The Setup

- Bob publishes $n=p q$, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- Alice wants to send bit string $b_{1} b_{2} \cdots b_{k}$ to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo n if b_{i} is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- So a sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

The Protocol for Alice

1: for $i=1,2, \ldots, k$ do
2: \quad Pick $r \in Z_{n}^{*}$ randomly;
3: if $b_{i}=1$ then
4: \quad Send $r^{2} \bmod n ;\{$ Jacobi symbol is 1.$\}$
5: else
6: \quad Send $r^{2} y \bmod n ;\{$ Jacobi symbol is still 1.\}
7: end if
8: end for

The Protocol for Bob
1: for $i=1,2, \ldots, k$ do
2: Receive r;
3: \quad if $(r \mid p)=1$ and $(r \mid q)=1$ then
4: $\quad b_{i}:=1$;
5: else
6: $\quad b_{i}:=0$;
7: end if
8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- Encryption is a one-to-many mapping.
- This scheme is both polynomially secure and semantically secure.

What then do you call proof?
 - Henry James (1843-1916), The Wings of the Dove (1902)
 Leibniz knew what a proof is. Descartes did not.
 - Ian Hacking (1973)

What Is a Proof?

- A proof convinces a party of a certain claim.
- " $x^{n}+y^{n} \neq z^{n}$ for all $x, y, z \in \mathbb{Z}^{+}$and $n>2$."
- "Graph G is Hamiltonian."
- " $x^{p}=x \bmod p$ for prime p and $p \nmid x$."
- In mathematics, a proof is a fixed sequence of theorems.
- Think of it as a written examination.
- We will extend a proof to cover a proof process by which the validity of the assertion is established.
- Recall a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
- The prover (Peggy).
- The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (completeness).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.
- The setup is similar to the Turing test. ${ }^{\text {a }}$
${ }^{\text {a }}$ Turing (1950).

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm. ${ }^{\text {a }}$
- If the prover is not more powerful than the verifier, no interaction is needed!

[^0]
Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
- If $x \in L$, then the probability that x is accepted by the verifier is at least $1-2^{-|x|}$.
- If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of $|x|$.

IP ("Interactive Polynomial Time") ${ }^{\text {a }}$

- IP is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accept with certainty without affecting IP. ${ }^{\text {b }}$
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public (called Arthur-Merlin games).c

[^1]
The Relations of IP with Other Classes

- NP $\subseteq I P$.
- IP becomes NP when the verifier is deterministic and there is only one round of interaction. ${ }^{\text {a }}$
- $\mathrm{BPP} \subseteq \mathrm{IP}$.
- IP becomes BPP when the verifier ignores the prover's messages.
- $\mathrm{IP}=$ PSPACE $^{\text {b }}$

[^2]
Graph Isomorphism

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a permutation π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \cong G_{2}$.
- No known polynomial-time algorithms. ${ }^{\text {a }}$
- The problem is in NP (hence IP).
- It is not likely to be NP-complete. ${ }^{\text {b }}$
${ }^{\text {a }}$ The recent bound of Babai (2015) is $2^{O\left(\log ^{c} n\right)}$ for some constant c.
bschöning (1987).

GRAPH NONISOMORPHISM

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are nonisomorphic if there exist no permutations π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \not \neq G_{2}$.
- Again, no known polynomial-time algorithms.
- It is in coNP, but how about NP or BPP?
- It is not likely to be coNP-complete. ${ }^{\text {a }}$
- Surprisingly, GRAPH NONISOMORPHISM \in IP. ${ }^{\text {b }}$

> a Schöning (1987).
${ }^{\mathrm{b}}$ Goldreich, Micali, \& Wigderson (1986).

A 2-Round Algorithm

1: Victor selects a random $i \in\{1,2\}$;
2: Victor selects a random permutation π on $\{1,2, \ldots, n\}$;
3: Victor applies π on graph G_{i} to obtain graph H;
4: Victor sends $\left(G_{1}, H\right)$ to Peggy;
5: if $G_{1} \cong H$ then
6: Peggy sends $j=1$ to Victor;
7: else
8: Peggy sends $j=2$ to Victor;
9: end if
10: if $j=i$ then
11: Victor accepts; $\left\{G_{1} \not \neq G_{2}.\right\}$
12: else
13: Victor rejects; $\left\{G_{1} \cong G_{2}.\right\}$
14: end if

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose $G_{1} \not \approx G_{2}$.
- Peggy is able to tell which G_{i} is isomorphic to H, so $j=i$.
- So Victor always accepts.
- Suppose $G_{1} \cong G_{2}$.
- No matter which i is picked by Victor, Peggy or any prover sees 2 identical copies.
- Peggy or any prover with exponential power has only probability one half of guessing i correctly.
- So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than is necessary.
- Alice can claim that she found the assignment!
- Login authentication faces essentially the same issue.
- See
www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice (the knowledge) of a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs ${ }^{\text {a }}$

An interactive proof protocol (P, V) for language L has the perfect zero-knowledge property if:

- For every verifier V^{\prime}, there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of $\left(P, V^{\prime}\right)$ on input x.

