CYCLE COVER

• A set of node-disjoint cycles that cover all *nodes* in a *directed* graph is called a **cycle cover**.

• There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING **Proposition 96** CYCLE COVER and BIPARTITE PERFECT MATCHING (p. 532) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G' from any directed graph G (see next page).
- The number of cycle covers for G equals the number of bipartite perfect matchings for G'.
- And vice versa.

Corollary 97 CYCLE COVER $\in P$.

Permanent

• The **permanent** of an $n \times n$ integer matrix A is

$$\operatorname{perm}(A) = \sum_{\pi} \prod_{i=1}^{n} A_{i,\pi(i)}.$$

- π ranges over all permutations of n elements.

• 0/1 PERMANENT computes the permanent of a 0/1 (binary) matrix.

- The permanent of a binary matrix is at most n!.

- Simpler than determinant (9) on p. 536: no signs.
- Surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant.^a
- #BIPARTITE PERFECT MATCHING is related to permanent.

Proposition 98 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

^aRecall p. 537.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
 - The (i, j)th entry A_{ij} is 1 if $(i, j) \in E$ and 0 otherwise.
- Then perm(A) = number of perfect matchings in G.

Illustration of the Proof Based on p. 872 (Left)

- $\operatorname{perm}(A) = 4.$
- The permutation corresponding to the perfect matching on p. 872 is marked.

Permanent and Counting Cycle Covers

Proposition 99 0/1 PERMANENT and CYCLE COVER are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 872 (right).
- Then perm(A) = number of cycle covers.

Three Parsimoniously Equivalent^a Problems We summarize Propositions 96 (p. 871) and 98 (p. 874) in the following.

Lemma 100 0/1 PERMANENT, BIPARTITE PERFECT MATCHING, and CYCLE COVER are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact #P-complete.

^aMeaning the numbers of solutions are equal in a reduction.

WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The **cycle count** of *G* is sum of the weights of all cycle covers.
 - Let A be G's adjacency matrix but $A_{ij} = w_i$ if the edge (i, j) has weight w_i .
 - Then perm(A) = G's cycle count (same proof as Proposition 99 on p. 877).
- #CYCLE COVER is a special case: All weights are 1.

Three #P-Complete Counting Problems Theorem 101 (Valiant, 1979) 0/1 PERMANENT, #BIPARTITE PERFECT MATCHING, and #CYCLE COVER are #P-complete.

- By Lemma 100 (p. 878), it suffices to prove that #CYCLE COVER is #P-complete.
- #SAT is #P-complete (p. 868).
- #3SAT is #P-complete because it and #SAT are parsimoniously equivalent.
- We shall prove that #3SAT is polynomial-time Turing-reducible to #CYCLE COVER.

The Proof (continued)

- Let ϕ be the given 3SAT formula.
 - It contains n variables and m clauses (hence 3m literals).
 - It has $\#\phi$ satisfying truth assignments.
- First we construct a *weighted* directed graph H with cycle count

$$\#H = 4^{3m} \times \#\phi.$$

- Then we construct an unweighted directed graph G.
- We shall make sure #H (hence $\#\phi$) is polynomial-time Turing-reducible to #G (G's number of cycle covers).

The Proof: Comments (continued)

- Our reduction is not expected to be parsimonious.
 - Suppose otherwise and

$$\#\phi = \#G.$$

- Hence G has a cycle cover if and only if ϕ is satisfiable.
- But CYCLE COVER $\in P$ (p. 871).
- Thus $3SAT \in P$, a most unlikely event!

The Proof: the Clause Gadget (continued)

• Each clause is associated with a **clause gadget**.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
 - The assignment of literals to edges is arbitrary.
- Bold edges are schematic only,^a not *parallel* edges. ^aPreview p. 897.

The Proof: the Clause Gadget (continued)

- Following a bold edge makes the literal false (0).
- A cycle cover cannot select *all* 3 bold edges.
 - The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment: (1) a = 0, b = 0, c = 1, (2) a = 0, b = 1, c = 0, etc.

