
Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But we shall see that decision problems can be as hard

as the corresponding function problems.
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fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.
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An Algorithm for fsat Using sat
1: t := ε; {Truth assignment.}
2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true ] ∈ sat then

5: t := t ∪ { xi = true };
6: φ := φ[xi = true ];

7: else

8: t := t ∪ { xi = false };
9: φ := φ[xi = false ];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if
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Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than φ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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Analysis (concluded)

• Note that this reduction from fsat to sat is not a Karp

reduction.a

– Will the set of NP-complete problems differ under

different reductions?b

• Instead, it calls sat multiple times as a subroutine, and

its answers guide the search on the computation tree.

aRecall p. 273 and p. 278.
bContributed by Mr. Yu-Ming Lu (R06723032, D08922008) and Mr.

Han-Ting Chen (R10922073) on December 9, 2021.
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tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

• Thus the shortest total distance is less than 2|x | in
magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.
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An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [ 0, 2|x | ] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to its old value; {Edge [ i, j ] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;
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Analysis

• An edge which is not on any remaining optimal tours

will be eliminated, with its dij set to C + 1.

• So the algorithm ends with n edges which are not

eliminated (why?).

• This is true even if there are multiple optimal tours!a

aThanks to a lively class discussion on November 12, 2013 and De-

cember 9, 2021.
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Analysis (concluded)

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(|x |).
• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).a

aHow about counting the number of optimal tsp tours? This is re-

lated to #P-completeness (p. 867). Contributed by Mr. Vincent Hwang

(R10922138) on December 9, 2021.
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Randomized Computation
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I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.
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Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithms for maximal independent set.b

aRabin (1976); Solovay & Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).
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Randomized Algorithms (concluded)

• Are randomized algorithms algorithms?a

• Coin flips are occasionally used in politics.b

aPascal, “Truth is so delicate that one has only to depart the least

bit from it to fall into error.”
bIn the 2016 Iowa Democratic caucuses, e.g. (see

http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin

-flip-iowa-bernie-sanders/index.html).
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“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay & Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, & Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair & Jerrum (1989).
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Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un }.
– V = { v1, v2, . . . , vn }.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of { 1, 2, . . . , n } such that

(ui, vπ(i)) ∈ E

for all i ∈ { 1, 2, . . . , n }.
• A perfect matching contains n edges.
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A Perfect Matching in a Bipartite Graph

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 532



Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise:

AG
ij =

⎧⎨
⎩

xij , if (ui, vj) ∈ E,

0, otherwise.
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Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 532 isa

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

aThe idea is similar to the Tanner (1981) graph in coding theory.
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Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (9)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.a

• det(AG) contains n! terms, many of which may be 0s.

aEquivalently, sgn(π) = 1 if the number of (i, j)s such that i < j and

π(i) > π(j) is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on

May 1, 2008.
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Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– Nonzero summands
∏n

i=1A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 65 (Edmonds, 1967) G has a perfect

matching if and only if det(AG) is not identically zero.
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Perfect Matching and Determinant (p. 532)
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Perfect Matching and Determinant (concluded)

• The matrix is (p. 534)

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching, and vice

versa.
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How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• It has, potentially, exponentially many terms.

• Expanding the determinant polynomial is thus infeasible.

• If det(AG) ≡ 0, then it remains zero if we substitute

arbitrary integers for the variables x11, . . . , xnn.

• When det(AG) �≡ 0, what is the likelihood of obtaining a

zero?

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 539



Number of Roots of a Polynomial

Lemma 66 (Schwartz, 1980) Let p(x1, x2, . . . , xm) �≡ 0 be

a polynomial in m variables each of degree at most d. Let

M ∈ Z
+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).
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Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (10)

• So suppose p(x1, x2, . . . , xm) �≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control!

– One can raise M to lower the error probability, e.g.
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Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) �≡ 0.

1: Choose i1, . . . , im from { 0, 1, . . . ,M − 1 } randomly;

2: if p(i1, i2, . . . , im) �= 0 then

3: return “p is not identically zero”;

4: else

5: return “p is (probably) identically zero”;

6: end if
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Analysis

• If p(x1, x2, . . . , xm) ≡ 0 , the algorithm will always be

correct as p(i1, i2, . . . , im) = 0.