[^3]
Comments

- Zero knowledge is a property of the prover.
- It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
- The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
- A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
- The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- Computational zero-knowledge proofs are based on complexity assumptions.
- M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- If one-way functions exist, then zero-knowledge proofs exist for every problem in NP. ${ }^{\text {a }}$
- If one-way functions exist, then zero-knowledge proofs exist for every problem in PSPACE. ${ }^{\text {b }}$
- The verifier can be restricted to the honest one (i.e., it follows the protocol). ${ }^{\text {c }}$
- The coins can be public. ${ }^{\text {d }}$
- The digital money Zcash (2016) is based on zero-knowledge proofs.

[^4]
Quadratic Residuacity (QR)

- Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- QR asks if $x \in Z_{n}^{*}$ is a quadratic residues modulo n.

A Useful Corollary of Lemma 82 (p. 701)

Corollary 83 Let $n=p q$ be a product of two distinct primes. (1) If x and y are both quadratic residues modulo n, then $x y \in Z_{n}^{*}$ is a quadratic residue modulo n. (2) If x is a quadratic residue modulo n and y is a quadratic nonresidue modulo n, then $x y \in Z_{n}^{*}$ is a quadratic nonresidue modulo n.

- Suppose x and y are both quadratic residues modulo n.
- Let $x \equiv a^{2} \bmod n$ and $y \equiv b^{2} \bmod n$.
- Now $x y$ is a quadratic residue as $x y \equiv(a b)^{2} \bmod n$.

The Proof (concluded)

- Suppose x is a quadratic residue modulo n and y is a quadratic nonresidue modulo n.
- By Lemma 82 (p. 701), $(x \mid p)=(x \mid q)=1$ but, say, $(y \mid p)=-1$.
- Now $x y$ is a quadratic nonresidue as $(x y \mid p)=-1$, again by Lemma 82 (p. 701).

Zero-Knowledge Proof of $\mathrm{QR}^{\text {a }}$

Below is a zero-knowledge proof for $x \in Z_{n}^{*}$ being a quadratic residue.
1: for $m=1,2, \ldots, \log _{2} n$ do
2: \quad Peggy chooses a random $v \in Z_{n}^{*}$ and sends $y=v^{2} \bmod n$ to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends $z=u^{i} v \bmod n$, where u is a square root of $x ;\left\{u^{2} \equiv x \bmod n\right.$. $\}$
5: \quad Victor checks if $z^{2} \equiv x^{i} y \bmod n$;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;

[^5]
Analysis

- Suppose x is a quadratic residue.
- Then x 's square root u can be computed by Peggy.
- Peggy can answer all challenges.
- Now,

$$
z^{2} \equiv\left(u^{i}\right)^{2} v^{2} \equiv\left(u^{2}\right)^{i} v^{2} \equiv x^{i} y \bmod n .
$$

- So Victor will accept x.

Analysis (continued)

- Suppose x is a quadratic nonresidue.
- Corollary 83 (p. 728) says if a is a quadratic residue, then $x a$ is a quadratic nonresidue.
- As y is a quadratic residue, $x^{i} y$ can be a quadratic residue (see Line 5) only when $i=0$.
- Peggy can answer only one of the two possible challenges, when $i=0 .{ }^{\text {a }}$
- So Peggy will be caught in any given round with probability one half.
${ }^{\text {a }}$ Line $5\left(z^{2} \equiv x^{i} y \bmod n\right)$ cannot equate a quadratic residue z^{2} with a quadratic nonresidue $x^{i} y$ when $i=1$.

Analysis (continued)

- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
- Here is how.
- Suppose x is a quadratic residue. ${ }^{a}$
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy's power.

[^6]
Analysis (concluded)

1: Bob chooses a random $z \in Z_{n}^{*}$;
2: Bob chooses a random bit i;
3: Bob calculates $y=z^{2} x^{-i} \bmod n$; ${ }^{\text {a }}$
4: Bob writes (y, i, z) into the transcript;
${ }^{\text {a }}$ Recall Line 5 on p. 730: Victor checks if $z^{2} \equiv x^{i} y \bmod n$.

