Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP(D) is in P.
- But we shall see that decision problems can be as hard as the corresponding function problems. immediately.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FSAT Using SAT 1: $t := \epsilon$; {Truth assignment.} 2: if $\phi \in SAT$ then for i = 1, 2, ..., n do 3: 4: **if** $\phi[x_i = \text{true}] \in \text{SAT}$ **then** 5: $t := t \cup \{x_i = \text{true}\};$ 6: $\phi := \phi[x_i = true];$ 7: else 8: $t := t \cup \{ x_i = \texttt{false} \};$ $\phi := \phi[x_i = \texttt{false}];$ 9: end if 10: end for 11: 12:return t; 13: **else** 14: return "no"; 15: end if

Analysis

- If SAT can be solved in polynomial time, so can FSAT.
 - There are $\leq n + 1$ calls to the algorithm for SAT.^a
 - Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence SAT and FSAT are equally hard (or easy).

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

Analysis (concluded)

- Note that this reduction from FSAT to SAT is not a Karp reduction.^a
 - Will the set of NP-complete problems differ under different reductions?^b
- Instead, it calls SAT multiple times as a subroutine, and its answers guide the search on the computation tree.

^aRecall p. 275 and p. 280.

 $^{\rm b}{\rm Contributed}$ by Mr. Yu-Ming Lu (R06723032, D08922008) and Mr. Han-Ting Chen (R10922073) on December 9, 2021.

$_{\rm TSP}$ and $_{\rm TSP}$ (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most $\sum_{i,j} d_{ij}$.
 - * Recall that the input string contains d_{11}, \ldots, d_{nn} .
- Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- Perform a binary search over interval [0, 2^{|x|}] by calling TSP (D) to obtain the shortest distance, C;
- 2: for i, j = 1, 2, ..., n do

3: Call TSP (D) with
$$B = C$$
 and $d_{ij} = C + 1$;

- 4: **if** "no" **then**
- 5: Restore d_{ij} to its old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge which is not on *any* remaining optimal tours will be eliminated, with its d_{ij} set to C + 1.
- So the algorithm ends with *n* edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours!^a

^aThanks to a lively class discussion on November 12, 2013 and December 9, 2021.

Analysis (concluded)

- There are $O(|x| + n^2)$ calls to the algorithm for TSP (D).
- Each call has an input length of O(|x|).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- $\bullet\,$ Hence TSP (D) and TSP are equally hard (or easy).^a

^aHow about counting the number of optimal TSP tours? This is related to #P-completeness (p. 874). Contributed by Mr. Vincent Hwang (R10922138) on December 9, 2021.

$Randomized \ Computation$

I know that half my advertising works, I just don't know which half. — John Wanamaker

> I know that half my advertising is a waste of money, I just don't know which half! — McGraw-Hill ad.

Randomized Algorithms $^{\rm a}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is *necessary*.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithms for maximal independent set.^b

^aRabin (1976); Solovay & Strassen (1977).

^b "Maximal" (a local maximum) not "maximum" (a global maximum).

Randomized Algorithms (concluded)

- Are randomized algorithms algorithms?^a
- Coin flips are occasionally used in politics.^b

^aPascal, "Truth is so delicate that one has only to depart the least bit from it to fall into error."

^bIn the 2016 Iowa Democratic caucuses, e.g. (see http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin -flip-iowa-bernie-sanders/index.html).

"Four Most Important Randomized Algorithms" $^{\rm a}$

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).
^bRabin (1976); Solovay & Strassen (1977).
^cAleliunas, Karp, Lipton, Lovász, & Rackoff (1979).
^dSchwartz (1980); Zippel (1979).
^eSinclair & Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

