
638 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Efficient Encoding of Low-Density Parity-Check
Codes

Thomas J. Richardson and Rüdiger L. Urbanke

Abstract—Low-density parity-check (LDPC) codes can be
considered serious competitors to turbo codes in terms of perfor-
mance and complexity and they are based on a similar philosophy:
constrained random code ensembles and iterative decoding
algorithms.

In this paper, we consider the encoding problem for LDPC codes.
More generally, we consider theencodingproblem for codes spec-
ified by sparse parity-check matrices. We show how to exploit the
sparseness of the parity-check matrix to obtain efficient encoders.
For the (3 6)-regular LDPC code, for example, the complexity of
encoding is essentially quadratic in the block length. However, we
show that the associated coefficient can be made quite small, so that
encoding codes even of length 100000 is still quite practical.
More importantly, we will show that “optimized” codes actually
admit linear time encoding.

Index Terms—Binary erasure channel, decoding, encoding,
parity check, random graphs, sparse matrices, turbo codes.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes were orig-
inally invented and investigated by Gallager [1]. The

crucial innovation was Gallager’s introduction of iterative
decoding algorithms (or message-passing decoders) which he
showed to be capable of achieving a significant fraction of
channel capacity at low complexity. Except for the papers by
Zyablov and Pinsker [2], Margulis [3], and Tanner [4] the field
then lay dormant for the next 30 years. Interest in LDPC codes
was rekindled in the wake of the discovery of turbo codes
and LDPC codes were independently rediscovered by both
MacKay and Neal [5] and Wiberg [6].1 The past few years
have brought many new developments in this area. First, in
several papers Luby, Mitzenmacher, Shokrollahi, Spielman,
and Stemann introduced new tools for the investigation of mes-
sage-passing decoders for the binary-erasure channel (BEC)
and the binary-symmetric channel (BSC) (under hard-decision
message-passing decoding) [9], [10], and they extended Gal-
lager’s definition of LDPC codes to includeirregular codes (see
also [5]). The same authors also exhibited sequences of codes
which, asymptotically in the block length, provably achieve

Manuscript received December 15,1999; revised October 10, 2000. This work
was performed while both authors were at Bell Labs, Lucent Technologies,
Murray Hill, NJ 07974 USA.

T. J. Richardson was with Bell Labs, Lucent Technologies, Murray Hill, NJ
07974 USA. He is now with Flarion Technologies, Bedminster, NJ 07921 USA
(e-mail: richardson@flarion.com).

R. L. Urbanke was with Bell Labs, Lucent Technologies, Murray Hill, NJ
07974 USA. He is now with EPFL, LTHC-DSC, CH-1015 Lausanne, Switzer-
land (e-mail: rudiger.urbanke@epfl.ch).

Communicated by D. A. Spielman, Guest Editor.
Publisher Item Identifier S 0018-9448(01)00739-8.

1Similar concepts have also appeared in the physics literature [7], [8].

capacity on a BEC. It was then shown in [11] that similar
analytic tools can be used to study the asymptotic behavior of
a very broad class of message-passing algorithms for a wide
class of channels and it was demonstrated in [12] that LDPC
codes can come extremely close to capacity on many channels.

Inmanyways,LDPCcodescanbeconsideredseriouscompeti-
tors to turbo codes. In particular, LDPC codes exhibit an asymp-
totically better performance than turbo codes and they admit a
wide range of tradeoffsbetweenperformanceand decoding com-
plexity. One major criticism concerning LDPC codes has been
their apparent highencodingcomplexity. Whereas turbo codes
can be encoded in linear time, a straightforward encoder imple-
mentation for an LDPC code has complexity quadratic in the
block length. Several authors have addressed this issue.

1) It was suggested in [13] and [9] to use cascaded rather than
bipartite graphs. By choosing the number of stages and the
relativesizeofeachstagecarefullyonecanconstructcodes
which are encodable and decodable in linear time. One
drawback of this approach lies in the fact that each stage
(whichacts likeasubcode)hasalengthwhichis, ingeneral,
considerably smaller than the length of the overall code.
This results, in general, in a performance loss compared to
a standard LDPC code with the same overall length.

2) In [14] it was suggested to force the parity-check matrix to
have (almost) lower triangular form, i.e., the ensemble of
codesisrestrictednotonlybythedegreeconstraintsbutalso
by the constraint that the parity-check matrix have lower
triangular shape. This restriction guarantees a linear time
encoding complexity but, in general, it also results in some
loss of performance.

It is theaimof thispapertoshowthat,evenwithoutcascadecon-
structions or restrictions on the shape of the parity-check matrix,
the encoding complexity is quite manageable in most cases and
provably linear in many cases. More precisely, for a -reg-
ular code of length the encoding complexity seems indeed to
be of order but the actual number of operations required is
no more than , and, because of the extremely
small constant factor, even large block lengths admit practically
feasible encoders. We will also show that “optimized” irregular
codes have alinear encoding complexity and that the required
amount of preprocessing is of order at most .

The proof of these facts is achieved in several stages. We
first show in Section II that the encoding complexity is upper-
bounded by , where , thegap, measures in some way to
be made precise shortly, the “distance” of the given parity-check
matrix to a lower triangular matrix. In Section III, we then dis-
cuss several greedy algorithms to triangulate matrices and we

0018–9448/01$10.00 © 2001 IEEE



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 639

show that for these algorithms, when applied to elements of a
given ensemble, the gap concentrates around its expected value
with high probability. As mentioned above, for the -reg-
ular code the best greedy algorithm which we discuss results in
an expected gap of . Finally, in Section IV, we prove that
for all known “optimized” codes the expected gap is actually of
order less than , resulting in the promised linear encoding
complexity. In practice, the gap is usually a small constant. The

bound can be improved but it would require a significantly
more complex presentation.

We finish this section with a brief review of some basic no-
tation and properties concerning LDPC codes. For a more thor-
ough discussion we refer the reader to [1], [11], [12].

LDPC codes are linear codes. Hence, they can be expressed
as the null space of aparity-checkmatrix , i.e., is a codeword
if and only if

The modifier “low-density” applies to ; the matrix should
be sparse. For example, if has dimension , where is
even, then we might require to have three’s per column and
six ’s per row. Conditioned on these constraints, we choose
at random as discussed in more detail below. We refer to the as-
sociated code as a -regular LDPC code. The sparseness of

enables efficient (suboptimal) decoding, while the random-
ness ensures (in the probabilistic sense) a good code [1].

Example 1. [Parity-Check Matrix of -Regular Code of
Length ]: The following matrix will serve as an example.

(1)

In the theory of LDPC codes it is customary and useful not
to focus on particular codes but to consider ensembles of codes.
These ensembles are usually defined in terms of ensembles of
bipartite graphs[13], [15]. For example, the bipartite graph
which represents the code defined in Example 1 is shown in
Fig. 1. Theleft set of nodes represents thevariableswhereas
the right set of nodes represents theconstraints. An ensemble
of bipartite graphs is defined in terms of a pair ofdegree distri-
butions. A degree distribution is simply a
polynomial with nonnegative real coefficients satisfying
. Typically, denotes the fraction of edges in a graph which

are incident to a node (variable or constraint node as the case
may be) of degree. In the sequel, we will use the shorthand

to denote

This quantity gives the inverse of the average node degree. As-
sociated to a degree distribution pair is therate
defined as

(2)

Fig. 1. Graphical representation of a(3; 6)-regular LDPC code of length12.
The left nodes represent the variable nodes whereas the right nodes represent
the check nodes.