Comments

- Assume x is a quadratic residue.
- For $(y, i, z), y$ is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
- Bob picks Peggy's answer z first.
- Bob then picks Victor's challenge i.
- Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details. ${ }^{\text {a }}$
- What if Victor always chooses $i=1$ in the protocol, the harder case? ${ }^{\text {b }}$

[^7]
Zero-Knowledge Proof of 3 Colorability ${ }^{\text {a }}$

1: for $i=1,2, \ldots,|E|^{2}$ do
2: \quad Peggy chooses a random permutation π of the 3-coloring ϕ;
3: Peggy samples encryption schemes randomly, commits ${ }^{\text {b }}$ them, and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;
5: \quad if $e=(u, v) \in E$ then
6: Peggy reveals the colors $\pi(\phi(u))$ and $\pi(\phi(v))$ and "proves"
that they correspond to their encryptions;
7: else
8: Peggy stops;
9: end if
${ }^{\text {a }}$ Goldreich, Micali, \& Wigderson (1986).
${ }^{\mathrm{b}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on December 22, 2009.

10: if the "proof" provided in Line 6 is not valid then
11: Victor rejects and stops;
12: end if
13:

$$
\text { if } \pi(\phi(u))=\pi(\phi(v)) \text { or } \pi(\phi(u)), \pi(\phi(v)) \notin\{1,2,3\} \text { then }
$$

14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- Suppose the graph is not 3-colorable and Victor follows the protocol.
- Let e be an edge that is not colored legally.
- Victor will pick it with probability $1 / m$ per round, where $m=|E|$.
- Then however Peggy plays, Victor will reject with probability at least $1 / \mathrm{m}$ per round.

Analysis (concluded)

- So Victor will accept with probability at most

$$
\left(1-m^{-1}\right)^{m^{2}} \leq e^{-m} .
$$

- Thus the protocol is a valid IP protocol.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate. ${ }^{\text {a }}$

[^8]
Comments

- Each $\pi(\phi(i))$ is encrypted by a different cryptosystem in Line 3 . ${ }^{\text {a }}$
- Otherwise, the coloring will be revealed in Line 6.
- Each edge e must be picked randomly. ${ }^{\text {b }}$
- Otherwise, Peggy will know Victor's game plan and plot accordingly.

[^9]

> Just because the problem is NP-complete does not mean that you should not try to solve it. - Stephen Cook (2002)

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
- We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming NP $\neq \mathrm{P}$)?
- Are there NP problems that cannot be approximated at all (assuming $\mathrm{NP} \neq \mathrm{P}$)?

Some Definitions

- Given an optimization problem, each problem instance x has a set of feasible solutions $F(x)$.
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^{+}$.
- Here, cost refers to the quality of the feasible solution, not the time required to obtain it.
- It is our objective function: total distance, number of satisfied clauses, cut size, etc.

Some Definitions (concluded)

- The optimum cost is

$$
\operatorname{OPT}(x)=\min _{s \in F(x)} c(s)
$$

for a minimization problem.

- It is

$$
\operatorname{OPT}(x)=\max _{s \in F(x)} c(s)
$$

for a maximization problem.

Approximation Algorithms

- Let (polynomial-time) algorithm M on x returns a feasible solution.
- M is an ϵ-approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$
\frac{|c(M(x))-\operatorname{OPT}(x)|}{\max (\operatorname{OPT}(x), c(M(x)))} \leq \epsilon
$$

- For a minimization problem,

$$
\frac{c(M(x))-\min _{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon
$$

- For a maximization problem,

$$
\begin{equation*}
\frac{\max _{s \in F(x)} c(s)-c(M(x))}{\max _{s \in F(x)} c(s)} \leq \epsilon \tag{18}
\end{equation*}
$$

Lower and Upper Bounds

- For a minimization problem,

$$
\min _{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min _{s \in F(x)} c(s)}{1-\epsilon}
$$

- For a maximization problem,

$$
\begin{equation*}
(1-\epsilon) \times \max _{s \in F(x)} c(s) \leq c(M(x)) \leq \max _{s \in F(x)} c(s) . \tag{11}
\end{equation*}
$$

Lower and Upper Bounds (concluded)