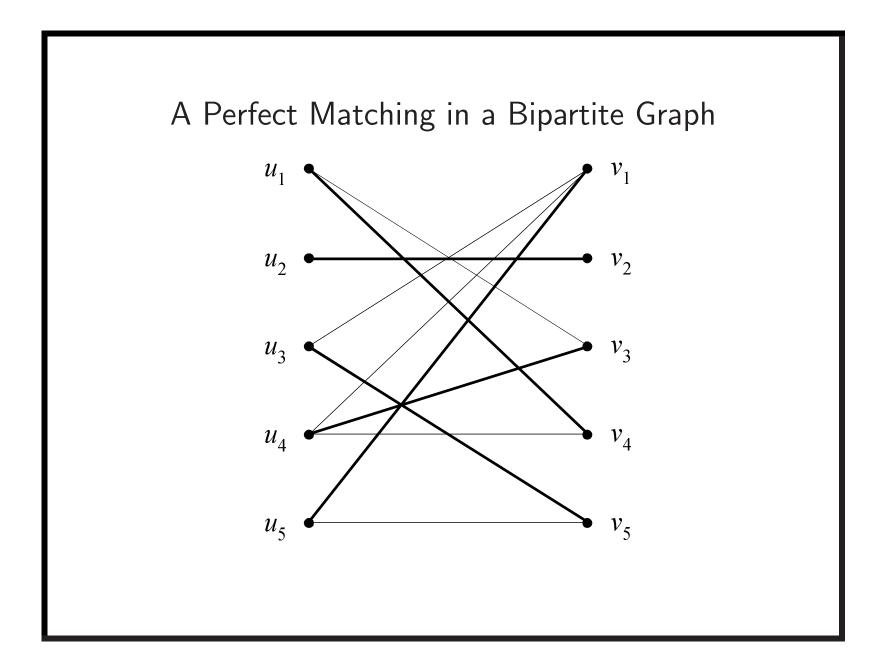
$$- U = \{ u_1, u_2, \dots, u_n \}. - V = \{ v_1, v_2, \dots, v_n \}. - E \subseteq U \times V.$$

We are asked if there is a perfect matching.
A permutation π of {1, 2, ..., n} such that

 $(u_i, v_{\pi(i)}) \in E$

for all $i \in \{1, 2, ..., n\}$.

• A perfect matching contains n edges.



Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^G whose (i, j)th entry A_{ij}^G is a symbolic variable x_{ij} if $(u_i, v_j) \in E$ and 0 otherwise:

$$A_{ij}^G = \begin{cases} x_{ij}, & \text{if } (u_i, v_j) \in E, \\ 0, & \text{otherwise.} \end{cases}$$

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 533 is^a

$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}.$$
 (8)

^aThe idea is similar to the Tanner (1981) graph in coding theory.

Symbolic Determinants (concluded)

• The **determinant** of A^G is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A^G_{i,\pi(i)}.$$
 (9)

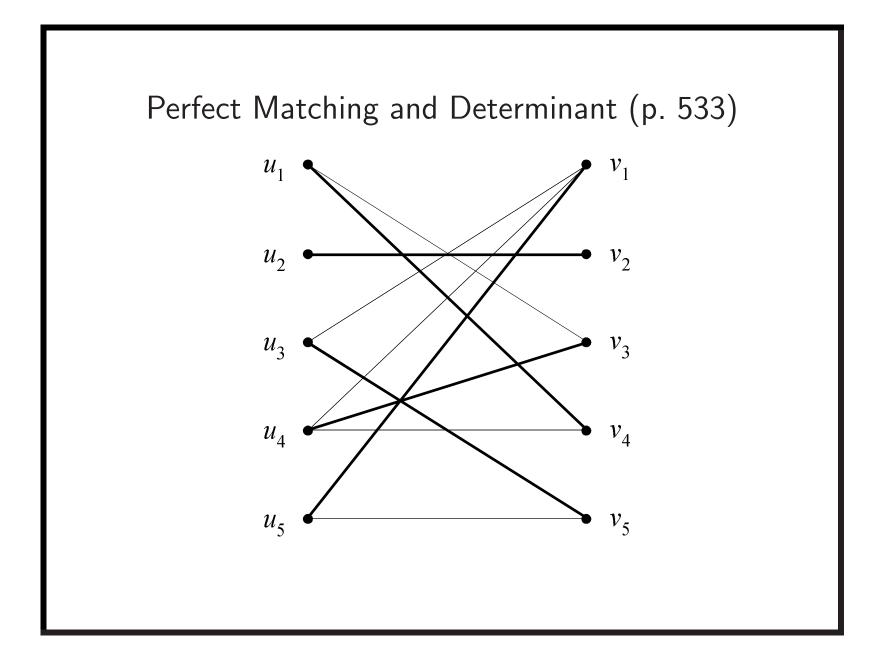
- π ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.^a
- $det(A^G)$ contains n! terms, many of which may be 0s.

