
The Setup

• Bob publishes n = pq, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• Alice wants to send bit string b1b2 · · · bk to Bob.

• Alice encrypts the bits by choosing a random quadratic

residue modulo n if bi is 1 and a random quadratic

nonresidue (with Jacobi symbol 1) otherwise.

• So a sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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The Protocol for Alice

1: for i = 1, 2, . . . , k do

2: Pick r ∈ Z∗
n randomly;

3: if bi = 1 then

4: Send r2 mod n; {Jacobi symbol is 1.}
5: else

6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if

8: end for
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The Protocol for Bob

1: for i = 1, 2, . . . , k do

2: Receive r;

3: if (r | p) = 1 and (r | q) = 1 then

4: bi := 1;

5: else

6: bi := 0;

7: end if

8: end for
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Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a

given message.

• One is chosen at random by the sender to represent the

message.

– Encryption is a one-to-many mapping.

• This scheme is both polynomially secure and

semantically secure.
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What then do you call proof?

— Henry James (1843–1916),

The Wings of the Dove (1902)

Leibniz knew what a proof is.

Descartes did not.

— Ian Hacking (1973)
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What Is a Proof?

• A proof convinces a party of a certain claim.

– “xn + yn �= zn for all x, y, z ∈ Z
+ and n > 2.”

– “Graph G is Hamiltonian.”

– “xp = x mod p for prime p and p � |x.”
• In mathematics, a proof is a fixed sequence of theorems.

– Think of it as a written examination.

• We will extend a proof to cover a proof process by which

the validity of the assertion is established.

– Recall a job interview or an oral examination.
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Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

• The verifier’s objective is to accept only correct

assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is similar to the Turing test.a

aTuring (1950).
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Interactive Proof Systems

• An interactive proof for a language L is a sequence of

questions and answers between the two parties.

• At the end of the interaction, the verifier decides

whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time

algorithm.

• The prover runs an exponential-time algorithm.a

– If the prover is not more powerful than the verifier,

no interaction is needed!
aSee the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on

p. 475, both of the textbook, about alternative complexity assumptions

without affecting the definition. Contributed by Mr. Young-San Lin

(B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.
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Interactive Proof Systems (concluded)

• The system decides L if the following two conditions

hold for any common input x.

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 1− 2−|x |.

– If x �∈ L, then the probability that x is accepted by

the verifier with any prover replacing the original

prover is at most 2−|x |.

• Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |x |.
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An Interactive Proof
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IP (“Interactive Polynomial Time”)a

• IP is the class of all languages decided by an interactive

proof system.

• When x ∈ L, the completeness condition can be

modified to require that the verifier accept with

certainty without affecting IP.b

• Similar things cannot be said of the soundness condition

when x �∈ L.

• Verifier’s coin flips can be public (called

Arthur-Merlin games).c

aGoldwasser, Micali, & Rackoff (1985).
bGoldreich, Mansour, & Sipser (1987).
cGoldwasser & Sipser (1989).
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The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic and

there is only one round of interaction.a

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the

prover’s messages.

• IP = PSPACE.b

aRecall Proposition 41 on p. 346.
bShamir (1990).
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Graph Isomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.a

• The problem is in NP (hence IP).

• It is not likely to be NP-complete.b

aThe recent bound of Babai (2015) is 2O(logc n) for some constant c.
bSchöning (1987).
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graph nonisomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 �∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.a

• Surprisingly, graph nonisomorphism ∈ IP.b

aSchöning (1987).
bGoldreich, Micali, & Wigderson (1986).
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A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts; {G1 �∼= G2.}
12: else

13: Victor rejects; {G1
∼= G2.}

14: end if

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 718



Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 �∼= G2.

– Peggy is able to tell which Gi is isomorphic to H, so j = i.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical copies.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable

boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than is necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See

www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,

but I prove nothing.

• Question 1: Can we design a protocol to convince Alice

(the knowledge) of a secret without revealing anything

extra?

• Question 2: How to define this idea rigorously?
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Zero Knowledge Proofsa

An interactive proof protocol (P, V ) for language L has the

perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with

expected polynomial running time.

• M on any input x ∈ L generates the same probability

distribution as the one that can be observed on the

communication channel of (P, V ′) on input x.

aGoldwasser, Micali, & Rackoff (1985).
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Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim.