- ϵ ranges between 0 (best) and 1 (worst).
- For minimization problems, an ϵ-approximation algorithm returns solutions within

$$
\left[\mathrm{OPT}, \frac{\mathrm{OPT}}{1-\epsilon}\right]
$$

- For maximization problems, an ϵ-approximation algorithm returns solutions within

$$
[(1-\epsilon) \times \text { OPT, OPT }]
$$

Approximation Thresholds

- For each NP-complete optimization problem, we shall be interested in determining the smallest ϵ for which there is a polynomial-time ϵ-approximation algorithm.
- But sometimes ϵ has no minimum value.
- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ-approximation algorithm.
- By a standard theorem in real analysis, such a threshold exists. ${ }^{\text {a }}$

[^10]
Approximation Thresholds (concluded)

- The approximation threshold of an optimization problem is anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If $\mathrm{P}=\mathrm{NP}$, then all optimization problems in $N P$ have an approximation threshold of 0 .
- So assume $\mathrm{P} \neq \mathrm{NP}$ for the rest of the discussion.

Approximation Ratio

- ϵ-approximation algorithms can also be measured via the approximation ratio: ${ }^{\text {a }}$

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}
$$

- For a minimization problem, the approximation ratio is

$$
\begin{equation*}
1 \leq \frac{c(M(x))}{\min _{s \in F(x)} c(s)} \leq \frac{1}{1-\epsilon} \tag{20}
\end{equation*}
$$

- For a maximization problem, the approximation ratio is

$$
\begin{equation*}
1-\epsilon \leq \frac{c(M(x))}{\max _{s \in F(x)} c(s)} \leq 1 \tag{21}
\end{equation*}
$$

[^11]
Approximation Ratio (concluded)

- Suppose there is an approximation algorithm that achieves an approximation ratio of θ.
- For a minimization problem, it implies a $\left(1-\theta^{-1}\right)$-approximation algorithm by Eq. (20).
- For a maximization problem, it implies a ($1-\theta$)-approximation algorithm by Eq. (21).

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph $G=(V, E)$ such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce an approximation ratio of ${ }^{\text {a }}$

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}=\Theta(\log n)
$$

- So it is not an ϵ-approximation algorithm for any constant $\epsilon<1$ (see p. 754).

[^12]
A 0.5-Approximation Algorithm ${ }^{\text {a }}$

1: $C:=\emptyset$;
2: while $E \neq \emptyset$ do
3: \quad Delete an arbitrary edge $[u, v]$ from E;
4: \quad Add u and v to C; \{Add 2 nodes to C each time.\}
5: \quad Delete edges incident with u or v from E;
6: end while
7: return C;
${ }^{\text {a }}$ Gavril (1974).

Analysis

- It is easy to see that C is a node cover.
- C contains $|C| / 2$ edges. ${ }^{\text {a }}$
- No two edges of C share a node. ${ }^{\text {b }}$
- Any node cover C^{\prime} must contain at least one node from each of the edges of C.
- If there is an edge in C both of whose ends are outside C^{\prime}, then C^{\prime} will not be a cover.
${ }^{\text {a }}$ The edges deleted in Line 3.
${ }^{\mathrm{b}}$ In fact, C as a set of edges is a maximal matching.

Analysis (concluded)

- This means that $\operatorname{OPT}(G) \geq|C| / 2$.
- The approximation ratio is hence

$$
\frac{|C|}{\operatorname{OPT}(G)} \leq 2
$$

- So we have a 0.5 -approximation algorithm. ${ }^{\text {a }}$
- And the approximation threshold is therefore ≤ 0.5.

[^13]
The 0.5 Bound Is Tight for the Algorithm ${ }^{\text {a }}$

${ }^{\text {a }}$ Contributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. König's theorem says the size of a maximum matching equals that of a minimum node cover in a bipartite graph.

Remarks

- The approximation threshold is at least ${ }^{\text {a }}$

$$
1-(10 \sqrt{5}-21)^{-1} \approx 0.2651
$$

- The approximation threshold is 0.5 if one assumes the unique games conjecture (UGC). ${ }^{\text {b }}$
- This ratio 0.5 is also the lower bound for any "greedy" algorithms. ${ }^{\text {c }}$

[^14]
Maximum Satisfiability

- Given a set of clauses, mAXSAT seeks the truth assignment that satisfies the most simultaneously.
- mAX2SAT is already NP-complete (p. 367), so mAXSAT is NP-complete.
- Consider the more general k-mAXGSAT for constant k.
- Let $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ be a set of boolean expressions in n variables.
- Each ϕ_{i} is a general expression involving up to k variables.
- k-mAXGSAT seeks the truth assignment that satisfies the most expressions simultaneously.