• Suppose p(x1, x2, . . . , xm) �≡ 0.

– The algorithm will answer incorrectly with

probability at most md/M by Eq. (10) on p. 541.

• We next return to the original problem of bipartite

perfect matching.
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A Randomized Bipartite Perfect Matching Algorithma

1: Choose n2 integers i11, . . . , inn from { 0, 1, . . . , 2n2 − 1 }
randomly; {So M = 2n2.}

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;

3: if det(AG(i11, . . . , inn)) �= 0 then

4: return “G has a perfect matching”;

5: else

6: return “G has (probably) no perfect matchings”;

7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”
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Analysis

• If G has no perfect matchings, the algorithm will always

be correct as det(AG(i11, . . . , inn)) = 0.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with

probability at most md/M = 0.5 with m = n2, d = 1

and M = 2n2 in Eq. (10) on p. 541.

• Run the algorithm independently k times.

• Output “G has no perfect matchings” if and only if all

say “(probably) no perfect matchings.”

• The error probability is now reduced to at most 2−k.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 545



Lószló Lovász (1948–)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 546



Remarksa

• Note that we calculated

prob[ algorithm answers “no” |G has no perfect matchings ],

prob[ algorithm answers “yes” |G has a perfect matching ].

– And they are 1 and ≥ 1/2, respectively.

• We did not calculateb

prob[G has no perfect matchings | algorithm answers “no” ],

prob[G has a perfect matching | algorithm answers “yes” ].

aThanks to a lively class discussion on May 1, 2008.
bNumerical Recipes in C (1988), “statistics is not a branch of math-

ematics!” Similar issues arise in MAP (maximum a posteriori) estimates

and ML (maximum likelihood) estimates.
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But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at mosta

n!
(
2n2

)n
.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(A
G(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all

intermediate results are of polynomial size.

aIn fact, it can be lowered to 2O(log2 n) (Csanky, 1975)!

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 548



An Intriguing Questiona

• Is there an (i11, . . . , inn) that will always give correct

answers for the algorithm on p. 544?

• A theorem on p. 641 shows that such an (i11, . . . , inn)

exists!

– Whether it can be found efficiently is another matter.

• Once (i11, . . . , inn) is available, the algorithm can be

made deterministic.

– Is it an algorithm for bipartite perfect matching?b

aThanks to a lively class discussion on November 24, 2004.
bWe have one algorithm for each n — unless there is an algorithm

to generate such (i11, . . . , inn) for all n. Contributed by Mr. Han-Ting

Chen (R10922073) on December 9, 2021.
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Randomization vs. Nondeterminisma

• What are the differences between randomized algorithms

and nondeterministic algorithms?

• Think of a randomized algorithm as a nondeterministic

one but with a probability associated with every

guess/branch.

• So each computation path of a randomized algorithm

has a probability associated with it.

aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Al-

hasan (D01922034) on November 27, 2012.
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Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is

called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is

always correct (no false positives; no type I

errors).

– If the algorithm answers in the negative, then it may

make an error (false negatives; type II errors).

∗ And the error probability must be small.

aMetropolis & Ulam (1949).
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Monte Carlo Algorithms (continued)

• The algorithm makes a false negative with probability

≤ 0.5.a

• Again, this probability refers tob

prob[ algorithm answers “no” |G has a perfect matching ]

not

prob[G has a perfect matching | algorithm answers “no” ].

aEquivalently, among the coin flip sequences, at most half of them

lead to the wrong answer.
bIn general, prob[ algorithm answers “no” | input is a yes instance ].
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Monte Carlo Algorithms (concluded)

• This probability 0.5 is not over the space of all graphs or

determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.

• In contrast, to calculate

prob[G has a perfect matching | algorithm answers “no” ],

we will need the distribution of G.