– The proof is hence not transferable.
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Comments (continued)

• Whatever a verifier can “learn” from the specified prover

P via the communication channel could as well be

computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• Zero-knowledge proofs yield no knowledge in the sense

that they can be constructed by the verifier who believes

the statement, and yet these proofs do convince him.
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Comments (continued)

• The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• Computational zero-knowledge proofs are based on

complexity assumptions.

– M only needs to generate a distribution that is

computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in NP.a

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in PSPACE.b

• The verifier can be restricted to the honest one (i.e., it

follows the protocol).c

• The coins can be public.d

• The digital money Zcash (2016) is based on

zero-knowledge proofs.
aGoldreich, Micali, & Wigderson (1986).
bOstrovsky & Wigderson (1993).
cVadhan (2006).
dVadhan (2006).
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Quadratic Residuacity (qr)

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

• qr asks if x ∈ Z∗
n is a quadratic residues modulo n.
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A Useful Corollary of Lemma 82 (p. 701)

Corollary 83 Let n = pq be a product of two distinct

primes. (1) If x and y are both quadratic residues modulo n,

then xy ∈ Z∗
n is a quadratic residue modulo n. (2) If x is a

quadratic residue modulo n and y is a quadratic nonresidue

modulo n, then xy ∈ Z∗
n is a quadratic nonresidue modulo n.

• Suppose x and y are both quadratic residues modulo n.

• Let x ≡ a2 mod n and y ≡ b2 mod n.

• Now xy is a quadratic residue as xy ≡ (ab)2 mod n.
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The Proof (concluded)

• Suppose x is a quadratic residue modulo n and y is a

quadratic nonresidue modulo n.

• By Lemma 82 (p. 701), (x | p) = (x | q) = 1 but, say,

(y | p) = −1.

• Now xy is a quadratic nonresidue as (xy | p) = −1, again

by Lemma 82 (p. 701).
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Zero-Knowledge Proof of qra

Below is a zero-knowledge proof for x ∈ Z∗
n being a

quadratic residue.

1: for m = 1, 2, . . . , log2 n do

2: Peggy chooses a random v ∈ Z∗
n and sends

y = v2 mod n to Victor;

3: Victor chooses a random bit i and sends it to Peggy;

4: Peggy sends z = uiv mod n, where u is a square root

of x; {u2 ≡ x mod n.}
5: Victor checks if z2 ≡ xiy mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;

aGoldwasser, Micali, & Rackoff (1985).
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Analysis

• Suppose x is a quadratic residue.

– Then x’s square root u can be computed by Peggy.

– Peggy can answer all challenges.

– Now,

z2 ≡ (ui
)2

v2 ≡ (u2
)i
v2 ≡ xiy mod n.

– So Victor will accept x.
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Analysis (continued)

• Suppose x is a quadratic nonresidue.

– Corollary 83 (p. 728) says if a is a quadratic residue,

then xa is a quadratic nonresidue.

– As y is a quadratic residue, xiy can be a quadratic

residue (see Line 5) only when i = 0.

– Peggy can answer only one of the two possible

challenges, when i = 0.a

– So Peggy will be caught in any given round with

probability one half.

aLine 5 (z2 ≡ xiy mod n) cannot equate a quadratic residue z2 with

a quadratic nonresidue xiy when i = 1.
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Analysis (continued)

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

• Here is how.

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is

a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with

the same probability without accessing Peggy’s power.

aThere is no zero-knowledge requirement when x �∈ L.
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Analysis (concluded)

1: Bob chooses a random z ∈ Z∗
n;

2: Bob chooses a random bit i;

3: Bob calculates y = z2x−i mod n;a

4: Bob writes (y, i, z) into the transcript;

aRecall Line 5 on p. 730: Victor checks if z2 ≡ xiy mod n.
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Comments

• Assume x is a quadratic residue.

• For (y, i, z), y is a random quadratic residue, i is a

random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same

order as in the original transcript.

– Bob picks Peggy’s answer z first.

– Bob then picks Victor’s challenge i.

– Bob finally patches the transcript.
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Comments (concluded)

• So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.a

• What if Victor always chooses i = 1 in the protocol, the

harder case?b

aOr apply Vadhan (2006).
bContributed by Mr. Chih-Duo Hong (R95922079) on December 13,

2006, Mr. Chin-Luei Chang (D95922007) on June 16, 2008, and Mr. Han-

Ting Chen (R10922073) on December 30, 2021.
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Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples encryption schemes randomly, commitsb them,

and sends π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to Peggy

for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the colors π(φ(u)) and π(φ(v)) and “proves”

that they correspond to their encryptions;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, & Wigderson (1986).
bContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.
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10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) �∈ { 1, 2, 3 } then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;
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Analysis

• If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

• Suppose the graph is not 3-colorable and Victor follows

the protocol.