A Probabilistic Interpretation of an Algorithm

- Let ϕ_{i} involve $k_{i} \leq k$ variables and be satisfied by s_{i} of the $2^{k_{i}}$ truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies ϕ_{i} with probability $p\left(\phi_{i}\right)=s_{i} / 2^{k_{i}}$.
$-p\left(\phi_{i}\right)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an average of

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

expressions ϕ_{i}.

The Search Procedure

- Clearly

$$
p(\Phi)=\frac{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)}{2}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat the procedure with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables x_{i} have been given truth values t_{i} and all ϕ_{i} are either true or false.

The Search Procedure (continued)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p(\Phi) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\leq & \cdots \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right)
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

The Search Procedure (concluded)

- Note that the algorithm is deterministic!
- It is called the method of conditional expectations. ${ }^{\text {a }}$
${ }^{\text {a }}$ Erdős \& Selfridge (1973); Spencer (1987).

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_{i} S-i.e., those with $p\left(\phi_{i}\right)>0$.
- The ratio of algorithm's output vs. the optimum is ${ }^{\text {a }}$

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right) .
$$

- This is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$ by Eq. (21) on p. 753 .
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$ for a satisfiable ϕ_{i}, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-2^{-k}$.

[^15]
Back to MAXSAT

- In mAXSAT, the ϕ_{i} 's are clauses (like $x \vee y \vee \neg z$).
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$ (why?).
- The heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=1 / 2$. ${ }^{\text {a }}$
- Suppose we set each boolean variable to true with probability $(\sqrt{5}-1) / 2$, the golden ratio.
- Then follow through the method of conditional expectations to derandomize it.

[^16]
Back to MAXSAT (concluded)

- We will obtain a $[(3-\sqrt{5})] / 2$-approximation algorithm. ${ }^{\text {a }}$
$-\operatorname{Note}[(3-\sqrt{5})] / 2 \approx 0.382$.
- If the clauses have k distinct literals,

$$
p\left(\phi_{i}\right)=1-2^{-k} .
$$

- The heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.
- All the results hold even if clauses are weighted.

[^17]
MAX CUT Revisited

- MAX CUT seeks to partition the nodes of graph $G=(V, E)$ into $(S, V-S)$ so that there are as many edges as possible between S and $V-S$.
- It is NP-complete. ${ }^{\text {a }}$
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for max cut.

[^18]
A 0.5-Approximation Algorithm for MAX CUT

1: $S:=\emptyset$;
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: \quad Switch the side of v;
4: end while
5: return S;

Analysis (continued)

- Partition $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where
- Our algorithm returns $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$.
- The optimum cut is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
- Let $e_{i j}$ be the number of edges between V_{i} and V_{j}.
- Our algorithm returns a cut of size

$$
e_{13}+e_{14}+e_{23}+e_{24}
$$

- The optimum cut size is

$$
e_{12}+e_{34}+e_{14}+e_{23}
$$

Analysis (continued)

- For each node $v \in V_{1}$, its edges to $V_{3} \cup V_{4}$ cannot be outnumbered by those to $V_{1} \cup V_{2}$.
- Otherwise, v would have been moved to $V_{3} \cup V_{4}$ to improve the cut.
- Considering all nodes in V_{1} together, we have

$$
2 e_{11}+e_{12} \leq e_{13}+e_{14} .
$$

$-2 e_{11}$, because each edge in V_{1} is counted twice.

- The above inequality implies

$$
e_{12} \leq e_{13}+e_{14} .
$$

Analysis (concluded)

- Similarly,

$$
\begin{aligned}
e_{12} & \leq e_{23}+e_{24} \\
e_{34} & \leq e_{23}+e_{13} \\
e_{34} & \leq e_{14}+e_{24}
\end{aligned}
$$

- Add all four inequalities, divide both sides by 2 , and add the inequality $e_{14}+e_{23} \leq e_{14}+e_{23}+e_{13}+e_{24}$ to obtain

$$
\mathrm{OPT}=e_{12}+e_{34}+e_{14}+e_{23} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

- The above says our solution is at least half the optimum. ${ }^{\text {a }}$

[^19]
Remarks

- A 0.12-approximation algorithm exists. ${ }^{\text {a }}$
- 0.059-approximation algorithms do not exist unless $\mathrm{NP}=\mathrm{ZPP} .^{\mathrm{b}}$
${ }^{\text {a }}$ Goemans \& Williamson (1995).
${ }^{\mathrm{b}}$ Håstad (1997).