• But it is an empirical statement that is very hard to

verify.
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The Markov Inequalitya

Lemma 67 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,

prob[x ≥ kE[x ] ] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x ] =
∑
i

ipi =
∑

i<kE[x ]

ipi +
∑

i≥kE[x ]

ipi

≥
∑

i≥kE[x ]

ipi ≥ kE[x ]
∑

i≥kE[x ]

pi

≥ kE[x ]× prob[x ≥ kE[x ]].

aAndrei Andreyevich Markov (1856–1922).
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Andrei Andreyevich Markov (1856–1922)
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fsat for k-sat Formulas (p. 518)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth

assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this

problem.
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A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;

2: for i = 1, 2, . . . , r do

3: if T |= φ then

4: return “φ is satisfiable with T”;

5: else

6: Let c be an unsatisfied clause in φ under T ; {All of

its literals are false under T .}
7: Pick any x of these literals at random;

8: Modify T to make x true;

9: end if

10: end for

11: return “φ is unsatisfiable”;
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3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will answer

“unsatisfiable.”

• The random walk algorithm needs expected exponential

time for 3sat.

– In fact, it runs in expected O((1.333 · · ·+ ε)n) time

with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2014 is expected O(1.30704n)

time for 3sat and expected O(1.46899n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the

bound to deterministic O(1.3303n).
cHertli (2014).
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Random Walk Works for 2sata

Theorem 68 Suppose the random walk algorithm with

r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Assume our starting T differs from T̂ in i values.

– Their Hamming distance is i.

• Recall T is arbitrary.

aPapadimitriou (1991).
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The Proof

• Let t(i) denote the expected number of repetitions of the

flipping stepa until a satisfying truth assignment is

found.

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T �= T̂ or any other satisfying truth assignment, then

we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause

not satisfied by the present T .

• At least one of the 2 literals is true under T̂ because T̂

satisfies all clauses.
aThat is, Statement 7.
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The Proof (continued)

• So we have at least a 50% chance of moving closer to T̂ .

• Thus

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ

from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n− 1) + 1

because at i = n, we can only decrease i.
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The Proof (continued)

• Now, put the necessary relations together:

t(0) = 0, (11)

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1, 0 < i < n, (12)

t(n) ≤ t(n− 1) + 1. (13)

• Technically, this is a one-dimensional random walk with

an absorbing barrier at i = 0 and a reflecting barrier at

i = n (if we replace “≤” with “=”).a

aThe proof in the textbook does exactly that. But a student pointed

out difficulties with this proof technique on December 8, 2004. So our

proof here uses the original inequalities.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 562



The Proof (continued)

• Add up the relations for

2t(1), 2t(2), 2t(3), . . . , 2t(n− 1), t(n) to obtaina

2t(1) + 2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(0) + t(1) + 2t(2) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 1) + 1.

• Simplify it to yield

t(1) ≤ 2n− 1. (14)

aAdding up the relations for t(1), t(2), t(3), . . . , t(n−1) will also work,

thanks to Mr. Yen-Wu Ti (D91922010).
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The Proof (continued)

• Add up the relations for 2t(2), 2t(3), . . . , 2t(n− 1), t(n)

to obtain

2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(1) + t(2) + 2t(3) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 2) + 1.

• Simplify it to yield

t(2) ≤ t(1) + 2n− 3 ≤ 2n− 1 + 2n− 3 = 4n− 4

by Eq. (14) on p. 563.
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The Proof (continued)

• Continuing the process, we shall obtaina

t(i) ≤ 2in− i2.

• The worst upper bound happens when i = n, in which

case

t(n) ≤ n2.

• We conclude that

t(i) ≤ t(n) ≤ n2

for 0 ≤ i ≤ n.

aSee also Feller (1968).
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The Proof (concluded)

• So the expected number of steps is at most n2.

• The algorithm picks r = 2n2.

• Apply the Markov inequality (p. 554) with k = 2 to

yield the desired probability of 0.5.

• The proof does not yield a polynomial bound for 3sat.a

aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.
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Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ 1

2m

by Markov’s inequality.

• Alternatively, with the same running time, we can run

the “r = 2n2” algorithm m times.

• The error probability is now reduced to

≤ 2−m.
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Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k |N for k = 2, 3, . . . ,
√
N .

• But it runs in Ω(2(log2 N)/2) steps.

• compositeness asks if a number is composite.
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The Fermat Test for Primality

Fermat’s “little” theorem (p. 504) suggests the following

primality test for any given number N :

1: Pick a number a randomly from { 1, 2, . . . , N − 1 };
2: if aN−1 �≡ 1 mod N then

3: return “N is composite”;

4: else

5: return “N is (probably) a prime”;

6: end if
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The Fermat Test for Primality (continued)

• Carmichael numbers are composite numbers that will

pass the Fermat test for all a ∈ { 1, 2, . . . , N − 1 }.a
– The Fermat test will return “N is a prime” for all

Carmichael numbers N .