For example, for the degree distribution pair , which
corresponds to the -regular LDPC code, the rate is.

Given a pair of degree distributions and a natural
number , we define anensembleof bipartite graphs
in the following way. All graphs in the ensemble will
haveleft nodes which are associated toandright nodes which
are associated to. More precisely, assume that

and

We can convert these degree distributions intonode perspective
by defining

and

Each graph in has left nodes of degreeand
right nodes of degree. The order of these nodes is

arbitrary but fixed. Here, to simplify notation, we assume that
and are chosen in such a way that all these quantities

are integer. A node of degreehas socketsfrom which the
edges emanate and these sockets areordered. Thus, in total there
are

ordered sockets on the left as well as on the right. Letbe a
permutation on . We can associate a graph
to such a permutation by connecting theth socket on the left
to the th socket on the right. Letting run over the set of
permutations on generates a set of graphs. Endowed with the
uniform probability distribution this is the ensemble .
Therefore, if in the future we choose a graph at random from the
ensemble then the underlying probability distribution
is the uniform one.



640 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

It remains to associate a code to every element of .
We will do so by associating a parity-check matrix to each
graph. At first glance, it seems natural to define the parity-
check matrix associated to a given element in as
that -matrix which has a nonzero entry at rowand
column if and only if (iff) the th right node is connected
to the th left node. Unfortunately, the possible presence of
multiple edges between pairs of nodes requires a more careful
definition. Since the encoding is done over the field GF, we
define the parity-check matrix as the matrix which
has a nonzero entry at rowand column iff the th right
node is connected to theth left node anoddnumber of times.
As we will see, the encoding is accomplished in two steps, a
preprocessingstep, which is an offline calculation performed
once only for the given code, and the actual encoding step
which is the only data-dependent part. For the preprocessing
step it is more natural to work with matrices which contain the
multiplicities of edges and, therefore, we define theextended
parity-check matrix as that matrix which has an entryat
row and column iff the th right node is connected to the
th left node by edges. Clearly, is equal to modulo .

In the sequel, we will also refer to these two matrices as the
adjacency matrixand theextended adjacency matrixof the
bipartite graph. Since for every graph there is an associated
code, we will use these two terms interchangeably so we will,
e.g., refer to codes as elements of .

Most often, LDPC codes are used in conjunction withmes-
sage- passing decoders. Recall that there is a received mes-
sage associated to each variable node which is the result of
passing the corresponding bit of the codeword through the given
channel. The decoding algorithm proceeds inrounds. At each
round, a message is sent from each variable node to each neigh-
boring check node, indicating some estimate of the associated
bit’s value. In turn, each check node collects its incoming mes-
sages and, based on this information, sends messages back to
the incident variable nodes. Care must be taken to send out only
extrinsicinformation, i.e., the outgoing message along a given
edge must not depend on the incoming message along the same
edge. As we will see, the preprocessing step for the encoding is
closely related to the message-passing decoder for the BEC. We
will therefore review this particular decoder in more detail.

Assume we are given a code in and assume that we
use this code to transmit over a BEC with an erasure probability
of . Therefore, an expected fractionof the variable nodes will
beerasuresand the remaining fraction will be known.
We first formulate the iterative decoder not as a message-passing
decoder but in a language which is more suitable for our current
purpose, see [9].

Decoder for the Binary Erasure Channel:

0 . [Intialization]

1 . [Stop or Extend] If there is no known variable node and no
check node of degree one then output the (partial) code-
word and stop. Otherwise, all known variable nodes and
all their adjacent edges are deleted.

2 . [Declare Variables as Known] Any variable node which
is connected to a degree one check node is declared to be
known. Goto 1.

This decoder can equivalently be formulated as a message-
passing decoder. Messages are from the set with a in-
dicating that the corresponding bit has not been determined yet
(along the given edge). We will call amessage anerasure mes-
sage. At a variable node, the outgoing message along an edge
is the erasure message if the received message associated to this
node is an erasure and if all incoming messages (excluding the
incoming message along edge) are erasure messages, other-
wise, the outgoing message is a. At a check node, the outgoing
message along an edgeis the erasure message if at least one of
the incoming messages (excluding the incoming message along
edge ) is the erasure message, and aotherwise. If we declare
that an originally erased variable node becomesknownas soon
as it has at least one incoming message which is not an erasure
then one can check that at any time the set of known variable
nodes is indeed identical under both descriptions.

It was shown in [16] that (asymptotically in) the expected
fraction of erasure messages after theth decoding round is
given by

(3)

where . Let , called thethresholdof the degree
distribution pair, be defined as

where

(4)

Note first that the function is in-
creasing in both its arguments for . It follows by

finite induction that if then for any
. If we choose , then the asymptotic ex-

pected fraction of erasure messages converges to zero. Conse-
quently, the decoder will be successful with high probability in
this case. If, on the other hand, we choose then,
with high probability, the decoding process will not succeed. We
will see shortly that, correctly interpreted, this decoding proce-
dure constitutes the basis for all preprocessing algorithms that
we consider in this paper.

Example 2. [(3, 6)-Regular Code]:Let

Then . The exact threshold was de-
termined in [17] and can be expressed as follows. Letbe given
by

where

and

Then



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 641

Fig. 2. An equivalent parity-check matrix in lower triangular form.

II. EFFICIENT ENCODERSBASED ON APPROXIMATE LOWER

TRIANGULATIONS

In this section, we shall develop an algorithm for con-
structing efficient encoders for LDPC codes. The efficiency
of the encoder arises from the sparseness of the parity-check
matrix and the algorithm can be applied to any (sparse)

. Although our example is binary, the algorithm applies
generally to matrices whose entries belong to a field. We
assume throughout that the rows ofare linearly independent.
If the rows are linearly dependent, then the algorithm which
constructs the encoder will detect the dependency and either
one can choose a different matrix or one can eliminate the
redundant rows from in the encoding process.

Assume we are given an parity-check matrix over .
By definition, the associated code consists of the set of-tuples

over such that

Probably the most straightforward way of constructing an en-
coder for such a code is the following. By means of Gaussian
elimination bring into an equivalent lower triangular form
as shown in Fig. 2. Split the vectorinto a systematicpart ,

, and aparity part , , such that .
Construct asystematicencoder as follows: i) Fill with the

desired information symbols. ii) Determine the
parity-check symbols usingback-substitution. More precisely,
for calculate

What is the complexity of such an encoding scheme? Bringing
the matrix into the desired form requires operations of
preprocessing. The actual encoding then requires opera-
tions since, in general, after the preprocessing the matrix will no
longer be sparse. More precisely, we expect that we need about

XOR operations to accomplish this encoding, where
is the rate of the code.