Approximability, Unapproximability, and Between

- Some problems have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (p. 792).
- NODE COVER (p. 759), BIN PACKING, and MAXSAT ${ }^{\text {a }}$ have a threshold larger than 0.
- The situation is maximally pessimistic for TSP (p. 778) and INDEPENDENT SET, $^{\text {b }}$ which cannot be approximated - Their approximation threshold is 1.

[^20]
Unapproximability of TSP ${ }^{\text {a }}$

Theorem 84 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }[i, j] \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

[^21]
The Proof (continued)

- Run the alleged approximation algorithm on this TSP instance.
- Note that if a tour includes edges of length $|V| /(1-\epsilon)$, then the tour costs more than $|V|$.
- Note also that no tour has a cost less than $|V|$.
- Suppose a tour of cost $|V|$ is returned.
- Then every edge on the tour exists in the original graph G.
- So this tour is a Hamiltonian cycle on G.

The Proof (concluded)

- Suppose a tour that includes an edge of length $|V| /(1-\epsilon)$ is returned.
- The total length of this tour exceeds $|V| /(1-\epsilon) .{ }^{\text {a }}$
- Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

[^22]
METRIC TSP

- mETRIC TSP is similar to TSP.
- But the distances must satisfy the triangular inequality:

$$
d_{i j} \leq d_{i k}+d_{k j}
$$

for all i, j, k.

- Inductively,

$$
d_{i j} \leq d_{i k}+d_{k l}+\cdots+d_{z j}
$$

A 0.5-Approximation Algorithm for METRIC TSP ${ }^{\text {a }}$

- It suffices to present an algorithm with the approximation ratio of

$$
\frac{c(M(x))}{\operatorname{OPT}(x)} \leq 2
$$

(see p. 754).
${ }^{\text {a }}$ Choukhmane (1978); Iwainsky, Canuto, Taraszow, \& Villa (1986); Kou, Markowsky, \& Berman (1981); Plesník (1981).

A 0.5-Approximation Algorithm for METRIC TSP (concluded)

1: $T:=$ a minimum spanning tree of G;
2: $T^{\prime}:=$ duplicate the edges of T plus their cost; \{Note: T^{\prime} is an Eulerian multigraph.\}
3: $C:=$ an Euler cycle of T^{\prime};
4: Remove repeated nodes of C; $\{$ "Shortcutting." $\}$
5: return C;

Analysis

- Let $C_{\text {opt }}$ be an optimal TSP tour.
- Note first that

$$
\begin{equation*}
c(T) \leq c\left(C_{\mathrm{opt}}\right) . \tag{22}
\end{equation*}
$$

- $C_{\text {opt }}$ is a spanning tree after the removal of one edge.
- But T is a minimum spanning tree.
- Because T^{\prime} doubles the edges of T,

$$
c\left(T^{\prime}\right)=2 c(T) .
$$

Analysis (concluded)

- Because of the triangular inequality, "shortcutting" does not increase the cost.
$-(1,2,3,2,1,4, \ldots) \rightarrow(1,2,3,4, \ldots)$, a Hamiltonian cycle.
- Thus

$$
c(C) \leq c\left(T^{\prime}\right)
$$

- Combine all the inequalities to yield

$$
c(C) \leq c\left(T^{\prime}\right)=2 c(T) \leq 2 c\left(C_{\mathrm{opt}}\right)
$$

as desired.

A 100-Node Example

Cities

The cost is 7.72877 .

A 100-Node Example (continued)

The minimum spanning tree T.

A 100-Node Example (continued)

"Shortcutting" the repeated nodes on the Euler cycle C.

A 100-Node Example (concluded)

The cost is $10.5718 \leq 2 \times 7.72877=15.4576$.

A (1/3)-Approximation Algorithm for metric TSP ${ }^{\text {a }}$

- It suffices to present an algorithm with the approximation ratio of

$$
\frac{c(M(x))}{\operatorname{OPT}(x)} \leq \frac{3}{2}
$$

(see p. 754).

- This is the best approximation ratio for METRIC TSP as of 2016 !
${ }^{\text {a }}$ Christofides (1976).

A 100-Node Example ${ }^{\text {a }}$

The cost is $8.74583 \leq(3 / 2) \times 7.72877=11.5932 .{ }^{\text {b }}$
${ }^{\text {a }}$ Contributed by Mr. Yu-Chuan Liu (B00507010, R04922040) on July 15, 2017.
${ }^{\mathrm{b}}$ In comparison, the earlier 0.5 -approximation algorithm gave a cost of 10.5718 on p. 789 .

knapsack Has an Approximation Threshold of Zero ${ }^{\text {a }}$

Theorem 85 For any ϵ, there is a polynomial-time
ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\mathrm{b}}$
- We must find an $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} w_{i} \leq W$ and $\sum_{i \in I} v_{i}$ is the largest possible.