• Let e be an edge that is not colored legally.

• Victor will pick it with probability 1/m per round,

where m = |E |.
• Then however Peggy plays, Victor will reject with

probability at least 1/m per round.
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Analysis (concluded)

• So Victor will accept with probability at most

(
1−m−1

)m2

≤ e−m.

• Thus the protocol is a valid IP protocol.

• This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any

verifier is intricate.a

aOr simply cite Vadhan (2006).
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Comments

• Each π(φ(i)) is encrypted by a different cryptosystem in

Line 3.a

– Otherwise, the coloring will be revealed in Line 6.

• Each edge e must be picked randomly.b

– Otherwise, Peggy will know Victor’s game plan and

plot accordingly.

aContributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
bContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability
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All science is dominated by

the idea of approximation.

— Bertrand Russell (1872–1970)
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Just because the problem is NP-complete

does not mean that

you should not try to solve it.

— Stephen Cook (2002)
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Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

• Are there NP problems that cannot be approximated

well (assuming NP �= P)?

• Are there NP problems that cannot be approximated at

all (assuming NP �= P)?
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Some Definitions

• Given an optimization problem, each problem

instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z
+.

– Here, cost refers to the quality of the feasible

solution, not the time required to obtain it.

– It is our objective function: total distance, number

of satisfied clauses, cut size, etc.
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Some Definitions (concluded)

• The optimum cost is

opt(x) = min
s∈F (x)

c(s)

for a minimization problem.

• It is

opt(x) = max
s∈F (x)

c(s)

for a maximization problem.
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Approximation Algorithms

• Let (polynomial-time) algorithm M on x returns a

feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if

for all x,
| c(M(x))− opt(x) |
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)

c(M(x))
≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))

maxs∈F (x) c(s)
≤ ε. (18)
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Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)

1− ε
.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (19)
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Lower and Upper Bounds (concluded)

• ε ranges between 0 (best) and 1 (worst).

• For minimization problems, an ε-approximation

algorithm returns solutions within[
opt,

opt

1− ε

]
.

• For maximization problems, an ε-approximation

algorithm returns solutions within

[ (1− ε)× opt,opt ].
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Approximation Thresholds

• For each NP-complete optimization problem, we shall be

interested in determining the smallest ε for which there

is a polynomial-time ε-approximation algorithm.

• But sometimes ε has no minimum value.

• The approximation threshold is the greatest lower

bound of all ε ≥ 0 such that there is a polynomial-time

ε-approximation algorithm.

• By a standard theorem in real analysis, such a threshold

exists.a

aBauldry (2009).
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Approximation Thresholds (concluded)

• The approximation threshold of an optimization

problem is anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

• So assume P �= NP for the rest of the discussion.
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Approximation Ratio

• ε-approximation algorithms can also be measured via

the approximation ratio:a

c(M(x))

opt(x)
.

• For a minimization problem, the approximation ratio is

1 ≤ c(M(x))

mins∈F (x) c(s)
≤ 1

1− ε
. (20)

• For a maximization problem, the approximation ratio is

1− ε ≤ c(M(x))

maxs∈F (x) c(s)
≤ 1. (21)

aWilliamson & Shmoys (2011).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 753



Approximation Ratio (concluded)

• Suppose there is an approximation algorithm that

achieves an approximation ratio of θ.

– For a minimization problem, it implies a

(1− θ−1)-approximation algorithm by Eq. (20).

– For a maximization problem, it implies a

(1− θ)-approximation algorithm by Eq. (21).
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node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V,E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce an approximation ratio ofa

c(M(x))

opt(x)
= Θ(logn).

• So it is not an ε-approximation algorithm for any

constant ε < 1 (see p. 754).

aChvátal (1979).
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A 0.5-Approximation Algorithma

1: C := ∅;
2: while E �= ∅ do

3: Delete an arbitrary edge [u, v ] from E;

4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u or v from E;

6: end while

7: return C;

aGavril (1974).
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Analysis

• It is easy to see that C is a node cover.

