF NODES, QOS = 500

VI. CONCLUSION

Data replication is an important technique to speed up data
access in Data Grid. Grid computing infrastructure usually
consists of various type of resources and the performance
of these resources are quite diverse. So to provide quality
assurance for different data access requirements is more and
more important. We consider this problem as QoS-aware
replica placement problem.

In this paper, we have presented an effective and efficient
algorithm Greedy-Cover to solve the QoS-aware replica
placement problem. The algorithm is very simple and easy
to adapt to variant environments. Greedy Cover’s perfor-
mance is stable. It is not heavily influenced by QoS values.
Experiment results indicate that Greedy-Cover efficiently
finds near-optimal solutions in all parameter combinations.
Moreover, Greedy-Cover is scalable, and is able to com-
pute a near-optimal solution in two seconds when the number
of servers equals 1100. In addition, when the quality of service
guarantee becomes more stringent, the performance advantage
of Greedy-Cover over other algorithms in the literature
becomes more significant.

ACKNOWLEDGMENT

The authors would like to acknowledge the National Center
for High-Performance Computing in providing resources under
the national project , “Taiwan Knowledge Innovation National
Grid”.

[1] W.
“D
ing

[2] K.
thr
mu
Co

[3] H.
rep
Int
Pro

[4] A.
“W
ing
200

[5] W.
and
opt
Co

[6] W.
for
Gr

[7] M.
app
Sym

[8] K.
gie
Int

[9] H.
B.
Sym
305

[10] K.
rep
Dis

[11] C.
dat
tee
Ne

[12] M.
ma
Pro
Pro
IEE

[13] O.
ove
pp.

[14] O.
rep
pp.

[15] X.
tion
200

[16] X.
pro

[17] I. C
con
cite

[18] W.
in

[19] B.
199

[20] “G
sta

103
REFERENCES

Hoschek, F. J. Janez, A. Samar, H. Stockinger, and K. Stockinger,
ata management in an international data grid project,” in In Proceed-
s of GRID Workshop, 2000, pp. 77–90.
Ranganathan, A. Iamnitchi, and I. Foste, “Improving data availability
ough dynamic model-driven replication in large peer-to-peer com-
nities,” in In 2nd IEEE/ACM International Symposium on Cluster
mputing and the Grid, 2002, pp. 376–381.
Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, “Data
lication strategies in grid environments,” in In Proceedings of 5th
ernational Conference on Algorithms and Architecture for Parallel
cessing, 2002, pp. 378–383.
Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe,
ide area data replication for scientific collaborations,” in In Proceed-
s of the 6th International Workshop on Grid Computing, November
5.
B. David, D. G. Cameron, L. Capozza, A. P. Millar, K. Stocklinger,

F. Zini, “Simulation of dynamic grid rdeplication strategies in
orsim,” in In Proceedings of 3rd Intl IEEE Workshop on Grid
mputing, 2002, pp. 46–57.
B. David, “Evaluation of an economy-based file replication strategy
a data grid,” in International Workshop on Agent based Cluster and

id Computing, 2003, pp. 120–126.
Deris, A. J.H., and H. Suzuri, “An efficient replicated data access
roach for large-scale distributed systems,” in IEEE International
posium on Cluster Computing and the Grid, April 2004.

Ranganathana and I. Foster, “Identifying dynamic replication strate-
s for a high performance data grid,” in In Proceedings of the
ernational Grid Computing Workshop, 2001, pp. 75–86.
Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and

Tierney, “File and object replication in data grids,” in In 10th IEEE
posium on High Performance and Distributed Computing, 2001, pp.
–314.
Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of
licas in trees with read, write, and storage costs,” IEEE Trans. Parallel
trib. Syst., vol. 12, no. 6, pp. 628–637, 2001.
Krick, H. Räcke, and M. Westermann, “Approximation algorithms for
a management in networks,” in SPAA ’01: Proceedings of the thir-
nth annual ACM symposium on Parallel algorithms and architectures.
w York, NY, USA: ACM Press, 2001, pp. 237–246.

Tu, P. Li, Q. Ma, I.-L. Yen, and F. B. Bastani, “On the opti-
l placement of secure data objects over internet,” in IPDPS ’05:
ceedings of the 19th IEEE International Parallel and Distributed
cessing Symposium (IPDPS’05) - Papers. Washington, DC, USA:
E Computer Society, 2005, p. 14.
Unger and I. Cidon, “Optimal content location in multicast based
rlay networks with content updates,” World Wide Web, vol. 7, no. 3,
315–336, 2004.
Wolfson and A. Milo, “The multicast policy and its relationship to
licated data placement,” ACM Trans. Database Syst., vol. 16, no. 1,
181–205, 1991.

Tang and J. Xu, “Qos-aware replica placement for content distribu-
,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 10, pp. 921–932,
5, member-Xueyan Tang and Member-Jianliang Xu.
Jia, D. Li, X.-D. Hu, and D.-Z. Du, “Placement of read-write web
xies in the internet.” in ICDCS, 2001, pp. 687–690.
idon, S. Kutten, and R. Soffer, “Optimal allocation of electronic

tent,” in INFOCOM, 2001, pp. 1773–1780. [Online]. Available:
seer.ist.psu.edu/cidon01optimal.html
J. Jeon, I. Gupta, and K. Nahrstedt, “Qos-aware object replication

overlay networks,” 2005.
M. Waxman, “Routing of multipoint connections,” pp. 347–352,
1.

T Internetwork Topology Models (GT-ITM),” 2000, http://www-
tic.cc.gatech.edu/projects/gtitm/.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
