On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. - George Bernard Shaw (1856-1950)

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using monotone circuits.
- Monotone circuits are circuits without \neg gates. ${ }^{\text {a }}$
- Note that this result does not settle the P vs. NP problem.
${ }^{a}$ Recall p. 331.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem: MONOTONE CIRCUIT VALUE (p. 332).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
- HAMILTONIAN PATH and CLIQUE.

CLIQUE $_{n, k}$

- CLIQUE ${ }_{n, k}$ is the boolean function deciding whether a graph $G=(V, E)$ with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
- Gate $g_{i j}$ is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE $_{n, k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- Of course, this does not rule out that nonmonotone circuits for CLIQUE $_{n, k}$ may use fewer gates.

Crude Circuits

- One possible circuit for CLIQUE $_{n, k}$ does the following.

1. For each $S \subseteq V$ with $|S|=k$, there is a circuit with $O\left(k^{2}\right) \wedge$-gates testing whether S forms a clique.
2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O\left(k^{2}\binom{n}{k}\right)$ gates, which is exponentially large unless k or $n-k$ is a constant.
- A crude circuit $\mathrm{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ tests if there is an $X_{i} \subseteq V$ that forms a clique. ${ }^{\text {a }}$
- The above-mentioned circuit is $\mathrm{CC}\left(S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right)$.

[^0]
The Proof: Positive Examples

- Analysis will be applied to only the following positive examples and negative examples as input graphs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- CLIQUE $_{n, k}$ should output true on them.

The Proof: Negative Examples

- Color the nodes with $k-1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^{n}$ such graphs.
- CLiqUE $_{n, k}$ should output false on them.
- Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

Positive and Negative Examples with $k=5$

A positive example

A negative example

Sunflowers

- Fix $p \in \mathbb{Z}^{+}$and $\ell \in \mathbb{Z}^{+}$.
- A sunflower is a family of p sets $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most ℓ.
- Furthermore, all pairs of sets in the family must have the same intersection (called the core ${ }^{\text {a }}$ of the sunflower).

[^1]
A Sample Sunflower

$$
\begin{aligned}
& \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\} \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

The Erdős-Rado Lemma

Lemma 86 Let \mathcal{Z} be a family of more than $M \triangleq(p-1)^{\ell} \ell$! nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ.
- For $\ell=1, p$ different singletons form a sunflower (with an empty core).
- Suppose $\ell>1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
- Every set in $\mathcal{Z}-\mathcal{D}$ intersects some set in \mathcal{D}.

The Proof of the Erdős-Rado Lemma (continued)
For example,

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,3,6,9\},\{0,4,8,11\} \\
& \{4,5,6,7\},\{5,8,9,10\},\{6,7,9,11\}\} \\
\mathcal{D}= & \{\{1,2,3,5\},\{0,4,8,11\}\}
\end{aligned}
$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
- \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
- Let C be the union of all sets in \mathcal{D}.
$-|C| \leq(p-1) \ell$.
- C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
- There is a $d \in C$ that intersects more than $\frac{M}{(p-1) \ell}=(p-1)^{\ell-1}(\ell-1)!$ sets in \mathcal{Z}.
- Consider $\mathcal{Z}^{\prime}=\{Z-\{d\}: Z \in \mathcal{Z}, d \in Z\}$.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
- \mathcal{Z}^{\prime} has more than $M^{\prime} \triangleq(p-1)^{\ell-1}(\ell-1)$! sets.
$-M^{\prime}$ is just M with ℓ replaced with $\ell-1$.
$-\mathcal{Z}^{\prime}$ contains a sunflower by induction, say

$$
\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}
$$

- Now,

$$
\left\{P_{1} \cup\{d\}, P_{2} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}
$$

is a sunflower in \mathcal{Z}.

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- Plucking a sunflower means replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- pluck (\mathcal{Z}) is not unique. ${ }^{\text {a }}$

[^2]
An Example of Plucking

- Recall the sunflower on p. 814:

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

- Then

$$
\operatorname{pluck}(\mathcal{Z})=\{\{1,2\}\} .
$$

Razborov's Theorem

Theorem 87 (Razborov, 1985) There is a constant c such that for large enough n, all monotone circuits for CLIQUE $_{n, k}$ with $k=n^{1 / 4}$ have size at least $n^{c n^{1 / 8}}$.