Given that the original parity-check matrix is sparse, one
might wonder if encoding can be accomplished in . As we
will show, typically for codes which allow transmission at rates
close to capacity, linear time encoding is indeed possible. And
for those codes for which our encoding scheme still leads to
quadratic encoding complexity the constant factor in front of the

Fig. 3. The parity-check matrix in approximate lower triangular form.

term is typically very small so that the encoding complexity
stays manageable up to very large block lengths.

Our proposed encoder is motivated by the above example.
Assume that byperforming row and column permutations only
we can bring the parity-check matrix into the form indicated in
Fig. 3. We say that is in approximate lower triangular form.
Note that since this transformation was accomplished solely by
permutations, the matrix is still sparse. More precisely, assume
that we bring the matrix in the form

(5)

where is , is , is ,
is , is , and, finally, is . Further,

all these matrices are sparse2 and is lower triangular with ones
along the diagonal. Multiplying this matrix from the left by

(6)

we get

(7)

Let where denotes the systematic part,
and combined denote the parity part, has length , and
has length . The defining equation splits
naturally into two equations, namely

(8)

and

(9)

Define and assume for the moment that
is nonsingular. We will discuss the general case shortly. Then

from (9) we conclude that

Hence, once the matrix
has been precomputed, the determination ofcan be accom-
plished in complexity simply by performing

2More precisely, each matrix contains at mostO(n) elements.



642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

TABLE I
EFFICIENT COMPUTATION OFp = �� (�ET A + C)s

TABLE II
EFFICIENT COMPUTATION OFp = �T (As + Bp )

a multiplication with this (generically dense) matrix. This
complexity can be further reduced as shown in Table I. Rather
than precomputing and then multiplying
with we can determine by breaking the computation into
several smaller steps, each of which is efficiently computable.

To this end, we first determine , which has complexity
since is sparse. Next, we multiply the result by .

Since is equivalent to the system
this can also be accomplished in by back-substitu-

tion, since is lower triangular and also sparse. The remaining
steps are fairly straightforward. It follows that the overall com-
plexity of determining is . In a similar manner,
noting from (8) that , we can accom-
plish the determination of in complexity as shown step
by step in Table II.

A summary of the proposed encoding procedure is given in
Table III. It entails two steps. Apreprocessingstep and the ac-
tual encodingstep. In the preprocessing step, we first perform
row and column permutations to bring the parity-check matrix
into approximate lower triangular form with as small a gap
as possible. We will see, in subsequent sections, how this can
be accomplished efficiently. We also need to check whether

is nonsingular. Rather than premultiplying
by the matrix , this task can be accomplished effi-
ciently by Gaussian elimination. If, after clearing the matrix
the resulting matrix is seen to be singular we can simply per-
form further column permutations to remove this singularity.
This is always possible when is not rank deficient, as as-
sumed. The actual encoding then entails the steps listed in Ta-
bles I and II.

We will now demonstrate this procedure by means of our run-
ning example.

Example 3. [Parity Check Matrix of -Regular Code of
Length ]: For this example if we simply reorder the columns
such that, according to the original order, we have the ordering
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 8, 9, then we put the parity-check

matrix into an approximate lower triangular form with

(10)
We now use Gaussian elimination to clear. This results in

We see that is singular. This
singularity can be removed if we exchange e.g., column 5 with
column 8 which gives . In terms of the original order
the final column order is then 1, 2, 3, 4, 10, 6, 7, 5, 11, 12, 8, 9,
and the resulting equivalent parity-check matrix is

(11)



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 643

TABLE III
SUMMARY OF THE PROPOSEDENCODING PROCEDURE. IT ENTAILS TWO STEPS: A PREPROCESSINGSTEP AND THEACTUAL ENCODING STEP

Assume now we choose . To determine
we follow the steps listed in Table I. We get

and

In a similar manner, we execute the steps listed in Table II to
determine . We get

and

Therefore the codeword is equal to

A quick check verifies that , as required.

III. A PPROXIMATE UPPERTRIANGULATION VIA GREEDY

ALGORITHMS

We saw in the previous section that the encoding complexity
is of order , where is the gap of the approximate tri-

angulation. Hence, for a given parity-check matrix we are in-
terested in finding an approximate lower triangulation with as
small a gap as possible. Given that we are interested in large
block lengths, there is little hope of finding the optimal row and
column permutation which results in the minimum gap. So we
will limit ourselves togreedyalgorithms. As discussed in the
previous section, the following greedy algorithms work on the
extended adjacency matrices since these are, except for the or-
dering of the sockets, in one-to-one correspondence with the un-
derlying graphs.

To describe the algorithms we first need to extend some of
our previous definitions. Recall that for a given pair of
degree distributions we associate to it two important parameters.
The first parameter is therateof the degree distribution
pair and is defined in (2). Note that

(13)

The second parameter is called thethresholdof the
degree distribution pair and is defined in (4). If ,
as we have tacitly assumed so far, then we can think of
as the degree distribution pair of an ensemble of LDPC codes
of rate . Further, as discussed in Section I, in this case it
was shown in [9] that is the threshold of this ensemble
when transmitting over the BEC assuming a belief propagation
decoder. In general, may be negative and, hence, the
degree distribution pair does not correspond to an ensemble of
LDPC codes. Nevertheless, the definitions are still meaningful.



644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Example 4: Let . In this case, we
have and, using the techniques described in
[17], the threshold can be determined to be

In a similar way, the definition of the ensemble as
well as the association of (extended) adjacency matrices to ele-
ments of carry over to the case . Assume
now that, for a given ensemble , we create a new en-
semble by simply exchanging the roles of left and right nodes.
This new ensemble is equivalent to the ensemble

where we have used (13). For the associated (extended) adja-
cency matrices this simply amounts to transposition.

Assume we are given a matrix of dimension
with elements in , where is some real-valued parameter with

. We will say that a row and a column areconnectedif
the corresponding entry in is nonzero. Furthermore, we will
say that a row (column) hasdegree if its row (column) sum
equals . Assume now that we want to bringinto approximate
lower triangular form. The class of greedy algorithms that we
will consider is based on the following simple procedure. Given
the matrix and a fixed integer ,

, permute, if possible, the rows and columns in such a way
that the first row has its last nonzero entry at position

. If this first step was successful then fix the first row and
permute, if possible, the remaining rows and all columns in such
a way that the second row has its last nonzero entry at position

. In general, assuming that the first steps were
successful, permute at theth step, if possible, the last

rows and all columns in such a way that theth row has
its last nonzero entry at position . If this procedure
does not terminate before theth step then we accomplished an
approximate lower triangulation of the matrix. We will say
that is in approximate lower triangular form withrow gap

andcolumn gap , as shown in Fig. 4.

A. Greedy Algorithm A

We will now give a precise description of the greedy algo-
rithm A. The core of the algorithm is thediagonal extension
step.

Diagonal Extension Step:Assume we are given a matrix
and a subset of the columns which are classified asknown. In
all cases of interest to us, either none of these known columns
are connected to rows of degree one or all of them are. As-
sume the latter case. Let denote the known columns
and let be degree-one rows such thatis connected
to .3 Reorder, if necessary, the rows and columns ofsuch
that form the leading rows of and such that

form the leading columns of as shown in Fig. 5,
where denotes the submatrix ofwhich results from deleting
the rows and columns indexed by and .
Note that after this reordering the top-left submatrix of
has diagonal form and that the toprows of have only this
one nonzero entry.