The Proof: Properties of the XOR Gadget (continued)

• The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- There are 3m XOR gadgets, one for each literal.
- Only those cycle covers that take exactly one schematic edge in *every* XOR gadget contribute a nonzero weight (see next pages).

The Proof: Summary (continued)

- Cycle covers not entering *all* of the XOR gadgets contribute 0 to the cycle count.
 - Let x denote an XOR gadget not entered for some cycle covers for H.
 - Now, such cycle covers' contribution to the cycle count totals, by p. 889,

The Proof: Summary (continued)

- Cycle covers entering *any* of the XOR gadgets and leaving illegally contribute 0 to the cycle count by p. 890.
- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4.
 - Each such act multiplies the weight by 4 by p. 891.

The Proof: Summary (continued)

- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
 - Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to **respect** the XOR gadgets.

• One choice gadget (a schema) for each *variable*.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

The Proof: a Key Observation (continued)

Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

The Proof: a Key Corollary (continued)

- Recall that there are 3m XOR gadgets.
- Each satisfying truth assignment to ϕ contributes 4^{3m} to the cycle count #H.
- Hence

$$#H = 4^{3m} \times \#\phi, \tag{28}$$

as desired.

The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be *efficiently* replaced by an unweighted graph G.
- Furthermore, knowing #G should enable us to calculate #H efficiently.
 - This done, $\#\phi$ will have been Turing-reducible to $\#G.^{a}$
- We proceed to construct this graph G.

^aBy way of #H of course.

The Proof: Construction of G (continued)

• Replace edges of the XOR gadget (p. 887) with weights 2 and 3 without creating parallel edges:

• The cycle count #H remains *unchanged*.

The Proof: Construction of G (continued)

- We move on to edges with weight -1.
- First, we count the number of nodes, M.
- Each clause gadget (p. 884) contains 4 nodes, and there are *m* of them (one per clause).
- Each choice gadget (p. 895) contains 2 nodes, and there are $n \leq 3m$ of them (one per variable).
- Each revised XOR gadget (p. 903) contains 7 nodes, and there are 3m of them (one per literal).
- So

$$M \le 4m + 6m + 21m = 31m.$$

The Proof: Construction of G (continued)

- $#H \le 2^L$ for some $L = O(m \log m)$.
 - The maximum absolute value of the edge weight is 1.
 - Hence each term in the permanent is at most 1.
 - There are $M! \leq (31m)!$ terms.
 - Hence

$$#H \leq \sqrt{2\pi(31m)} \left(\frac{31m}{e}\right)^{31m} e^{\frac{1}{12\times(31m)}} = 2^{O(m\log m)}$$
(29)

by a refined Stirling's formula.

The Proof (continued)

• #G equals #H after replacing each appearance -1 in #H with 2^{L+1} :

$$#H = \cdots + \underbrace{1 \cdot 1 \cdots (-1) \cdots 1}_{\text{a cycle cover } (n \text{ terms})} + \underbrace{4^{H} = \cdots + \underbrace{1 \cdot 1 \cdots (-1) \cdots 1}_{\text{a cycle cover } (n \text{ terms})} + \underbrace{4^{H} = \cdots + \underbrace{1 \cdot 1 \cdots 2^{L+1} \cdots 1}_{\text{a cycle cover } (n \text{ terms})} + \cdots$$

- Let $#G = \sum_{i=0}^{n} a_i \times (2^{L+1})^i$, where $0 \le a_i < 2^{L+1}$.
- Recall that $\#H \le 2^L$ (p. 905).
- So each a_i counts the number of cycle covers with i edges of weight -1 as there is no "overflow" in #G.

The Proof (concluded)

• We conclude that

$$#H = a_0 - a_1 + a_2 - \dots + (-1)^n a_n,$$

indeed easily computable from #G.

• We know $\#H = 4^{3m} \times \#\phi$ from Eq. (28) on p. 900.

• So

$$\#\phi = \frac{a_0 - a_1 + a_2 - \dots + (-1)^n a_n}{4^{3m}}$$

- Equivalently,

$$\#\phi = \frac{\#G \mod (2^{L+1}+1)}{4^{3m}}$$