- We shall approximate any monotone circuit for CLIQUE $_{n, k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.

The Proof

- Fix $k=n^{1 / 4}$.
- Fix $\ell=n^{1 / 8}$.
- Note that ${ }^{\text {a }}$

$$
\begin{equation*}
2\binom{\ell}{2} \leq k-1 \tag{24}
\end{equation*}
$$

- p will be fixed later to be $n^{1 / 8} \log n$.
- $\operatorname{Fix} M=(p-1)^{\ell} \ell!$.
- Recall the Erdős-Rado lemma (p. 815).

[^3]
The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, where:
- $X_{i} \subseteq V$.
$-\left|X_{i}\right| \leq \ell$.
- $m \leq M$.
- It answers true if and only if at least one X_{i} is a clique.
- We shall show how to approximate any monotone circuit for CLIQUE n, k by such a crude circuit, inductively.
- The induction basis is straightforward:
- Input gate $g_{i j}$ is the crude circuit $\operatorname{CC}(\{i, j\})$.

The Proof (continued)

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
- Start with two crude circuits $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$.
$-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
- We will construct the approximate OR and the approximate AND of these subcircuits.
- Then show both approximations introduce few errors.

The Proof: OR

- $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
- For any node set $\mathcal{C}, \mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ if and only if $\mathcal{C} \in \mathcal{X}$ or $\mathcal{C} \in \mathcal{Y}$.
- Hence $\mathcal{X} \cup \mathcal{Y}$ contains a clique if and only if \mathcal{X} or \mathcal{Y} contains a clique.
- Problem with $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ occurs when $|\mathcal{X} \cup \mathcal{Y}|>M$.
- Such violations are eliminated by using

$$
\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))
$$

as the final approximate or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.

The Proof: OR (continued)

- If $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true.
- Each plucking replaces sets by their common core.
- Let $Y \in \mathcal{Z}$ be a clique.
- But a subset of Y must also be a clique.
- So pluck (\mathcal{Z}) must contain a clique.

The Proof: OR (continued)

The Proof: OR (concluded)

- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return false but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- We next count the number of false positives and false negatives introduced ${ }^{\text {a }}$ by $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$.
- Let us work on false negatives for or first.
${ }^{\text {a }}$ Compared with $\mathrm{CC}(\mathcal{X} \cup \mathcal{Y})$ of course.

The Number of False Negatives ${ }^{\text {a }}$

Lemma $88 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.
- This makes the test for cliqueness less stringent. ${ }^{\text {b }}$

[^4]
The Number of False Positives

Lemma $89 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces at most $\frac{2 M}{p-1} 2^{-p}(k-1)^{n}$ false positives.

- Each plucking operation replaces the sunflower $\left\{Z_{1}, Z_{2}, \ldots, Z_{p}\right\}$ with its common core Z.
- A false positive is necessarily a coloring such that:
- There is a pair of identically colored nodes in each petal Z_{i} (and so $\mathrm{CC}\left(Z_{1}, Z_{2}, \ldots, Z_{p}\right)$ returns false).
- But the core contains distinctly colored nodes (thus forming a clique).
- This implies at least one node from each identical-color pair was plucked away.

Proof of Lemma 89 (continued)

Proof of Lemma 89 (continued)

- We now count the number of such colorings.
- Color nodes in V at random with $k-1$ colors.
- Let $R(X)$ denote the event that there are repeated colors in set X.

Proof of Lemma 89 (continued)

- Now

$$
\begin{align*}
& \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right] \tag{25}\\
\leq & \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right] \\
= & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \\
\leq & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right] . \tag{26}
\end{align*}
$$

- Equality holds because $R\left(Z_{i}\right)$ are independent given $\neg R(Z)$ as core Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_{i} decreases given no repetitions in a subset, Z.