3 may not be determined uniquely.

Fig. 4. Approximate lower triangulation of the matrixA with row gap
(1� r)l � k and column gapl � k achieved by a greedy algorithm.

Fig. 5. Given the matrixA let ; . . . ; denote those columns which are
connected to rows of degree one and let; . . . ; be degree-one rows such
that is connected to . Reorder the rows and columns in such a way that
; . . . ; form the firstk rows and such that ; . . . ; form the firstk

columns. Note that the top-leftk � k submatrix has diagonal form and that the
first k rows have only this one nonzero entry.

By a diagonal extension step we will mean the following. As
input, we are given the matrix and a set of known columns.
The algorithm performs some row and column permutations
and specifies aresidual matrix . More precisely, if none of
the known columns are connected to rows of degree one then
perform a column permutation so that all the known columns
form the leading columns of the matrix. Furthermore, delete
these known columns from the original matrix and declare
the resulting matrix to be . If, on the other hand, all known
columns are connected to rows of degree one then perform a
row and column permutation to bring into the form depicted
in Fig. 5. Furthermore, delete the known columns
and the rows from the original matrix and declare
the resulting matrix to be .

In terms of this diagonal extension step, greedy algorithm A
has a fairly succinct description.

Greedy Algorithm A:

0. [Initialization] Given a matrix declare each column inde-
pendently to beknownwith probability or, otherwise,
to be anerasure. Let .

1. [Stop or Extend] If contains neither a known column nor a
row of degree one then output the present matrix. Otherwise,
perform a diagonal extension step.

2. [Declare Variables as Known] Any column in which is
connected to a degree one row is declared to be known.
Goto 1.



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 645

Fig. 6. (a) The given matrixA. (b) After the first application of step one, the(1� �)l known columns are reordered to form the first(1� �)l columns of the
matrixA. (c) After the second application of step one, thek new known columns and their associated rows are reordered to form a diagonal of lengthk. (d) If the
procedure does not terminate prematurely then the diagonal is extended to have length�l and, therefore, the row gap is equal to(1� r��)l and the column gap
is equal to(1 � �)l.

To see that greedy algorithm A indeed gives rise to an approx-
imate triangulation assume that we start with the
matrix as shown in Fig. 6(a). In the initialization step, an ex-
pected fraction of all columns are classified as known
and the rest is classified as erasures. The first time the algorithm
performs step one these known columns are reordered to
form the leading columns of the matrixas shown in Fig. 6(b).
Assuming that the residual matrix has rows of degree one, the
columns connected to these degree-one rows are identified in the
second step. Let these columns be and let
be degree-one rows such thatis connected to . During the
second application of step one these new known columns and
their associated rows are ordered along a diagonal as shown in
Fig. 6(c). Furthermore, in each additional iteration this diagonal
is extended further. If this procedure does not stop prematurely
then the resulting diagonal has expected lengthand, there-
fore, the row gap has expected size and the column
gap has expected size as shown in Fig. 6(d). If, on
the other hand, the procedure terminates before all columns are
exhausted then we get an approximate triangulation by simply
reordering the remaining columns to the left. Assuming that the
remaining fraction of columns is equal tothen the resulting
expected row gap is equal to and the resulting
expected column gap is equal to .

Lemma 1 [Performance of Greedy Algorithm A]:Let
be a given degree pair and choose . Pick a graph
at random from the ensemble and let be its extended
adjacency matrix. Apply greedy algorithm A to the extended
adjacency matrix . Then (asymptotically in) the row gap is
concentrated around the value and the column gap
is concentrated around the value . Letting , we
see that the minimum row gap achievable with greedy algorithm
A is equal to and that the minimum column gap
is equal to .

Proof: Assume we are given a graph and an associated
extended adjacency matrix from the ensemble .

Assume first that so that represents an en-
semble of LDPC codes of rate . For the same code/graph
consider the process of transmission over an erasure channel
with erasure probability followed by decoding using the
message-passing decoder described in Section I. Compare this
procedure to the procedure of the greedy algorithm A. Assume
that the bits erased by the channel correspond to exactly those
columns which in the initial step are classified as erasures.
Under this assumption, one can see that those columns which
are declared known in theth round of greedy algorithm A
correspond exactly to those variable nodes which are declared
known in the th round of the decoding algorithm. Hence, there
is a one-to-one correspondence between these two algorithms.

As discussed in Section I, if then (asymptot-
ically in ) with high probability the decoding process will be
successful. Because of the one-to-one correspondence we con-
clude that in this case (asymptotically in) greedy algorithm A
will extend the diagonal to (essentially) its full length with
high probability so that the row and column gaps are as stated
in the Lemma.

In the case that we cannot associate an ensemble
of codes to the degree distribution pair . Nevertheless,
recursion (3) still correctly describes the expected progress of
greedy algorithm A. It is also easy to see that the concentration
around this expected value still occurs. It follows that the same
analysis is still valid in this case.

1) Greedy Algorithm AH:By greedy algorithm AH we
mean the direct application of greedy algorithm A to the
extended parity-check matrix of a given LDPC code. The
gap we are interested in is then simply the resulting row gap.

Corollary 1 (Performance of Greedy Algorithm AH):Let
be a given degree distribution pair with

and choose . Pick a code at random from the
ensemble and let be the associated extended
parity-check matrix. Apply greedy algorithm A to . Then
(asymptotically in ) the gap is concentrated around the



646 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

value . Letting , we see that the
minimum gap achievable with greedy algorithm A is equal to

.

Example 5 [Gap for the -Regular Code and Greedy Al-
gorithm AH]: From Example 2, we know that
and that . It follows that the minimum
expected gap size for greedy algorithm AH is equal to

.

Note that greedy algorithm A establishes a link between the
error-correcting capability on a BEC using a message-passing
decoder and the encoding complexity. In simplified terms: Good
codes have low encoding complexity!

2) Greedy Algorithm AHT:Rather than applying greedy al-
gorithm A directly to the extended parity-check matrixof an
LDPC code we can apply it to the transpose of the extended
parity-check matrix. In this case, the gap we are interested in is
equal to the resulting column gap.

Corollary 2 (Performance of Greedy Algorithm AHT):Let
be a given degree distribution pair with and

choose . Pick a code at random from the ensemble
and let be the associated extended parity-check ma-

trix. Apply greedy algorithm A to . Recall that this is equiv-
alent to applying greedy algorithm A to a randomly chosen ex-
tended adjacency matrix from the ensemble .
Therefore, (asymptotically in) the gap is concentrated around
the value . Letting , we see that the min-
imum gap achievable with greedy algorithm AHT is equal to

.

