
Square Roots Modulo a Prime

• Equation x2 ≡ a mod p has at most two (distinct) roots

by Lemma 64 (p. 510).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are

called quadratic residues.

∗ They are

12 mod p, 22 mod p, . . . , (p− 1)2 mod p.

• We shall show that a number either has two roots or has

none, and testing which is the case is trivial.a

aBut no efficient deterministic general-purpose square-root-extracting

algorithms are known yet.
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Euler’s Test

Lemma 69 (Euler) Let p be an odd prime and

a �= 0 mod p.

1. If

a(p−1)/2 ≡ 1 mod p,

then x2 ≡ a mod p has two roots.

2. If

a(p−1)/2 �≡ 1 mod p,

then

a(p−1)/2 ≡ −1 mod p

and x2 ≡ a mod p has no roots.
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The Proof (continued)

• Let r be a primitive root of p.

• Fermat’s “little” theorem says rp−1 ≡ 1 mod p, so

r(p−1)/2

is a square root of 1.

• In particular,

r(p−1)/2 ≡ 1 or −1 mod p.

• But as r is a primitive root, r(p−1)/2 �≡ 1 mod p.

• Hence r(p−1)/2 ≡ −1 mod p.
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The Proof (continued)

• Let a ≡ rk mod p for some k.

• Suppose a(p−1)/2 ≡ 1 mod p.

• Then

1 ≡ a(p−1)/2 ≡ rk(p−1)/2 ≡
[
r(p−1)/2

]k
≡ (−1)k mod p.

• So k must be even.
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The Proof (continued)

• Suppose a ≡ r2j mod p for some 1 ≤ j ≤ (p− 1)/2.

• Then

a(p−1)/2 ≡ rj(p−1) ≡ 1 mod p.

• The two distinct roots of a are

rj ,−rj(≡ rj+(p−1)/2 mod p).

– If rj ≡ −rj mod p, then 2rj ≡ 0 mod p, which implies

rj ≡ 0 mod p, a contradiction as r is a primitive root.
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The Proof (continued)

• As 1 ≤ j ≤ (p− 1)/2, there are (p− 1)/2 such a’s.

• Each such a ≡ r2j mod p has 2 distinct square roots.

• The square roots of all these a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is { 1, 2, . . . , p− 1 }.
• As a result,

a = r2j mod p, 1 ≤ j ≤ (p− 1)/2,

exhaust all the quadratic residues.
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The Proof (concluded)

• Suppose a = r2j+1 mod p now.

• Then it has no square roots because all the square roots

have been taken.

• Finally,

a(p−1)/2 ≡
[
r(p−1)/2

]2j+1

≡ (−1)2j+1 ≡ −1 mod p.
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The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 69 (p. 574),

a(p−1)/2 ≡ ±1 mod p

for a �≡ 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) Δ
=

⎧⎪⎪⎨
⎪⎪⎩

0, if p | a,
1, if a is a quadratic residue modulo p,

−1, if a is a quadratic nonresidue modulo p.

• It is sometimes pronounced “a over p.”

aAndrien-Marie Legendre (1752–1833).
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The Legendre Symbol and Quadratic Residuacity Test

(concluded)

• Euler’s test (p. 574) implies

a(p−1)/2 ≡ (a | p) mod p

for any odd prime p and any integer a.

• Note that (ab | p) = (a | p)(b | p).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 581



Gauss’s Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd

primes. Then (q | p) = (−1)m, where m is the number of

residues in R
Δ
= { iq mod p : 1 ≤ i ≤ (p− 1)/2 } that are

greater than (p− 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p | (j − i) or p | q.
– But neither is possible.

• No two elements of R add up to p.

– If iq + jq ≡ 0 mod p, then p | (i+ j) or p | q.
– But neither is possible.
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The Proof (continued)

• Replace each of the m elements a ∈ R such that

a > (p− 1)/2 by p− a.

– This is equivalent to performing −a mod p.

• Call the resulting set of residues R′.

• All numbers in R′ are at most (p− 1)/2.