Proof of Lemma 89 (continued)

- Consider two nodes in Z_{i}.
- The probability that they have identical color is

$$
\frac{1}{k-1} .
$$

- Now

$$
\begin{equation*}
\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\binom{\left(Z_{i} \mid\right.}{2}}{k-1} \leq \frac{\binom{\ell}{2}}{k-1} \leq \frac{1}{2} \tag{27}
\end{equation*}
$$

by inequality (24) on p. 822.

- So the probability ${ }^{\text {a }}$ that a random coloring yields a new false positive is at most 2^{-p} by inequality (26) on p. 833 .

[^5]
Proof of Lemma 89 (continued)

- As there are $(k-1)^{n}$ different colorings, each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives.
- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2 M$.
- When the procedure pluck $(\mathcal{X} \cup \mathcal{Y})$ ends, the set system contains $\leq M$ sets.

Proof of Lemma 89 (concluded)

- Each plucking reduces the number of sets by $p-1$.
- Hence at most $2 M /(p-1)$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$
\frac{2 M}{p-1} 2^{-p}(k-1)^{n}
$$

false positives are introduced. ${ }^{\text {a }}$

[^6]
The Proof: And

- The approximate AND of crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is

$$
\mathrm{CC}\left(\operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)\right) .
$$

- We need to count the number of errors this approximate AND introduces on the positive and negative examples.

The Proof: AND (continued)

- The approximate AND introduces a false positive if a negative example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return false but makes the approximate and return true.
- The approximate AND introduces a false negative if a positive example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true but makes the approximate and return false.
- As we count only new errors, we ignore scenarios where the And of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is already wrong.

The Proof: AND (continued)

- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives over our negative examples. ${ }^{\text {a }}$
- Suppose CC(\{ $\left.\left.X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ returns true.
- Then some $X_{i} \cup Y_{j}$ is a clique.
- Thus $X_{i} \in \mathcal{X}$ and $Y_{j} \in \mathcal{Y}$ are cliques, making both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true.
- So $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives.
${ }^{\text {a }}$ Unlike the or case on p . 825, we are not claiming that $\mathrm{CC}\left(\left\{X_{i} \cup\right.\right.$ $\left.\left.Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ is equivalent to the and of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$. Equivalence is more than we need here.

The Proof: AND (concluded)

- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives over our positive examples.
- Suppose both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ accept a positive example with a clique \mathcal{C} of size k.
- This clique \mathcal{C} must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$.
- As this clique \mathcal{C} also contains $X_{i} \cup Y_{j}$ (see next page), the new circuit returns true.
- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives.
- We next bound the number of false positives and false negatives introduced ${ }^{\text {a }}$ by the approximate and.

[^7]

The Number of False Positives

Lemma 90 The approximate AND introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

- We prove this claim in stages.
- We knew $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives. ${ }^{\text {a }}$
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces no additional false positives because we are testing potentially fewer sets for cliqueness.

[^8]
Proof of Lemma 90 (concluded)

- $\left|\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right| \leq M^{2}$.
- Each plucking reduces the number of sets by $p-1$.
- So pluck $\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ involves $\leq M^{2} /(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives by the proof of Lemma 89 (p. 830).
- The desired upper bound is

$$
\left[M^{2} /(p-1)\right] 2^{-p}(k-1)^{n} \leq M^{2} 2^{-p}(k-1)^{n} .
$$

The Number of False Negatives

Lemma 91 The approximate and introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- We knew $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives. ${ }^{\text {a }}$
${ }^{\text {a }}$ Recall p. 839.

Proof of Lemma 91 (continued)

- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set $Z \triangleq X_{i} \cup Y_{j}$ larger than ℓ introduces false negatives only if Z is part of a clique.
- There are $\left(\begin{array}{c}\left.n-\left\lvert\, \begin{array}{c}Z \mid \\ k-|Z|\end{array}\right.\right) \text { such cliques. }\end{array}\right.$
* It is the number of positive examples whose clique contains Z.
$-\binom{n-|Z|}{k-|Z|} \leq\binom{ n-\ell-1}{k-\ell-1}$ as $|Z|>\ell$.
- There are at most M^{2} such $Z \mathrm{~s}$.