Example 6 [Gap for the -Regular Code and Greedy Al-
gorithm AHT]: From Example 4, we know that

and that . It follows that the minimum
expected gap size for greedy algorithm AHT is equal to

Example 7 (Gap for an “Optimized” Code of Maximal De-
gree and Greedy Algorithm AHT):Let us determine the
threshold for one of the “optimized” codes listed in
[12]. We pick the code with

and

Quite surprisingly we get ! This means that for
any we can start the process by declaring only an
fraction of all columns to be known and, with high probability,
the process will continue until at most an fraction of all
columns is left. Therefore, we can achieve a gap offor any

. We will later prove a stronger result, namely, that in this
case the gap is actually at most of order , but we will need
more sophisticated techniques to prove this stronger result.

The above example shows that at least for some degree dis-
tribution pairs we have . When does this
happen? This is answered in the following lemma.

Lemma 2: Let be a degree distribution pair. Then
if and only if for all

(14)

Furthermore, if (14) holds and , then

(15)

Proof: Clearly, if (14) holds then for any we
have

By a compactness argument if follows that as defined in
(3) converges to as tends to infinity. Hence, .

Assume now that . This means that for any

we have that . We want to show that
(14) holds. Let and note that for

, is an increasing function in both its ar-
guments. Note that because is increasing in it follows
that a necessary condition for to converge to zero is that

, i.e., that at least in the first iteration the erasure
probability decreases. We will use contraposition to prove (14).
Hence, assume that there exist a strictly positiveand an ,

, such that . Since and
since is continuous this implies that there exists a strictly pos-
itive and an , , such that . Then

It follows by finite induction that

and, therefore, does not converge to zero astends to
infinity, a contradiction.

Finally, for close to one we have

whereas for tending to zero we have

This yields the stability conditions stated in (15).

B. Greedy Algorithm B

For greedy algorithm A, the elements of the initial set of
known columns are chosen independently from each other. We
will now show that by allowing dependency in the initial choice,
the resulting gap can sometimes be reduced. Of course, this de-
pendency makes the analysis more difficult.

In order to describe and analyze greedy algorithm B we need
to introduce some more notation. We call a polynomial

with real nonnegative coefficients in the range a weight
distribution, and we denote the set of all such weight distribu-
tions by . Let be a map which maps a pair



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 647

consisting of a degree distributionand a weight distribution
into a new degree distribution . This map is defined as

We are now ready to state greedy algorithm B.

Greedy Algorithm B:

0. [Initialization] We are given a matrix and a weight dis-
tribution . For each row in perform the following: if
the row has weightthen select this row with probability .
For each selected row of weightdeclare a random subset
of size of its connected columns to be known. All
remaining columns which have not been classified as known
are classified as erasures. Let .

1. [Stop or Extend] If neither contains a known column nor a
row of degree one then output the present matrix. Otherwise,
perform a diagonal extension step.

2. [Declare Variables as Known] Any column in which is
connected to a degree one row is declared to be known.
Goto 1

Clearly, greedy algorithm B differs from greedy algorithm A
only in the choice of the initial set of columns.

Lemma 3 (Analysis of Greedy Algorithm B):Let be a
given degree distribution pair. Let be a weight distribution
such that . Define .
Pick a graph at random from the ensemble and let
be its extended adjacency matrix. Apply greedy algorithm B to
the extended adjacency matrix. Then (asymptotically in) the
row gap is concentrated around the value

and the column gap is concentrated around the value

Proof: The elements of the initial set of known columns
are clearly dependent (since groups of those columns are con-
nected to the same row) and therefore we cannot apply our pre-
vious methods directly. But as we will show now there is a
one-to-one correspondence between applying greedy algorithm
B to the ensemble with a weight distribution
and applying greedy algorithm A to the transformed ensemble

.
Assume we are given the ensemble and a weight dis-

tribution . Assume further that we are given a fixed set of
selected right nodes (rows) and that the fraction of
selected right nodes of degreeis equal to . Given a graph
from transform it in the following way: replace each
selected right node of degreeby right nodes of degree. One
can check that this transformation leaves the left degree distri-
bution unchanged and that it transforms the right degree dis-

tribution to . Therefore, the new graph is an element
of the ensemble . Further, one can check that this
map is reversible and, therefore, one-to-one. A closer look re-
veals now that applying greedy algorithm B to an extended ad-
jacency matrix picked randomly from the ensemble
is equivalent to applying greedy algorithm A with to
the transformed extended adjacency matrix, i.e., the resulting
residual graphs (which could be empty) will be the same. Now,
since it follows that the greedy algorithm B will
get started and since by assumption we
know from the analysis of greedy algorithm A that with high
probability the diagonalization process will continue until the
diagonal has been extended to (essentially) its full length. In
this case, the resulting column gap is equal to the size of the set
which was initially classified as known. To determine the size of
this set we first determine the probability that a randomly chosen
edge is one of those edges which connect a selected right node
to one of its declared known neighbors. A quick calcula-
tion shows that this probability is equal to .
Therefore, the probability that a given left node of degreeis
connected to at least one of these edges is equal to .
From this the stated row and column gaps follow easily.

1) Greedy Algorithm BH:Following our previous notation,
by greedy algorithm BH we mean the direct application of
greedy algorithm B to the extended parity-check matrixof a
given LDPC code. The gap we are interested in is then simply
the resulting row gap.

Corollary 3 (Performance of Greedy Algorithm BH):Let
be a given degree distribution pair with . Let

be a weight distribution such that .
Define

Pick a code at random from the ensemble and let
be its extended parity-check matrix. Apply greedy algorithm B
to the extended parity-check matrix. Then (asymptotically in

) the gap is concentrated around the value

Let

Then we see that the minimum gap achievable with greedy al-
gorithm BH is equal to

Example 8 [Gap for the -Regular Code and Greedy Al-
gorithm BH]: We have and and since

has only one nonzero term it follows that we can param-



648 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

eterize as . Therefore, we have
and since , it follows that we need to

find the smallest value of , call it , such that
. From Lemma (14) we see that a necessary

and sufficient condition is given by

Equivalently, we get

Differentiating shows that the right-hand side takes on its min-
imum at the unique positive root of the polynomial

. If we call this root , with , then
we conclude that

We then get and, therefore, the gap is
equal to

Note that in this case the gap is larger than the corresponding
gap for greedy algorithm AH.

2) Greedy Algorithm BHT:Again as for greedy algorithm
A, rather than applying greedy algorithm B directly to the ex-
tended parity-check matrix of an LDPC code we can apply
it to the transpose of the extended parity-check matrix. In this
case, the gap we are interested in is equal to the resulting column
gap.

Corollary 4 (Performance of Greedy Algorithm BHT):Let
be a given degree distribution pair with .

Let be a weight distribution such that
Define . Pick a code at random from the en-
semble and let be its extended parity-check matrix.
Apply greedy algorithm B to . Recall that this is equivalent
to applying greedy algorithm B to a randomly chosen extended
adjacency matrix from the ensemble . There-
fore, (asymptotically in ) the gap is concentrated around the
value

Let

Then we see that the minimum gap achievable with greedy al-
gorithm BHT is equal to

Example 9 [Gap for the -Regular Code and Greedy Al-
gorithm BHT]: We have and and since

has only one nonzero term we can parameterize as
. Therefore, we have

and since it follows that we need to find the smallest
value of , call it , such that .
From Lemma 2 (14) we see that a necessary and sufficient con-
dition is given by

which simplifies to

By differentiating we find that it takes its
minimum at . Thus, the critical value of is given
by

We then get . This corresponds to a gap of

This is significantly better than the corresponding gap for greedy
algorithm AHT.