^aEquivalently, $sgn(\pi) = 1$ if the number of (i, j)s such that i < j and $\pi(i) > \pi(j)$ is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

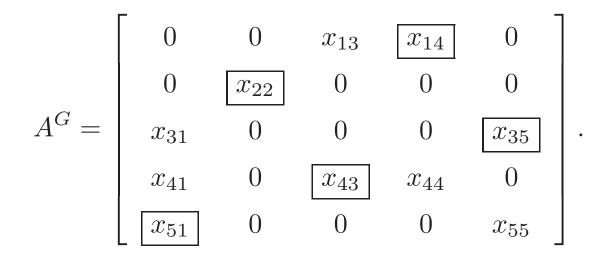
- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible perfect matching π .
 - Nonzero summands $\prod_{i=1}^{n} A_{i,\pi(i)}^{G}$ are distinct monomials and *will not cancel*.
- $det(A^G)$ is essentially an exhaustive enumeration.

Proposition 65 (Edmonds, 1967) G has a perfect matching if and only if $det(A^G)$ is not identically zero.



Perfect Matching and Determinant (concluded)

• The matrix is (p. 535)



- $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} x_{13}x_{22}x_{31}x_{44}x_{55}.$
- Each nonzero term denotes a perfect matching, and vice versa.

How To Test If a Polynomial Is Identically Zero?

- $det(A^G)$ is a polynomial in n^2 variables.
- It has, potentially, exponentially many terms.
- Expanding the determinant polynomial is thus infeasible.
- If $det(A^G) \equiv 0$, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- When $det(A^G) \neq 0$, what is the likelihood of obtaining a zero?

Number of Roots of a Polynomial

Lemma 66 (Schwartz, 1980) Let $p(x_1, x_2, ..., x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, ..., x_m) = 0$ is

$$\leq m d M^{m-1}.$$

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$
(10)

- So suppose $p(x_1, x_2, \ldots, x_m) \neq 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

• Note that M is under our control!

- One can raise M to lower the error probability, e.g.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, \ldots, x_m) \neq 0$.

1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;

2: **if**
$$p(i_1, i_2, ..., i_m) \neq 0$$
 then

- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is (probably) identically zero";
- 6: end if

Analysis

- If $p(x_1, x_2, \ldots, x_m) \equiv 0$, the algorithm will always be correct as $p(i_1, i_2, \ldots, i_m) = 0$.
- Suppose $p(x_1, x_2, \dots, x_m) \not\equiv 0$.
 - The algorithm will answer incorrectly with probability at most md/M by Eq. (10) on p. 542.
- We next return to the original problem of bipartite perfect matching.

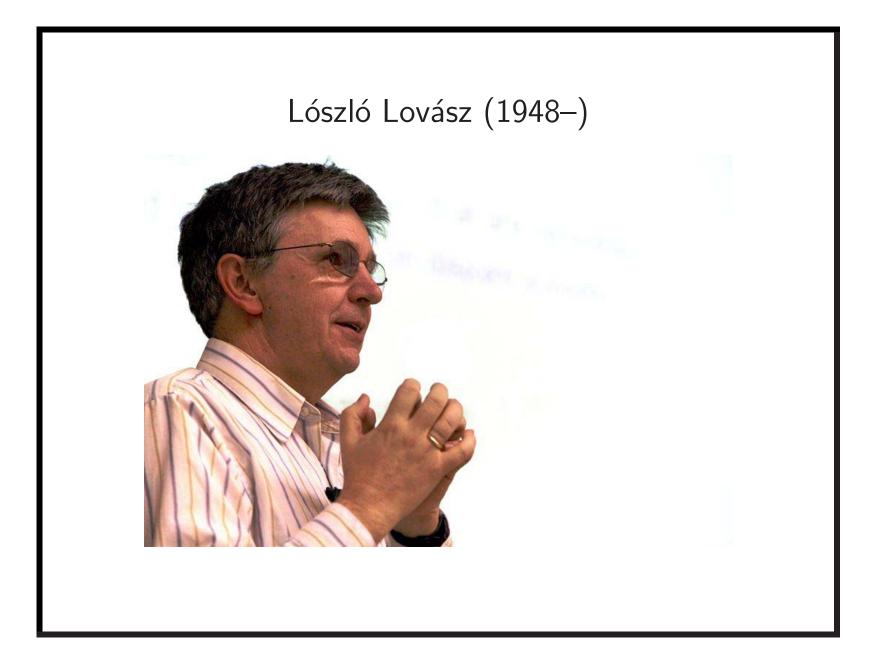
A Randomized Bipartite Perfect Matching Algorithm^a