• C contains |C |/2 edges.a

• No two edges of C share a node.b

• Any node cover C ′ must contain at least one node from

each of the edges of C.

– If there is an edge in C both of whose ends are

outside C ′, then C ′ will not be a cover.

aThe edges deleted in Line 3.
bIn fact, C as a set of edges is a maximal matching.
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Analysis (continued)
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Analysis (concluded)

• This means that opt(G) ≥ |C |/2.
• The approximation ratio is hence

|C |
opt(G)

≤ 2.

• So we have a 0.5-approximation algorithm.a

• And the approximation threshold is therefore ≤ 0.5.

aRecall p. 754.
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The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. König’s theorem says the size of a maximum matching equals

that of a minimum node cover in a bipartite graph.
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Remarks

• The approximation threshold is at leasta

1−
(
10
√
5− 21

)−1

≈ 0.2651.

• The approximation threshold is 0.5 if one assumes the

unique games conjecture (ugc).b

• This ratio 0.5 is also the lower bound for any “greedy”

algorithms.c

aDinur & Safra (2002).
bKhot & Regev (2008).
cDavis & Impagliazzo (2004).
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Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth

assignment that satisfies the most simultaneously.

• max2sat is already NP-complete (p. 367), so maxsat is

NP-complete.

• Consider the more general k-maxgsat for constant k.

– Let Φ = {φ1, φ2, . . . , φm } be a set of boolean

expressions in n variables.

– Each φi is a general expression involving up to k

variables.

– k-maxgsat seeks the truth assignment that satisfies

the most expressions simultaneously.
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A Probabilistic Interpretation of an Algorithm

• Let φi involve ki ≤ k variables and be satisfied by si of

the 2ki truth assignments.

• A random truth assignment ∈ { 0, 1 }n satisfies φi with

probability p(φi) = si/2
ki .

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

p(Φ) =
m∑
i=1

p(φi)

expressions φi.
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The Search Procedure

• Clearly

p(Φ) =
p(Φ[x1 = true ]) + p(Φ[x1 = false ])

2
.

• Select the t1 ∈ { true, false } such that p(Φ[x1 = t1 ]) is

the larger one.

• Note that p(Φ[x1 = t1 ]) ≥ p(Φ).

• Repeat the procedure with expression Φ[x1 = t1 ] until

all variables xi have been given truth values ti and all φi

are either true or false.
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The Search Procedure (continued)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1 ])

≤ p(Φ[x1 = t1, x2 = t2 ])

≤ · · ·
≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn ]).

• So at least p(Φ) expressions are satisfied by truth

assignment (t1, t2, . . . , tn).
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The Search Procedure (concluded)

• Note that the algorithm is deterministic!

• It is called the method of conditional

expectations.a

aErdős & Selfridge (1973); Spencer (1987).
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Approximation Analysis

• The optimum is at most the number of satisfiable

φis—i.e., those with p(φi) > 0.

• The ratio of algorithm’s output vs. the optimum isa

≥ p(Φ)∑
p(φi)>0 1

=

∑
i p(φi)∑

p(φi)>0 1
≥ min

p(φi)>0
p(φi).

• This is a polynomial-time ε-approximation algorithm

with ε = 1−minp(φi)>0 p(φi) by Eq. (21) on p. 753.

• Because p(φi) ≥ 2−k for a satisfiable φi, the heuristic is

a polynomial-time ε-approximation algorithm with

ε = 1− 2−k.

aBecause
∑

i ai/
∑

i bi ≥ mini(ai/bi).
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Back to maxsat

• In maxsat, the φi’s are clauses (like x ∨ y ∨ ¬z).
• Hence p(φi) ≥ 1/2 (why?).

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 1/2.a

• Suppose we set each boolean variable to true with

probability (
√
5 − 1)/2, the golden ratio.

• Then follow through the method of conditional

expectations to derandomize it.

aJohnson (1974).
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Back to maxsat (concluded)

• We will obtain a [ (3−√
5 ) ]/2-approximation

algorithm.a

– Note [ (3−√
5 ) ]/2 ≈ 0.382.

• If the clauses have k distinct literals,

p(φi) = 1− 2−k.

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.

• All the results hold even if clauses are weighted.

aLieberherr & Specker (1981).
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max cut Revisited

• max cut seeks to partition the nodes of graph

G = (V,E) into (S, V − S) so that there are as many

edges as possible between S and V − S.