C. Greedy Algorithm C

Let be the given degree distribution pair. Recall that
for greedy algorithm B we chose the weight distribution
in such a way that . Hence, with high prob-
ability, the greedy algorithm will extend the diagonal to (essen-
tially) its full length.

Alternatively, we can try to achieve an approximate tri-
angulation in several smaller steps. More precisely, assume
that we pick the weight distribution in such a way that

. Then with high probability the greedy
algorithm will not complete the triangulation process. Note
that, conditioned on the size and on the degree distribution pair
of the resulting residual graph, the edges of this residual graph
are still random, i.e., if the residual graph has lengthand a
degree distribution pair then we can think of it as an
element of . This is probably easiest seen by checking
that if the destination of two edges which are contained in the
residual graph are interchanged in the original graph and if the
greedy algorithm B is applied to this new graph then the new
residual graph will be equal to the old residual graph except
for this interchange. Therefore, if we achieve a triangulation by
applying several small steps, then we can still use the previous
tools to analyze the expected gap.

There are obviously many degrees of freedom in the choice of
step sizes and the choice of weight distribution. In our present
discussion, we will focus on the limiting case of infinitesimal
small step sizes and a constant weight distribution. Therefore,
assume that we are given a fixed weight distribution and
let , , be a small scaling parameter for the weights such



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 649

that . Assume that we apply greedy algo-
rithm B to a randomly chosen element of the ensemble
where . We claim that the expected degree
distribution pair of the residual graph, call it , is given by

To see this, first recall from the analysis of greedy algorithm
B that the degree distribution pair of the equivalent trans-
formed graph is equal to . Since by assumption

, the recursion given in (3) (with )
will have a fixed point, i.e., there exists a real number, ,
such that

To determine this fixed point note that if we expand the above
in around we obtain

Therefore, letting denote , the fixed-point equation
is

It follows that

In the language of message-passing algorithms, is the
expected fraction of erasure messages passed from left to right
at the time the algorithm stops. The fraction of erasure messages
which are passed at that time from right to left is then

(16)

We start by determining the residual degree distribution of left
nodes. Note that a left node will not appear in the residual graph

iff at least one of its incoming messages is not an erasure—oth-
erwise, it stays and retains its degree. Using (16) we see that a
node of degree has a probability of

of being expurgated. Since in the original graph the number of
left degree nodes is proportional to it follows that in the
residual graph the number of left degreenodes is proportional
to

From an edge perspective the degreefraction of the residual
graph is, therefore, proportional to

After normalization we find that the left degree distribution
of the residual graph, call it, is given by

We next determine the right degree distribution of the residual
graph. Recall that the equivalent transformed graph has a right
degree distribution of . We are only interested in nodes
of degree at least two. Hence we have

From a node perspective these fractions are proportional to

Define theerasure degreeof a right node to be equal to the
number of incoming edges which carry erasure messages. To
first order in , a node of erasure degreecan stem either from
a node of regular degreeall of whose incoming messages are
erasures or it can stem from a node of regular degree
which has one nonerasure message. Hence, at the fixed point the
fraction of right nodes with an erasure degree ofis proportional
to

Converting back to an edge perspective we see that these frac-
tions are proportional to



650 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Summing the above over we obtain

Noting that and normalizing we see that the residual
right degree distribution, call it, is given by

We are ultimately interested in the resulting row and column
gaps. Since one can easily be determined from the other we will
only write down an expression for the row gap. If we take the
expression for the row gap, call it from greedy algorithm B,
and keep only the terms which are linear inthen we see that
the row gap increased according to

The length of the code itself evolves as

Collecting all results we see that as a function of the indepen-
dent variable all quantities evolve according to the system of
differential equations

with the value of the initial quantities equal to, , , and ,
respectively.

As before, we can apply greedy algorithm C directly to the ex-
tended parity-check matrix chosen randomly from an ensemble

in which case we are interested in the resulting column
gap or we can apply it to the transpose of the extended parity-
check matrix in which case we are interested in the column gap.
We call these algorithms CH and CHT, respectively.

Example 10 [Gap for -Regular Code and Greedy Al-
gorithm CHT]: We choose and let where
is some very small quantity. Solving the system of differential
equations reveals that the resulting gap is equal to . We
see that this is the smallest expected gap for all the presented
algorithms.

D. A Practical Greedy Algorithm

In practice, one implements a serial version of greedy algo-
rithm CHT. At each stage, if the residual graph has a degree-one
variable node then diagonal extension is applied. If no such de-
gree-one variable node exists then one selects a variable node
of lowest possible degree,say, from the residual graph, and
declares (assuming no multiple edges) of its neighbors to
be known. The residual graph now has at least one degree-one
node and diagonal extension is applied.

There are many practical concerns. For example, variable
nodes which are used in the diagonal extension step correspond
to nonsystematic variables. Typically, degree-two nodes have
the highest bit-error rates. Thus, it is preferable to use as many
low-degree variables in the diagonalization step as possible,
e.g., if the subgraph induced by only the degree-two variables
has no loops then all degree-two variables can be made nonsys-
tematic using the above algorithm.

IV. CODES WITH LINEAR ENCODING COMPLEXITY

We saw in the preceding section that degree distributions
giving rise to codes that allow transmission close to capacity
will have gaps that are smaller than an arbitrarily small linear
fraction of the length of the code. To prove that these codes
have linear encoding complexity more work is needed, namely,
one has to show that the gapsatisfies with high
probability for large enough . More precisely, we will prove
the following.

Theorem 1 (Codes with Linear Encoding Complexity):Let
be a degree distribution pair satisfying ,

with minimum right degree , and satisfying thestrict
inequality . Let be chosen at random from
the ensemble . Then is encodable in linear time with
probability at least for some positive constantsand
, where .

Discussion: We note that all optimized degree distribution
pairs listed in [12] fulfill the conditions of Theorem 1. Further-
more, in experiments when applying the practical greedy algo-
rithm to graphs based on these degree distribution pairs, the
resulting gap is typically in the range of one to three! This is
true even for very large lengths like one million. By correctly
choosing the first degree-two variable, the gap can nearly always
be lowered to one. The primary reason for these very small gaps
is the large number of degree-two variable nodes in these degree
distributions. The number of degree-two variable nodes is suf-



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 651

ficiently large so that, with very high probability, the subgraph
induced by these nodes has a large (linear size) connected com-
ponent. Once a single check node belonging to this component
is declared known then the remainder of the component will di-
agonalize in the next diagonal extension step. The diagonaliza-
tion process then typically completes without further increasing
the gap.