• If there are finitely many Carmichael numbers, store

them for matches before running the Fermat test.

• Unfortunately, there are infinitely many such numbers.b

– The number of Carmichael numbers less than N

exceeds N2/7 for N large enough.

aCarmichael (1910). Lo (1994) mentions an investment strategy based

on such numbers!
bAlford, Granville, & Pomerance (1992).
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The Fermat Test for Primality (concluded)

• The Fermat test will fail all of them.

• So the Fermat test is an incorrect algorithm for primes.

• Even suppose N is not a Carmichael number but

remains composite.

• We need many a ∈ { 1, 2, . . . , N − 1 } such that

aN−1 �≡ 1 mod N .

• Otherwise, the correct answer will come only with a

vanishing probability (say 1/N).a

aContributed by Mr. Vincent Hwang (R10922138) on December 9,

2021.
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Square Roots Modulo a Prime

• Equation x2 ≡ a mod p has at most two (distinct) roots

by Lemma 64 (p. 509).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are

called quadratic residues.

∗ They are

12 mod p, 22 mod p, . . . , (p− 1)2 mod p.

• We shall show that a number either has two roots or has

none, and testing which is the case is trivial.a

aBut no efficient deterministic general-purpose square-root-extracting

algorithms are known yet.
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Euler’s Test

Lemma 69 (Euler) Let p be an odd prime and

a �= 0 mod p.

1. If

a(p−1)/2 ≡ 1 mod p,

then x2 ≡ a mod p has two roots.

2. If

a(p−1)/2 �≡ 1 mod p,

then

a(p−1)/2 ≡ −1 mod p

and x2 ≡ a mod p has no roots.
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The Proof (continued)

• Let r be a primitive root of p.

• Fermat’s “little” theorem says rp−1 ≡ 1 mod p, so

r(p−1)/2

is a square root of 1.

• In particular,

r(p−1)/2 ≡ 1 or −1 mod p.

• But as r is a primitive root, r(p−1)/2 �≡ 1 mod p.

• Hence r(p−1)/2 ≡ −1 mod p.
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The Proof (continued)

• Let a ≡ rk mod p for some k.

• Suppose a(p−1)/2 ≡ 1 mod p.

• Then

1 ≡ a(p−1)/2 ≡ rk(p−1)/2 ≡
[
r(p−1)/2

]k
≡ (−1)k mod p.

• So k must be even.
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The Proof (continued)

• Suppose a ≡ r2j mod p for some 1 ≤ j ≤ (p− 1)/2.

• Then

a(p−1)/2 ≡ rj(p−1) ≡ 1 mod p.

• The two distinct roots of a are

rj ,−rj(≡ rj+(p−1)/2 mod p).

– If rj ≡ −rj mod p, then 2rj ≡ 0 mod p, which implies

rj ≡ 0 mod p, a contradiction as r is a primitive root.
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The Proof (continued)

• As 1 ≤ j ≤ (p− 1)/2, there are (p− 1)/2 such a’s.

• Each such a ≡ r2j mod p has 2 distinct square roots.

• The square roots of all these a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is { 1, 2, . . . , p− 1 }.
• As a result,

a = r2j mod p, 1 ≤ j ≤ (p− 1)/2,

exhaust all the quadratic residues.
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The Proof (concluded)

• Suppose a = r2j+1 mod p now.

• Then it has no square roots because all the square roots

have been taken.

• Finally,

a(p−1)/2 ≡
[
r(p−1)/2

]2j+1

≡ (−1)2j+1 ≡ −1 mod p.
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The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 69 (p. 573),

a(p−1)/2 ≡ ±1 mod p

for a �≡ 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) Δ
=

⎧⎪⎪⎨
⎪⎪⎩

0, if p | a,
1, if a is a quadratic residue modulo p,

−1, if a is a quadratic nonresidue modulo p.