• In fact, R′ = { 1, 2, . . . , (p− 1)/2 } (see illustration next

page).

– Otherwise, two elements of R would add up to p,a

which has been shown to be impossible.

aBecause then iq ≡ −jq mod p for some i �= j.
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p = 7 and q = 5.
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The Proof (concluded)

• Alternatively, R′ = {±iq mod p : 1 ≤ i ≤ (p− 1)/2 },
where exactly m of the elements have the minus sign.

• Take the product of all elements in the two

representations of R′.

• So

[(p− 1)/2]! ≡ (−1)mq(p−1)/2[(p− 1)/2]! mod p.

• Because gcd([(p− 1)/2]!, p) = 1, the above implies

1 = (−1)mq(p−1)/2 mod p.
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Legendre’s Law of Quadratic Reciprocitya

• Let p and q be two distinct odd primes.

• The next result says (p | q) and (q | p) are distinct if and

only if both p and q are 3 mod 4.

Lemma 71 (Legendre, 1785; Gauss)

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

aFirst stated by Euler in 1751. Legendre (1785) did not give a cor-

rect proof. Gauss proved the theorem when he was 19. He gave at

least 8 different proofs during his life. The 152nd proof appeared in

1963. A computer-generated formal proof was given in Russinoff (1990).

As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law

of Quadratic Reciprocity is the first nontrivial theorem that a student

encounters in the mathematics curriculum.”
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The Proof (continued)

• Sum the elements of R′ on p. 585 in mod2.

• On one hand, this is just
∑(p−1)/2

i=1 i mod 2.

• On the other hand, the sum equals

mp+

(p−1)/2∑
i=1

(
iq − p

⌊
iq

p

⌋)

≡ mp+

⎛
⎝q

(p−1)/2∑
i=1

i− p

(p−1)/2∑
i=1

⌊
iq

p

⌋⎞⎠ mod 2.

– m of the iq mod p are replaced by p− iq mod p.

– But signs are irrelevant under mod2.

– m is as in Lemma 70 (p. 582).
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The Proof (continued)

• Ignore odd multipliers to make the sum equal

m+

⎛
⎝(p−1)/2∑

i=1

i−
(p−1)/2∑

i=1

⌊
iq

p

⌋⎞⎠ mod 2.

• Equate the above with
∑(p−1)/2

i=1 i modulo 2.

• Now simplify to obtain

m ≡
(p−1)/2∑

i=1

⌊
iq

p

⌋
mod 2.
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The Proof (continued)

• ∑(p−1)/2
i=1 � iq

p � is the number of integral points below the

line

y = (q/p)x

for 1 ≤ x ≤ (p− 1)/2.

• Gauss’s lemma (p. 582) says (q | p) = (−1)m.

• Repeat the proof with p and q reversed.

• Then (p | q) = (−1)m
′
, where m′ is the number of

integral points above the line y = (q/p)x for

1 ≤ y ≤ (q − 1)/2.
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The Proof (concluded)

• As a result,

(p | q)(q | p) = (−1)m+m′
.

• But m+m′ is the total number of integral points in the

[1, p−1
2 ]× [1, q−1

2 ] rectangle, which is

p− 1

2

q − 1

2
.
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Eisenstein’s Rectangle

(p,q)

(p - 1)/2

(q - 1)/2

Above, p = 11, q = 7, m = 7, m′ = 8.
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The Jacobi Symbola

• The Legendre symbol only works for odd prime moduli.

• The Jacobi symbol (a |m) extends it to cases where m

is not prime.

– a is sometimes called the numerator and m the

denominator.

• Trivially, (1 |m) = 1.

• Define (a | 1) = 1.

aCarl Jacobi (1804–1851).
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The Jacobi Symbol (concluded)

• Let m = p1p2 · · · pk be the prime factorization of m.

• When m > 1 is odd and gcd(a,m) = 1, then

(a |m)
Δ
=

k∏
i=1

(a | pi).

– Note that the Jacobi symbol equals ±1.