Proof: In order to show that under the stated conditions
elements of the ensembles are linear time encod-
able (with high probability) it suffices to show that their
corresponding can be brought into approximate lower
triangular form with a gap of no more than (with high
probability). Note that we are working on thetransposeof
the parity-check matrix. Although one can prove that such an
approximate triangulation is achieved by thepractical greedy
algorithm it will be more convenient to consider a slightly
different greedy algorithm.4 The algorithm we consider has
three phases which we will have to investigate separately:
startup, main triangulation, andcleanup. In the startup phase,
we will declare at most of the check nodes to be known.
Each time we declare one check node to be known we apply
the diagonal extension step repeatedly until either there are no
degree one variable nodes left or until (we hope) the number of
degree-one variable nodes has grown to a linear-sized fraction.
Assuming the latter, we then enter themain triangulation
process. With exponential probability, the process will continue
until we are left with at most a small linear fraction of nodes.
Now we enter thecleanupphase. Here, we will show that with
high probability at most check nodes will be left when
the algorithm terminates. So overall, with high probability the
gap will be no more than , which will prove the claim.
We will now discuss these three phases in detail.

Recall that our aim is to bring a given , where is a
random element from , into approximate lower trian-
gular form with gap at most by applying a greedy algo-
rithm.

Startup: Let bearandomlychosendegree-twovariablenode
and let and be its connected check nodes. Declareto be
known. Now perform the diagonal extension step. After this step,
the columns which correspond to and will form the first
two columns of the matrix (assumingdoes not have a double
edge) and the row corresponding towill form the first row of the
matrix. Consider the residual matrix (with the first two columns
and the first row deleted) and the corresponding residual graph. If
this residual matrix contains a degree-one row then we can apply
another diagonal extension step and so on. It will simplify our
description if we perform the diagonal extension step toone de-
gree-onevariablenodeata time, insteadof toalldegree-onevari-
able nodes in parallel. More precisely, we start out with one de-
gree-two variable node which we convert into a degree-one vari-
able node by declaring one of its neighbors to be known. Then, at
any stage of the procedure, choose one of the degree-one variable

4In Appendix C, we define the notion of a “stopping set.” Stopping sets de-
termine the termination points of diagonal extension steps regardless of the im-
plementation of the diagonal extension. Thus, the particular three-phase formu-
lation used here is only for convenience of presentation.

nodes (assuming that at least one such node exists) and perform
the diagonal extension step only on this variable.

Let denote the number of degree-one variable nodes after
the th such step, where we have . If by , we denote
the number ofadditionaldegree-one variable nodes which are
generated in theth step then we get

(17)

where the term stems from the fact that one degree-one vari-
able node is used up during the diagonal extension step. Equa-
tion (17) is an instance of abranching process. Note that the
process continues until , i.e., until there are no more
degree-one variable nodes available for the diagonal extension
step. We would like the process to continue untilhas reached
“linear size,” i.e., until is a small fixed fraction of the number
of variable nodes.

Assume that we have performed at most steps. Let
denote theresidualdegree distribution pair. If is

small, it is intuitively clear that is “close” to .
Indeed, in Lemma 4 in Appendix A it is shown that, given a
degree distribution pair such that , then there
exists an and a such that
regardless which check nodes have been removed, as long as
their total number is no more than.

So, assume that we have performed at moststeps. What is
the expected value of ? Consider an edgeemanating from a
degree-one variable node. With probability it is connected to
adegree-checknode,call thisnode.Thischecknodehas
otheredges,eachofwhichhasprobability ofbeingconnected
toadegree-twonode.Therefore,ifhasdegreethentheexpected
number ofnewdegree-one nodes that will be generated is equal
to . Averaging over all degrees we get that has
expected value . In other words, we have

for . Furthermore,
is upper-bounded by the maximum right degree.

Let us define to be the stopping time
of . We will say that the branching processstops prematurely
if and we will say that it issuccessfulif
and , where can be chosen freely in the range

. Assume now that we employ the following
strategy. Start a process, by choosing a degree-two variable node
and declaring one of its neighbors to be known. If this process
stops prematurely then start another process if the number of
prematurely stopped processes so far is less than or de-
clare a failure otherwise. If the current process has not stopped
prematurely then declare a success if and
and stop the process at that time, and declare a failure otherwise.
Note that the total number of steps taken for this strategy is at
most . Although the branching process
which we consider always stops at a finite time and although
we will only be interested in the process for at moststeps it
is convenient to think of an infinite process with the
property that

This will allow us to write statements like



652 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

The probability of failure can be easily bounded in the fol-
lowing way. From iv) Lemma 5 in Appendix B, the probability
that a process has stopping time less than, i.e.,

, can be upper-bounded by

Therefore, the probability that processes have stopping

time less than has an upper bound of the form , .
Using i), ii), and iii) of Lemma 5, the probability that a process
failed assuming that it did not stop prematurely can be upper-
bounded as follows:

for some constants and for some ,
and a constant defined in Appendix B. Combining these
two results, we conclude that the probability of failure is upper-
bounded by for some constant and .

Main Upper Triangulation: With high probability we will
have succeeded in the startup phase. Consider now the output
of this startup phase assuming it was successful. From Lemma
4 in Appendix A we know that the residual degree distribution
pair fulfills and . Furthermore, it
is easy to see that conditioned, on and the length

, the resulting residual graph can be thought of as an ele-
ment of . This is most easily seen as follows:
Given the original graph, the residual graph is the result of re-
moving a certain set of edges, where the choice of these edges is
the result of certain random experiments. Consider another ele-
ment of which agrees with the original graph in those
edges but is arbitrary otherwise. Assume now that we run the
startup phase on this new graphwith the same random choices.
It is easy to see that the sequence of degree distribution pairs
will be the same and that at each step the probability for the
given choice of node which gets chosen is identical. So the re-
sulting residual graphs will have identical degree distribution
pairs, identical length, and the same probability of being gener-
ated. Further, each element of is reachable and,
by the above discussion, they have equal probability of being
generated, which proves the claim. Since it follows
that we can now simply use greedy algorithm AHT to continue
the lower triangulation process. From the analysis of greedy al-
gorithm AHT we know that, with exponential probability, the
process will not stop until at most a small linear fractionof
check nodes is left, where this fractioncan be made as small
as desired.

Cleanup Operation:So far we have increased the gap to at
most and, with high probability, we have accomplished

a partial lower triangulation with at most a small fractionof
check nodes left. In Lemma 6 in Appendix C it is now shown

that the probability at actually fewer than check
nodes will be left.

Combining all these statements we see that the probability
that the gap exceeds is at most , where .

APPENDIX A
RESIDUAL DEGREEDISTRIBUTION PAIRS

Lemma 4: Let be a degree distribution pair satisfying
, the strict inequality and .

Let be the set of all residual degree distribution pairs ob-
tainable from by removing at most anfraction of check
nodes from a graph with degree distribution pair . Then,
for sufficiently small, there exists a such that any

will satisfy and the strict inequality
. If, moreover, for some we have

then .
Proof: The conclusion is immediate since

and since we either remove a check node completely or leave
its degree unchanged. By continuity and since, for some
, , it is also clear that if is

sufficiently small.
It remains to show that if for

some . Let . Let be a positive number
such that . It follows by continuity that for
small enough we have

Define and note that .
Since we have for
sufficiently small. Hence, for sufficiently small, we have

In a similar manner

In the compact range ,
is a continuous function in the perturbation and since the de-
gree distribution pair fulfills the strict inequality (14) in
this range, it follows that there exists ansuch that it
then in this range. Let us fur-
ther assume . Then it follows that on the interval

we have

and hence . This shows that
.