• It is sometimes pronounced “a over p.”

aAndrien-Marie Legendre (1752–1833).
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The Legendre Symbol and Quadratic Residuacity Test

(concluded)

• Euler’s test (p. 573) implies

a(p−1)/2 ≡ (a | p) mod p

for any odd prime p and any integer a.

• Note that (ab | p) = (a | p)(b | p).
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Gauss’s Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd

primes. Then (q | p) = (−1)m, where m is the number of

residues in R
Δ
= { iq mod p : 1 ≤ i ≤ (p− 1)/2 } that are

greater than (p− 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p | (j − i) or p | q.
– But neither is possible.

• No two elements of R add up to p.

– If iq + jq ≡ 0 mod p, then p | (i+ j) or p | q.
– But neither is possible.
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The Proof (continued)

• Replace each of the m elements a ∈ R such that

a > (p− 1)/2 by p− a.

– This is equivalent to performing −a mod p.

• Call the resulting set of residues R′.

• All numbers in R′ are at most (p− 1)/2.

• In fact, R′ = { 1, 2, . . . , (p− 1)/2 } (see illustration next

page).

– Otherwise, two elements of R would add up to p,a

which has been shown to be impossible.

aBecause then iq ≡ −jq mod p for some i �= j.
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p = 7 and q = 5.
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The Proof (concluded)

• Alternatively, R′ = {±iq mod p : 1 ≤ i ≤ (p− 1)/2 },
where exactly m of the elements have the minus sign.

• Take the product of all elements in the two

representations of R′.

• So

[(p− 1)/2]! ≡ (−1)mq(p−1)/2[(p− 1)/2]! mod p.

• Because gcd([(p− 1)/2]!, p) = 1, the above implies

1 = (−1)mq(p−1)/2 mod p.
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Legendre’s Law of Quadratic Reciprocitya

• Let p and q be two distinct odd primes.

• The next result says (p | q) and (q | p) are distinct if and

only if both p and q are 3 mod 4.

Lemma 71 (Legendre, 1785; Gauss)

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

aFirst stated by Euler in 1751. Legendre (1785) did not give a cor-

rect proof. Gauss proved the theorem when he was 19. He gave at

least 8 different proofs during his life. The 152nd proof appeared in

1963. A computer-generated formal proof was given in Russinoff (1990).

As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law

of Quadratic Reciprocity is the first nontrivial theorem that a student

encounters in the mathematics curriculum.”
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The Proof (continued)

• Sum the elements of R′ on p. 584 in mod2.

• On one hand, this is just
∑(p−1)/2

i=1 i mod 2.

• On the other hand, the sum equals

mp+

(p−1)/2∑
i=1

(
iq − p

⌊
iq

p

⌋)

≡ mp+

⎛
⎝q

(p−1)/2∑
i=1

i− p

(p−1)/2∑
i=1

⌊
iq

p

⌋⎞⎠ mod 2.

– m of the iq mod p are replaced by p− iq mod p.

– But signs are irrelevant under mod2.

– m is as in Lemma 70 (p. 581).
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The Proof (continued)

• Ignore odd multipliers to make the sum equal

m+

⎛
⎝(p−1)/2∑

i=1

i−
(p−1)/2∑

i=1

⌊
iq

p

⌋⎞⎠ mod 2.

• Equate the above with
∑(p−1)/2

i=1 i modulo 2.

• Now simplify to obtain

m ≡
(p−1)/2∑

i=1

⌊
iq

p

⌋
mod 2.
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The Proof (continued)

• ∑(p−1)/2
i=1 � iq

p � is the number of integral points below the

line

y = (q/p)x

for 1 ≤ x ≤ (p− 1)/2.

• Gauss’s lemma (p. 581) says (q | p) = (−1)m.

• Repeat the proof with p and q reversed.

• Then (p | q) = (−1)m
′
, where m′ is the number of

integral points above the line y = (q/p)x for

1 ≤ y ≤ (q − 1)/2.
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The Proof (concluded)

• As a result,

(p | q)(q | p) = (−1)m+m′
.

• But m+m′ is the total number of integral points in the

[1, p−1
2 ]× [1, q−1

2 ] rectangle, which is

p− 1

2

q − 1

2
.
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Eisenstein’s Rectangle

(p,q)

(p - 1)/2

(q - 1)/2

Above, p = 11, q = 7, m = 7, m′ = 8.
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