[^23]
The Proof (continued)

- Let

$$
V \triangleq \max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in I} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting only from the first i items ${ }^{\mathrm{a}}$ and with a total value of v.
- It is an $(n+1) \times(n V+1)$ table.
${ }^{\text {a }}$ That is, items $1,2, \ldots, i$.

The Proof (continued)

- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$
- Then, for $0 \leq i<n$ and $1 \leq v \leq n V$, ${ }^{\text {b }}$

$$
\begin{aligned}
& W(i+1, v) \\
&= \begin{cases}\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\}, & \text { if } v_{i+1} \leq v, \\
W(i, v), & \text { otherwise } .\end{cases}
\end{aligned}
$$

- Finally, pick the largest v such that $W(n, v) \leq W$. ${ }^{\text {c }}$

[^24]

The Proof (continued)

With 6 items, values ($4,3,3,3,2,3$), weights ($3,3,1,3,2,1$), and $W=12$, the maximum total value 16 is achieved with $I=\{1,2,3,4,6\} ; I$'s weight is 11.

0	∞																	
0	∞	∞	∞	3	∞													
0	∞	∞	3	3	∞	∞	6	∞										
0	∞	∞	1	3	∞	4	4	∞	∞	7	∞							
0	∞	∞	1	3	∞	4	4	∞	7	7	∞	∞	10	∞	∞	∞	∞	∞
0	∞	2	1	3	3	4	4	6	6	7	9	9	10	∞	12	∞	∞	∞
0	∞	2	1	3	3	2	4	4	5	5	7	7	8	10	10	11	∞	13

The Proof (continued)

- The running time $O\left(n^{2} V\right)$ is not polynomial.
- Call the problem instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)
$$

- Additional idea: Limit the number of precision bits.
- Define

$$
v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- Note that

$$
\begin{equation*}
v_{i}-2^{b}<2^{b} v_{i}^{\prime} \leq v_{i} . \tag{23}
\end{equation*}
$$

The Proof (continued)

- Call the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- Use $v_{i}^{\prime}=\left\lfloor v_{i} / 2^{b}\right\rfloor$ and $V^{\prime}=\max \left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ in the dynamic programming.
- It is now an $(n+1) \times(n V+1) / 2^{b}$ table.
- The selection I^{\prime} is optimal for x^{\prime}.
- But I^{\prime} may not be optimal for x, although it still satisfies the weight budget W.

The Proof (continued)

With the same parameters as p. 796 and $b=1$: Values are $(2,1,1,1,1,1)$ and the optimal selection $I^{\prime}=\{1,2,3,5,6\}$ for x^{\prime} has a smaller maximum value $4+3+3+2+3=15$ for x than I 's 16 ; its weight is $10<W=12$. ${ }^{\text {a }}$

0	∞						
0	∞	3	∞	∞	∞	∞	∞
0	3	3	6	∞	∞	∞	∞
0	1	3	4	7	∞	∞	∞
0	1	3	4	7	10	∞	∞
0	1	3	4	6	9	12	∞
0	1	2	4	5	7	10	13

${ }^{\text {a }}$ The original optimal $I=\{1,2,3,4,6\}$ on p .796 has the same value 6 and but higher weight 11 for x^{\prime}.

The Proof (continued)

- The value of I^{\prime} for x is close to that of the optimal I as

$$
\begin{aligned}
& \sum_{i \in I^{\prime}} v_{i} \\
\geq & \sum_{i \in I^{\prime}} 2^{b} v_{i}^{\prime} \quad \text { by inequalities (23) on p. } 797 \\
= & 2^{b} \sum_{i \in I^{\prime}} v_{i}^{\prime} \geq 2^{b} \sum_{i \in I} v_{i}^{\prime}=\sum_{i \in I} 2^{b} v_{i}^{\prime} \\
\geq & \sum_{i \in I}\left(v_{i}-2^{b}\right) \quad \text { by inequalities (23) } \\
\geq & \left(\sum_{i \in I} v_{i}\right)-n 2^{b} .
\end{aligned}
$$

The Proof (continued)

- In summary,

$$
\sum_{i \in I^{\prime}} v_{i} \geq\left(\sum_{i \in I} v_{i}\right)-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all i.
- Otherwise, item i is redundant and can be removed early on.
- V is a lower bound on OPT. ${ }^{\text {a }}$
- Picking one single item with value V is a legitimate choice.