Proof of Lemma 91 (concluded)

- Plucking introduces no false negatives.
- Recall that if $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true. ${ }^{\text {a }}$

[^9]
Two Summarizing Lemmas

From Lemmas 89 (p. 830) and 90 (p. 842), we have:
Lemma 92 Each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

From Lemmas 88 (p. 829) and 91 (p. 844), we have:
Lemma 93 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- So each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 94 Every final crude circuit is:

1. Identically false-thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- Then it accepts at least those graphs that have a clique on some set X of nodes, with

$$
|X| \leq \ell=n^{1 / 8}<n^{1 / 4}=k .
$$

Proof of Lemma 94 (concluded)

- Inequality (27) (p. 834) says that at least half of the colorings assign different colors to nodes in X.
- So at least half of the colorings - thus negative examples - have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 822:

$$
\begin{aligned}
k & \triangleq n^{1 / 4} \\
\ell & \triangleq n^{1 / 8} \\
p & \triangleq n^{1 / 8} \log n \\
M & \triangleq(p-1)^{\ell} \ell!<n^{(1 / 3) n^{1 / 8}} \quad \text { for large } n
\end{aligned}
$$

The Proof (continued)

- Suppose the final crude circuit is identically false.
- By Lemma 93 (p. 847), each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are $\binom{n}{k}$ positive examples.
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^{2}}\left(\frac{n-\ell}{k}\right)^{\ell} \geq n^{(1 / 12) n^{1 / 8}}
$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
- Lemma 94 (p. 849) says that there are at least $(k-1)^{n} / 2$ false positives.
- By Lemma 92 (p. 847), each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{(k-1)^{n} / 2}{M^{2} 2^{-p}(k-1)^{n}}=\frac{2^{p-1}}{M^{2}} \geq n^{(1 / 3) n^{1 / 8}}
$$

gates.

Alexander Razborov (1963-)

$\mathrm{P} \neq \mathrm{NP}$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $\mathrm{P} \neq \mathrm{NP}$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

Computation That Counts

And though the holes were rather small, they had to count them all.
 - The Beatles, A Day in the Life (1967)

Counting Problems

- Counting problems are concerned with the number of solutions.
- \#sAT: the number of satisfying truth assignments to a boolean formula.
- \#hamiltonian path: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
- The decision problem has a solution if and only if the solution count is at least 1 .
- But they can be harder than their decision versions.

Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f:\{0,1\}^{*} \rightarrow \mathbb{Z}$.
- GCD, LCM, matrix-matrix multiplication, etc.
- If $\#$ sat $\in F P$, then $P=N P$.
- Given boolean formula ϕ, calculate its number of satisfying truth assignments, k, in polynomial time.
- Declare " $\phi \in \mathrm{SAT}^{\prime}$ " if and only if $k \geq 1$.
- The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- CYClE asks if a directed graph contains a cycle. ${ }^{\text {a }}$
- \#CYCLE counts the number of cycles in a directed graph.
- CYCle is in P by a simple greedy algorithm.
- But \#cycle is hard unless $\mathrm{P}=\mathrm{NP}$.

[^10]
Hardness of \#CYCLE

Theorem 95 (Arora, 2006) If \#cycle $\in F P$, then $P=N P$.

- It suffices to reduce the NP-complete hamiltonian cycle to \#CyCle.
- Consider a directed graph G with n nodes.
- Define $N \equiv\left\lfloor n \log _{2}(n+1)\right\rfloor$.
- Replace each edge $(u, v) \in G$ with this subgraph:

The Proof (continued)

- This subgraph has $N+1$ levels.
- There are now 2^{N} paths from u to v.
- Call the resulting digraph G^{\prime}.
- Recall that a Hamiltonian cycle on G contains n edges.
- To each Hamiltonian cycle on G, there correspond $\left(2^{N}\right)^{n}=2^{n N}$ cycles (not necessarily Hamiltonian) on G^{\prime}.
- So if G contains a Hamiltonian cycle, then G^{\prime} contains at least $2^{n N}$ cycles.