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 653

APPENDIX B
BRANCHING PROCESSES

Let be a sequence of independent and identi-
cally distributed (i.i.d.) random variables. Define the sequence

by the recursion and
and let be the least time such that . If no such time
exists then we define . The process is usually
referred to as abranching processand originated in the context
of the study of population growths [18]. It is well known that
if then but that if
then . We will now show that under suitable
conditions the same conclusions hold even if we allow (limited)
dependency within the process .

Lemma 5 (Branching Processes):Let be a se-
quence of random variables taking values in such
that

for all . Define thebranching process , by
and , . Let thestopping time

be defined by , where if
no such exists.

i) For any

ii) Define . Then

iii) For any

iv) Define

Then

Proof: We start with a proof of the tail inequality. For any
we have

where the last step follows from the well-known Markov in-
equality. We proceed by bounding .

Recall the following basic fact from the theory of linear
programming, [19]. Aprimal linear program innormal form,

, has the associateddual linear
program . Further, if and are
feasible solutions for the primal and dual linear program such
that theirvaluesare equal, i.e., , then and are
optimalsolutions.

Now note that

The last step warrants some remarks. First, we rewrote the max-
imization as a minimization to bring the linear program into
normal form. Second, a simple scaling argument shows that
one can replace the equality condition with the
inequality without changing the value of the
linear program. The linear program in the last line is our primal
problem. It is easy to check that this primal problem has the fea-
sible solution

with value

(18)

To see that this solution is optimal consider the associated dual
program

The solution gives rise to the same
value as in (18). Hence, to prove optimality it suffices to prove
that this solution is feasible. For this we need to show that

This is trivially true for and for this is equivalent to

The claim now follows since is a decreasing function in
for .



654 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

We get

It follows that

The desired inequality now follows by choosing .
Next we show that

The proof will be very similar to the preceding one and we will
be short.

Now for we have

But

so that

It follows that

To prove that for any , note that from
and we conclude

that . Therefore



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 655

It remains to prove that . Note that for any
we have

APPENDIX C
NO SMALL STOPPINGSETS

Given a bipartite graph with constraint set we define a
stopping set to be any subset of with the property that there
does not exist a variable node inwith exactly one edge into

. The union of any two stopping sets is a stopping set. Hence,
there exists a unique maximal stopping set. Thus, if the graph

is operated on by the diagonal extension stage of an approxi-
mate upper triangulation algorithm which looks for degree-one
variable nodes, then it always terminates with the residual graph
determined by the maximal stopping set. That is, after a diag-
onal extension stage, the residual graph consists of the constraint
nodes in , the maximal stopping set, the edges emanating from

and the variable nodes incident to these edges. Thus, one can
show that the diagonal extension step will not terminate prema-
turely if one can show that there are no stopping sets.

Lemma 6 (No Small Stopping Sets):Let be an en-
semble of LDPC codes with . Then there exist a positive
number and a natural number such that for all ,
a randomly chosen element of has probability at most

of containing a stopping set of size in the range .
Proof: Recall the following simple estimates which we

will use frequently in the sequel:

as well as the fact that , for .
Recall that the total number of edges is equal to . Con-

sider edges. More precisely, fix check node sockets and for
each such check node socket choose a variable node socket at
random. Clearly, this can be done in

ways. We will say that the edges aredoubly connectedif each
variable is either not connected at all or connected at least twice
(with respect to theseedges). We claim that there are at most

doubly connected constellations. To see this claim note that a
doubly connected constellation withedges involves at most

variable nodes. Therefore, we get an upper bound if we

count as follows: first choose out of the variable nodes.
These chosen variable nodes have at most sockets.
Choose of these sockets and connect to them the edges in any
order. From this argument we see that the probability that the
chosen set ofedgesis doubly connected is upper-bounded by

(19)

Note that for sufficiently small , (19) isdecreasingin .
Now consider a set of check nodes. There are

such sets. Each such set has at leastedges and therefore,
assuming that is sufficiently small, we see from (19) that the
probability that one such set is a stopping set is at most

By the union bound it follows that the probability that a ran-
domly chosen element of does have a stopping set of
size is upper-bounded by

where we defined

It remains to show that there exist constants and
such that for all and for all

we have . Recall that . Therefore, if
and then

where the second step is true if we choosesmall enough and
the third step is true for sufficiently large.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge,
MA: MIT Press, 1963. Available at http://justice.mit.edu/people/gal-
lager.html.

[2] V. Zyablov and M. Pinsker, “Estimation of the error-correction com-
plexity of Gallager low-density codes,”Probl. Pered. Inform., vol. 11,
pp. 23–26, Jan. 1975.

[3] G. A. Margulis, “Explicit construction of graphs without short cycles
and low density codes,”Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.

[4] R. Tanner, “A recursive approach to low complexity codes,”IEEE Trans.
Inform. Theory, vol. IT-27, pp. 533–547, Sept. 1981.

[5] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,”Electron. Lett., vol. 32, pp. 1645–1646,
Aug. 1996.

[6] N. Wiberg, “Codes and decoding on general graphs,” Dissertation no.
440, Dept. Elect. Eng. Linköping Univ., Linköping , Sweden, 1996.



656 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

[7] N. Sourlas, “Spin-glass models as error-correcting codes,”Nature, no.
339, pp. 693–695, 1989.

[8] I. Kanter and D. Saad, “Error-correcting codes that nearly saturate
shannon’s bound,”Phys. Rev. Lett., vol. 83, pp. 2660–2663, 1999.

[9] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” inProc. 29th Annual ACM Symp.
Theory of Computing, 1997, pp. 150–159.

[10] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis
of low density codes and improved designs using irregular graphs,” in
Proc. 30th Annu. ACM Symp. Theory of Computing, 1998, pp. 249–258.

[11] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,”IEEE Trans. Inform.
Theory, vol. 47, pp. 599–618, Feb. 2001.

[12] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-ap-
proaching low-density parity check codes,”IEEE Trans. Inform. Theory,
vol. 47, pp. 619–637, Feb. 2001.

[13] M. Sipser and D. Spielman, “Expander codes,”IEEE Trans. Inform.
Theory, vol. 42, pp. 1710–1722, Nov. 1996.

[14] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of
constructions of irregular Gallager codes,” inProc. 36th Allerton Conf.
Communication, Control, and Computing, Sept. 1998.

[15] D. Spielman, “Linear-time encodeable and decodable error-correcting
codes,”IEEE Trans. Inform. Theory, vol. 42, pp. 1723–1731, Nov. 1996.

[16] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” inProc. 9th Annu. ACM-SIAM
Symp. Discrete Algorithms, 1998, pp. 364–373.

[17] L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds and optimal
codes for the binary symmetric channel and Gallager’s decoding algo-
rithm A,” IEEE Trans. Inform. Theory, to be published.

[18] N. Alon, J. Spencer, and P. Erdös,The Probabilistic Method. New
York: Wiley, 1992.

[19] A. Schrijver,Theory of Linear and Integer Programming. New York:
Wiley, 1986.