• It is NP-complete.a

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

• Next we present a local-search algorithm for max cut.

aRecall p. 402.
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A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;
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Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23
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Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Our algorithm returns a cut of size

e13 + e14 + e23 + e24.

• The optimum cut size is

e12 + e34 + e14 + e23.
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Analysis (continued)

• For each node v ∈ V1, its edges to V3 ∪ V4 cannot be

outnumbered by those to V1 ∪ V2.

– Otherwise, v would have been moved to V3 ∪ V4 to

improve the cut.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14.

– 2e11, because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.
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Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

opt = e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the

optimum.a

aCorrected by Mr. Huan-Wen Hsiao (B90902081, D08922001) on Jan-

uary 14, 2021.
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Remarks

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.b

aGoemans & Williamson (1995).
bH̊astad (1997).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 776



Approximability, Unapproximability, and Between

• Some problems have approximation thresholds less than

1.

– knapsack has a threshold of 0 (p. 792).

– node cover (p. 759), bin packing, and maxsata

have a threshold larger than 0.

• The situation is maximally pessimistic for tsp (p. 778)

and independent set,b which cannot be approximated

– Their approximation threshold is 1.

aWilliamson & Shmoys (2011).
bSee the textbook.
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Unapproximability of tspa

Theorem 84 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ε-approximation

algorithm for tsp for some ε < 1.

• We shall construct a polynomial-time algorithm to solve

the NP-complete hamiltonian cycle.

• Given any graph G = (V,E), construct a tsp with |V |
cities with distances

dij =

⎧⎨
⎩ 1, if [ i, j ] ∈ E,

|V |
1−ε , otherwise.

aSahni & Gonzales (1976).
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The Proof (continued)

• Run the alleged approximation algorithm on this tsp

instance.

• Note that if a tour includes edges of length |V |/(1− ε),

then the tour costs more than |V |.
• Note also that no tour has a cost less than |V |.
• Suppose a tour of cost |V | is returned.

– Then every edge on the tour exists in the original

graph G.

– So this tour is a Hamiltonian cycle on G.
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The Proof (concluded)

• Suppose a tour that includes an edge of length

|V |/(1− ε) is returned.

– The total length of this tour exceeds |V |/(1− ε).a

– Because the algorithm is ε-approximate, the optimum

is at least 1− ε times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

aSo this reduction is gap introducing.
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metric tsp

• metric tsp is similar to tsp.

• But the distances must satisfy the triangular inequality:

dij ≤ dik + dkj

for all i, j, k.

• Inductively,

dij ≤ dik + dkl + · · ·+ dzj .
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A 0.5-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 2

(see p. 754).

aChoukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986);

Kou, Markowsky, & Berman (1981); Plesńık (1981).
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A 0.5-Approximation Algorithm for metric tsp
(concluded)

1: T := a minimum spanning tree of G;

2: T ′ := duplicate the edges of T plus their cost; {Note: T ′

is an Eulerian multigraph.}
3: C := an Euler cycle of T ′;
4: Remove repeated nodes of C; {“Shortcutting.”}
5: return C;
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Analysis

• Let Copt be an optimal tsp tour.

• Note first that

c(T ) ≤ c(Copt). (22)

– Copt is a spanning tree after the removal of one edge.

– But T is a minimum spanning tree.

• Because T ′ doubles the edges of T ,

c(T ′) = 2c(T ).
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Analysis (concluded)

• Because of the triangular inequality, “shortcutting” does

not increase the cost.

– (1, 2, 3, 2, 1, 4, . . .) → (1, 2, 3, 4, . . .), a Hamiltonian

cycle.

• Thus

c(C) ≤ c(T ′).

• Combine all the inequalities to yield

c(C) ≤ c(T ′) = 2c(T ) ≤ 2c(Copt),

as desired.
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A 100-Node Example

The cost is 7.72877.
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A 100-Node Example (continued)

The minimum spanning tree T .
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A 100-Node Example (continued)

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

The cost is 10.5718 ≤ 2× 7.72877 = 15.4576.
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A (1/3)-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 3

2

(see p. 754).