The Proof (continued)

- Now suppose G contains no Hamiltonian cycles.
- Then every cycle on G contains at most $n-1$ nodes.
- There are hence at most n^{n-1} cycles on G.
- Each k-node cycle on G induces $\left(2^{N}\right)^{k}$ cycles on G^{\prime}.
- So G^{\prime} contains at most $n^{n-1}\left(2^{N}\right)^{n-1}$ cycles.
- As $n \geq 1$,

$$
\begin{aligned}
& n^{n-1}\left(2^{N}\right)^{n-1}=2^{n N} \frac{n^{n-1}}{2^{N}} \leq 2^{n N} \frac{n^{n-1}}{2^{n \log _{2}(n+1)-1}} \\
= & 2^{n N} \frac{2 n^{n-1}}{(n+1)^{n}} \leq 2^{n N} \frac{2}{n+1}\left(\frac{n}{n+1}\right)^{n-1}<2^{n N}
\end{aligned}
$$

The Proof (concluded)

- In summary, $G \in$ hamiltonian cycle if and only if G^{\prime} contains at least $2^{n N}$ cycles.
- G^{\prime} contains at most $n^{n} 2^{n N}$ cycles.
- Every cycle on G^{\prime} is associated with a unique cycle on G.
- Every k-cycle on G induces $\left(2^{N}\right)^{k} \leq 2^{n N}$ cycles on G^{\prime}.
- There are at most n^{n} cycles in G.
- This number has a polynomial length $O\left(n^{2} \log n\right)$.
- Hence hamiltonian cycle \in P.

Counting Class \#P

A function f is in $\# \mathrm{P}($ or $f \in \# \mathrm{P}$) if

- There exists a polynomial-time NTM M.
- $M(x)$ has $f(x)$ accepting paths for all inputs x.

Some \#P Problems

- $f(\phi)=$ number of satisfying truth assignments to ϕ.
- The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
- Hence $f \in \# \mathrm{P}$.
- f is also called \#sat.
- \#hamiltonian Path.
- \#3-COLORING.

\#P Completeness

- Function f is \#P-complete if
$-f \in \#$ P.
$-\# \mathrm{P} \subseteq \mathrm{FP}^{f}$.
* Every function in \#P can be computed in polynomial time with access to a black box ${ }^{\text {a }}$ for f.
- It said to be polynomial-time Turing-reducible to f.
- Oracle f can be accessed only a polynomial number of times.

[^11]
\#sat Is \#P-Complete ${ }^{\text {a }}$

- First, it is in \#P (p. 866).
- Let $f \in \# \mathrm{P}$ compute the number of accepting paths of M.
- Cook's theorem uses a parsimonious reduction from M on input x to an instance ϕ of SAt.
- That is, $M(x)$'s number of accepting paths equals ϕ 's number of satisfying truth assignments.
- Call the oracle \#sat with ϕ to obtain the desired answer regarding $f(x)$.
${ }^{\text {a }}$ Valiant (1979); in fact, \#2sAT is also \#P-complete.

Leslie G. Valiant ${ }^{\text {a }}$ (1949-)

Avi Wigderson (2009), "Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [...] We all became addicted to this remarkable throughput, and expect more."

${ }^{\text {a }}$ Turing Award (2010).

[^0]: ${ }^{a}$ Consider the empty set a clique.

[^1]: ${ }^{a}$ A core can be an empty set.

[^2]: ${ }^{\text {a }}$ It depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.

[^3]: ${ }^{\text {a }}$ Corrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

[^4]: ${ }^{\text {a }}$ Recall that $\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
 ${ }^{\mathrm{b}}$ The new crude circuit is at least as positive as the original one (p. 826).

[^5]: ${ }^{a}$ Proportion, if you so prefer.

[^6]: ${ }^{\text {a }}$ Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

[^7]: ${ }^{\text {a }}$ Compared with $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ of course.

[^8]: ${ }^{\text {a }}$ Recall p. 839.

[^9]: ${ }^{\text {a Recall p. }} 826$.

[^10]: ${ }^{\text {a }} \mathrm{A}$ cycle has no repeated nodes.

[^11]: ${ }^{\text {a }}$ Think of it as a subroutine. It is also called an oracle.