– It reduces to the Legendre symbol when m is a prime.
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is

defined.

1. (ab |m) = (a |m)(b |m).

2. (a |m1m2) = (a |m1)(a |m2).

3. If a ≡ b mod m, then (a |m) = (b |m).

4. (−1 |m) = (−1)(m−1)/2 (by Lemma 70 on p. 582).

5. (2 |m) = (−1)(m
2−1)/8.a

6. If a and m are both odd, then

(a |m)(m | a) = (−1)(a−1)(m−1)/4.

aBy Lemma 70 (p. 582) and some parity arguments.
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Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol

without factorization.

– It will also yield the same result as Euler’s testa

when m is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that (a |m) = 1/(a |m) because (a |m) = ±1.b

aRecall p. 574.
bContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on

December 6, 2011.
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Calculation of (2200 | 999)
(2200 | 999) = (202 | 999)

= (2 | 999)(101 | 999)
= (−1)(999

2−1)/8(101 | 999)
= (−1)124750(101 | 999) = (101 | 999)
= (−1)(100)(998)/4(999 | 101) = (−1)24950(999 | 101)
= (999 | 101) = (90 | 101) = (−1)(101

2−1)/8(45 | 101)
= (−1)1275(45 | 101) = −(45 | 101)
= −(−1)(44)(100)/4(101 | 45) = −(101 | 45) = −(11 | 45)
= −(−1)(10)(44)/4(45 | 11) = −(45 | 11)
= −(1 | 11) = −1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 72 The group of set Φ(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,

pk, or 2pk for some nonnegative integer k and an odd prime

p.

This result is essential in the proof of the next lemma.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 597



The Jacobi Symbol and Primality Testa

Lemma 73 If (M |N) ≡ M (N−1)/2 mod N for all

M ∈ Φ(N), then N is a prime. (Assume N is odd.)

• Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).

• Let r ∈ Φ(p) such that (r | p) = −1.

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod p,

M = 1 mod m.

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text-

book’s proof for Lemma 11.8 is incorrect in January 1999 while he was

a senior.
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The Proof (continued)

• By the hypothesis,

M (N−1)/2 = (M |N) = (M | p)(M |m) = −1 mod N.

• Hence

M (N−1)/2 = −1 mod m.

• But because M = 1 mod m,

M (N−1)/2 = 1 mod m,

a contradiction.
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The Proof (continued)

• Second, assume that N = pa, where p is an odd prime

and a ≥ 2.

• By Theorem 72 (p. 597), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2
= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• As r ∈ Φ(N) (prove it), we have

rN−1 = 1 mod N.

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p |N .
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The Proof (continued)

• Third, assume that N = mpa, where p is an odd prime,

gcd(m, p) = 1, m > 1 (not necessarily prime), and a is

even.

• The proof mimics that of the second case.

• By Theorem 72 (p. 597), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2
= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• In particular,

MN−1 = 1 mod pa (15)

for all M ∈ Φ(N).

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod pa,

M = 1 mod m.

• Because M = r mod pa and Eq. (15),

rN−1 = 1 mod pa.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603



The Proof (concluded)

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p |N .
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The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an

odd composite, then (M |N) ≡ M (N−1)/2 mod N for at most

half of M ∈ Φ(N).

• By Lemma 73 (p. 598) there is at least one a ∈ Φ(N)

such that (a |N) �≡ a(N−1)/2 mod N .

• Let B
Δ
= { b1, b2, . . . , bk } ⊆ Φ(N) be the set of all

distinct residues such that (bi |N) ≡ b
(N−1)/2
i mod N .

• Let aB
Δ
= { abi mod N : i = 1, 2, . . . , k }.

• Clearly, aB ⊆ Φ(N), too.
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The Proof (concluded)

• | aB | = k.

– abi ≡ abj mod N implies N | a(bi − bj), which is

impossible because gcd(a,N) = 1 and N > | bi − bj |.
• aB ∩ B = ∅ because

(abi)
(N−1)/2 mod 2 = a(N−1)/2b

(N−1)/2
i mod 2

�= (a |N)(bi |N) = (abi |N).