[^25]
The Proof (concluded)

- The relative error from the optimum is:

$$
\frac{\sum_{i \in I} v_{i}-\sum_{i \in I^{\prime}} v_{i}}{\sum_{i \in I} v_{i}} \leq \frac{n 2^{b}}{V}
$$

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes ϵ-approximate. ${ }^{\text {a }}$
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$. ${ }^{\text {b }}$

[^26]
Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 46, p. 393).
- NODE COVER has an approximation threshold at most 0.5 (p. 761).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

[^0]: ${ }^{\text {a }}$ See the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on p. 475 , both of the textbook, about alternative complexity assumptions without affecting the definition. Contributed by Mr. Young-San Lin (B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.

[^1]: ${ }^{\text {a }}$ Goldwasser, Micali, \& Rackoff (1985).
 ${ }^{\text {b }}$ Goldreich, Mansour, \& Sipser (1987).
 ${ }^{\text {c Goldwasser } \& ~ S i p s e r ~(1989) . ~}$

[^2]: ${ }^{\text {a }}$ Recall Proposition 41 on p. 346.
 ${ }^{\mathrm{b}}$ Shamir (1990).

[^3]: ${ }^{\text {a }}$ Goldwasser, Micali, \& Rackoff (1985).

[^4]: ${ }^{\text {a }}$ Goldreich, Micali, \& Wigderson (1986).
 ${ }^{\text {b }}$ Ostrovsky \& Wigderson (1993).
 ${ }^{\text {c }}$ Vadhan (2006).
 ${ }^{\text {d}}$ Vadhan (2006).

[^5]: ${ }^{\text {a }}$ Goldwasser, Micali, \& Rackoff (1985).

[^6]: ${ }^{\text {a }}$ There is no zero-knowledge requirement when $x \notin L$.

[^7]: ${ }^{\text {a }}$ Or apply Vadhan (2006).
 ${ }^{\text {b }}$ Contributed by Mr. Chih-Duo Hong (R95922079) on December 13, 2006, Mr. Chin-Luei Chang (D95922007) on June 16, 2008, and Mr. HanTing Chen (R10922073) on December 30, 2021.

[^8]: ${ }^{a}$ Or simply cite Vadhan (2006).

[^9]: ${ }^{\text {a }}$ Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
 ${ }^{\text {b }}$ Contributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008

[^10]: ${ }^{\text {a }}$ Bauldry (2009).

[^11]: ${ }^{a}$ Williamson \& Shmoys (2011).

[^12]: ${ }^{\text {a }}$ Chvátal (1979).

[^13]: ${ }^{\text {a }}$ Recall p. 754.

[^14]: ${ }^{\text {a }}$ Dinur $\&$ Safra (2002).
 ${ }^{\mathrm{b}}$ Khot \& Regev (2008).
 ${ }^{\text {c }}$ Davis \& Impagliazzo (2004).

[^15]: ${ }^{\text {a Because }} \sum_{i} a_{i} / \sum_{i} b_{i} \geq \min _{i}\left(a_{i} / b_{i}\right)$.

[^16]: ${ }^{\text {a }}$ Johnson (1974).

[^17]: ${ }^{\text {a }}$ Lieberherr \& Specker (1981).

[^18]: ${ }^{\text {a Recall p. } 402 .}$

[^19]: ${ }^{\text {a }}$ Corrected by Mr. Huan-Wen Hsiao (B90902081, D08922001) on January $14,2021$.

[^20]: ${ }^{a}$ Williamson \& Shmoys (2011).
 ${ }^{\mathrm{b}}$ See the textbook.

[^21]: ${ }^{\text {a }}$ Sahni \& Gonzales (1976).

[^22]: ${ }^{\text {a }}$ So this reduction is gap introducing.

[^23]: ${ }^{\text {a }}$ Ibarra \& Kim (1975). This algorithm can be used to derive good approximation algorithms for some NP-complete scheduling problems (Bansal \& Sviridenko, 2006).
 ${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

[^24]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.
 ${ }^{\mathrm{b}}$ The textbook's formula has an error here.
 ${ }^{\mathrm{c}}$ Lawler (1979).

[^25]: ${ }^{\text {a }}$ Recall that $V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}(\mathrm{p} .793)$.

[^26]: ${ }^{\text {a }}$ See Eq. (18) on p. 748.
 ${ }^{\mathrm{b}}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