• This is the best approximation ratio for metric tsp as

of 2016!

aChristofides (1976).
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A 100-Node Examplea

The cost is 8.74583 ≤ (3/2)× 7.72877 = 11.5932.b

aContributed by Mr. Yu-Chuan Liu (B00507010, R04922040) on July

15, 2017.
bIn comparison, the earlier 0.5-approximation algorithm gave a cost

of 10.5718 on p. 789.
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knapsack Has an Approximation Threshold of Zeroa

Theorem 85 For any ε, there is a polynomial-time

ε-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z
+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z
+.b

• We must find an I ⊆ { 1, 2, . . . , n } such that∑
i∈I wi ≤ W and

∑
i∈I vi is the largest possible.

aIbarra & Kim (1975). This algorithm can be used to derive good

approximation algorithms for some NP-complete scheduling problems

(Bansal & Sviridenko, 2006).
bIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,

R93922045) on December 29, 2004.
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The Proof (continued)

• Let

V
Δ
= max{ v1, v2, . . . , vn }.

• Clearly,
∑

i∈I vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting

only from the first i itemsa and with a total value of v.

– It is an (n+ 1)× (nV + 1) table.

aThat is, items 1, 2, . . . , i.
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The Proof (continued)

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0

for i = 0, 1, . . . , n.a

• Then, for 0 ≤ i < n and 1 ≤ v ≤ nV ,b

W (i+ 1, v)

=

⎧⎨
⎩ min{W (i, v),W (i, v − vi+1) + wi+1 }, if vi+1 ≤ v,

W (i, v), otherwise.

• Finally, pick the largest v such that W (n, v) ≤ W .c

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.
bThe textbook’s formula has an error here.
cLawler (1979).
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v0 nV

W≤
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The Proof (continued)

With 6 items, values (4, 3, 3, 3, 2, 3), weights (3, 3, 1, 3, 2, 1),

and W = 12, the maximum total value 16 is achieved with

I = { 1, 2, 3, 4, 6 }; I ’s weight is 11.
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The Proof (continued)

• The running time O(n2V ) is not polynomial.

• Call the problem instance

x = (w1, . . . , wn,W, v1, . . . , vn).

• Additional idea: Limit the number of precision bits.

• Define

v′i =
⌊ vi
2b

⌋
.

• Note that

vi − 2b < 2bv′i ≤ vi. (23)
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The Proof (continued)

• Call the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).

• Solving x′ takes time O(n2V/2b).

– Use v′i = �vi/2b� and V ′ = max(v′1, v
′
2, . . . , v

′
n) in the

dynamic programming.

– It is now an (n+ 1)× (nV + 1)/2b table.

• The selection I ′ is optimal for x′.

• But I ′ may not be optimal for x, although it still

satisfies the weight budget W .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 798



The Proof (continued)

With the same parameters as p. 796 and b = 1: Values are

(2, 1, 1, 1, 1, 1) and the optimal selection I ′ = { 1, 2, 3, 5, 6 }
for x′ has a smaller maximum value 4 + 3 + 3 + 2 + 3 = 15

for x than I ’s 16; its weight is 10 < W = 12.a

aThe original optimal I = { 1, 2, 3, 4, 6 } on p. 796 has the same value

6 and but higher weight 11 for x′.
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The Proof (continued)

• The value of I ′ for x is close to that of the optimal I as

∑
i∈I′

vi

≥
∑
i∈I′

2bv′i by inequalities (23) on p. 797

= 2b
∑
i∈I′

v′i ≥ 2b
∑
i∈I

v′i =
∑
i∈I

2bv′i

≥
∑
i∈I

(
vi − 2b

)
by inequalities (23)

≥
(∑

i∈I

vi

)
− n2b.
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The Proof (continued)

• In summary,

∑
i∈I′

vi ≥
(∑

i∈I

vi

)
− n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant and can be removed

early on.

• V is a lower bound on opt.a

– Picking one single item with value V is a legitimate

choice.

aRecall that V = max{ v1, v2, . . . , vn } (p. 793).
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The Proof (concluded)

• The relative error from the optimum is:∑
i∈I vi −

∑
i∈I′ vi∑

i∈I vi
≤ n2b

V
.

• Suppose we pick b = �log2 εV
n �.

• The algorithm becomes ε-approximate.a

• The running time is then O(n2V/2b) = O(n3/ε), a

polynomial in n and 1/ε.b

aSee Eq. (18) on p. 748.
bIt hence depends on the value of 1/ε. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ε and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.
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Comments

• independent set and node cover are reducible to

each other (Corollary 46, p. 393).

• node cover has an approximation threshold at most

0.5 (p. 761).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).
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