• Combining the above two results, we know

|B |
φ(N)

≤ |B |
|B ∪ aB | = 0.5.
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1: if N is even but N �= 2 then

2: return “N is composite”;

3: else if N = 2 then

4: return “N is a prime”;

5: end if

6: Pick M ∈ { 2, 3, . . . , N − 1 } randomly;

7: if gcd(M,N) > 1 then

8: return “N is composite”;

9: else

10: if (M |N) ≡ M (N−1)/2 mod N then

11: return “N is (probably) a prime”;

12: else

13: return “N is composite”;

14: end if

15: end if
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Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for compositeness).

– When the algorithm says the number is composite, it

is always correct.
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Analysis (concluded)

• The probability of a false negative (again, for

compositeness) is at most one half.

– Suppose the input is composite.

– By Theorem 74 (p. 605),

prob[ algorithm answers “no” |N is composite ] ≤ 0.5.

– Note that we are not referring to the probability that

N is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for compositenessa

by the definition on p. 552.

aNot primes.
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The Improved Density Attack for compositeness

All numbers < N

Witnesses to
compositeness of

N via Jacobi

Witnesses to
compositeness of

N via common
factor
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Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in

time p(n) and has 2 nondeterministic choices at each

step.

• N is a polynomial Monte Carlo Turing machine

for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation

paths of N on x halt with “yes” where n = |x |.
– If x �∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).a

aAdleman & Manders (1977).
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Comments on RP

• In analogy to Proposition 41 (p. 346), a “yes” instance

of an RP problem has many certificates (witnesses).

• There are no false positives.

• If we associate nondeterministic steps with flipping fair

coins, then we can phrase RP in the language of

probability.

– If x ∈ L, then N(x) halts with “yes” with probability

at least 0.5.

– If x �∈ L, then N(x) halts with “no.”
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Comments on RP (concluded)

• The probability of false negatives is ≤ 0.5.

• But any constant ε between 0 and 1 can replace 0.5.

– Repeat the algorithm

k
Δ
=

⌈
− 1

log2 ε

⌉

times.

– Answer “no” only if all the runs answer “no.”

– The probability of false negatives becomes εk ≤ 0.5.
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Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except

that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with more demands

on the number of accepting paths.

• compositeness ∈ RP;a primes ∈ coRP;

primes ∈ RP.b

– In fact, primes ∈ P.c

• RP ∪ coRP is an alternative “plausible” notion of

efficient computation.
aRabin (1976); Solovay & Strassen (1977).
bAdleman & Huang (1987).
cAgrawal, Kayal, & Saxena (2002).
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ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one

with no false positives (RP) and the other with no false

negatives (coRP).

• If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

– A positive answer from the one without false

positives.

– A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}
2: {N1 has no false positives, and N2 has no false

negatives.}
3: while true do

4: if N1(x) = “yes” then

5: return “yes”;

6: end if

7: if N2(x) = “no” then

8: return “no”;

9: end if

10: end while
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ZPP (concluded)

• The expected running time for the correct answer to

emerge is polynomial.

– The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

– Let p(n) be the running time of each run of the

while-loop.

– The expected running time for a definite answer is

∞∑
i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be

solved, without errors, in expected polynomial time.
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Large Deviations

• Suppose you have a biased coin.

• One side has probability 0.5 + ε to appear and the other

0.5− ε, for some 0 < ε < 0.5.

• But you do not know which is which.

• How to decide which side is the more likely side—with

high confidence?

• Answer: Flip the coin many times and pick the side that

appeared the most times.

• Question: Can you quantify your confidence?
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The (Improved) Chernoff Bounda

Theorem 75 (Chernoff, 1952) Suppose x1, x2, . . . , xn are

independent random variables taking the values 1 and 0 with

probabilities p and 1− p, respectively. Let X =
∑n

i=1 xi.

Then for any constant 0 ≤ θ ≤ 1,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/3.

• The probability that the deviate of a binomial

random variable from its expected value

E[X ] = E [
∑n

i=1 xi ] = pn decreases exponentially with

the deviation.

aHerman Chernoff (1923–). This bound is asymptotically optimal.

The original bound is e−2θ2p2n (McDiarmid, 1998).
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The Proof

• Let t be any positive real number.

• Then

prob[X ≥ (1 + θ) pn ] = prob[ etX ≥ et(1+θ) pn ].

• Markov’s inequality (p. 555) generalized to real-valued

random variables says that

prob
[
etX ≥ kE[ etX ]

] ≤ 1/k.

• With k = et(1+θ) pn/E[ etX ], we havea

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ)pnE[ etX ].

aNote that X does not appear in k. Contributed by Mr. Ao Sun

(R05922147) on December 20, 2016.
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The Proof (continued)

• Because X =
∑n

i=1 xi and xi’s are independent,

E[ etX ] = (E[ etx1 ])n = [ 1 + p(et − 1) ]n.

• Substituting, we obtain

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ) pn[ 1 + p(et − 1) ]n

≤ e−t(1+θ) pnepn(e
t−1)

as (1 + a)n ≤ ean for all a > 0.
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The Proof (concluded)

• With the choice of t = ln(1 + θ), the above becomes

prob[X ≥ (1 + θ) pn ] ≤ epn[ θ−(1+θ) ln(1+θ) ].

• The exponent expands toa

−θ2

2
+

θ3

6
− θ4

12
+ · · ·

for 0 ≤ θ ≤ 1.

• But it is less than

−θ2

2
+

θ3

6
≤ θ2

(
−1

2
+

θ

6

)
≤ θ2

(
−1

2
+

1

6

)
= −θ2

3
.

aOr McDiarmid (1998): x− (1 + x) ln(1 + x) ≤ −3x2/(6 + 2x) for all

x ≥ 0.
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How Good Is the Bound?
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Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).

Theorem 76 Given the same terms as Theorem 75

(p. 619),

prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/2.

The following slightly looser inequalities achieve symmetry.

Theorem 77 (Karp, Luby, & Madras, 1989) Given the

same terms as Theorem 75 (p. 619) except with 0 ≤ θ ≤ 2,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/4,

prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/4.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 624



Power of the Majority Rule

The next result follows from Theorem 76 (p. 624).

Corollary 78 If p = (1/2) + ε for some 0 ≤ ε ≤ 1/2, then

prob

[
n∑

i=1

xi ≤ n/2

]
≤ e−ε2n/2.

• The textbook’s corollary to Lemma 11.9 seems too

loose, at e−ε2n/6.a

• Our original problem (p. 618) hence demands, e.g.,

n ≈ 1.4k/ε2 independent coin flips to guarantee making

an error with probability ≤ 2−k with the majority rule.

aSee Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
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BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages L for which there

is a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

– If x �∈ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

• So N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/4?

• The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

• In fact, as with RP,

1

2
+

1

q(n)

for any polynomial q(n) can replace 3/4.

• The next algorithm shows why.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ε.

1: for i = 1, 2, . . . , 2k + 1 do

2: Run N on input x;

3: end for

4: if “yes” is the majority answer then

5: “yes”;

6: else

7: “no”;

8: end if
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Analysis

• By Corollary 78 (p. 625), the probability of a false

answer is at most e−ε2k.

• By taking k = � 2/ε2 �, the error probability is at most

1/4.

• Even if ε is any inverse polynomial, k remains a

polynomial in n.

• The running time remains polynomial: 2k + 1 times N ’s

running time.
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Aspects of BPP

• BPP is the most comprehensive yet plausible notion of

efficient computation.

– If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP.a

aSee p. 642.
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coBPP

• The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by

reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.a

aIt did not work for NP either.
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BPP and coBPP

����� ���� ���� �����
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“The Good, the Bad, and the Ugly”

BPPP

ZPP

RPcoRP

NPcoNP
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