- 1: Choose n^2 integers $i_{11}, ..., i_{nn}$ from $\{0, 1, ..., 2n^2 1\}$ randomly; $\{\text{So } M = 2n^2.\}$
- 2: Calculate det $(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $det(A^G(i_{11}, \ldots, i_{nn})) \neq 0$ **then**
- 4: **return** "*G* has a perfect matching";
- 5: **else**
- 6: return "G has (probably) no perfect matchings";
 7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct as $det(A^G(i_{11}, \ldots, i_{nn})) = 0.$
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most md/M = 0.5 with $m = n^2$, d = 1and $M = 2n^2$ in Eq. (10) on p. 542.
- Run the algorithm *independently* k times.
- Output "G has no perfect matchings" if and only if all say "(probably) no perfect matchings."
- The error probability is now reduced to at most 2^{-k} .



$\mathsf{Remarks}^{\mathrm{a}}$

• Note that we calculated

prob[algorithm answers "no" | G has no perfect matchings], prob[algorithm answers "yes" | G has a perfect matching].

- And they are 1 and $\geq 1/2$, respectively.

• We did not calculate^b

prob[G has no perfect matchings | algorithm answers "no"], prob[G has a perfect matching | algorithm answers "yes"].

^aThanks to a lively class discussion on May 1, 2008.

^bNumerical Recipes in C (1988), "statistics is not a branch of mathematics!" Similar issues arise in MAP (maximum a posteriori) estimates and ML (maximum likelihood) estimates.

But How Large Can det $(A^G(i_{11}, \ldots, i_{nn}))$ Be?

• It is at most^a

 $n! \left(2n^2\right)^n$.

- Stirling's formula says $n! \sim \sqrt{2\pi n} (n/e)^n$.
- Hence

$$\log_2 \det(A^G(i_{11},\ldots,i_{nn})) = O(n\log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all *intermediate* results are of polynomial size.

^aIn fact, it can be lowered to $2^{O(\log^2 n)}$ (Csanky, 1975)!

An Intriguing Question $^{\rm a}$

- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for the algorithm on p. 545?
- A theorem on p. 642 shows that such an (i_{11}, \ldots, i_{nn}) exists!

- Whether it can be found efficiently is another matter.

• Once (i_{11}, \ldots, i_{nn}) is available, the algorithm can be made deterministic.

– Is it an algorithm for bipartite perfect matching?^b

^aThanks to a lively class discussion on November 24, 2004. ^bWe have one algorithm for each n — unless there is an algorithm to generate such (i_{11}, \ldots, i_{nn}) for all n. Contributed by Mr. Han-Ting Chen (R10922073) on December 9, 2021.

Randomization vs. Nondeterminism $^{\rm a}$

- What are the differences between randomized algorithms and nondeterministic algorithms?
- Think of a randomized algorithm as a nondeterministic one but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

^aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives; no type I errors).
 - If the algorithm answers in the negative, then it may make an error (false negatives; type II errors).
 * And the error probability must be small.

^aMetropolis & Ulam (1949).

Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability $\leq 0.5.^{a}$
- Again, this probability refers to^b

prob[algorithm answers "no" |G has a perfect matching] not

 $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm answers "no"}].$

^aEquivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

^bIn general, prob[algorithm answers "no" | input is a yes instance].

Monte Carlo Algorithms (concluded)

- This probability 0.5 is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for *any* bipartite graph.
- In contrast, to calculate

prob[G has a perfect matching | algorithm answers "no"], we will need the distribution of G.

• But it is an empirical statement that is very hard to verify.

The Markov Inequality^a

Lemma 67 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let p_i denote the probability that x = i.

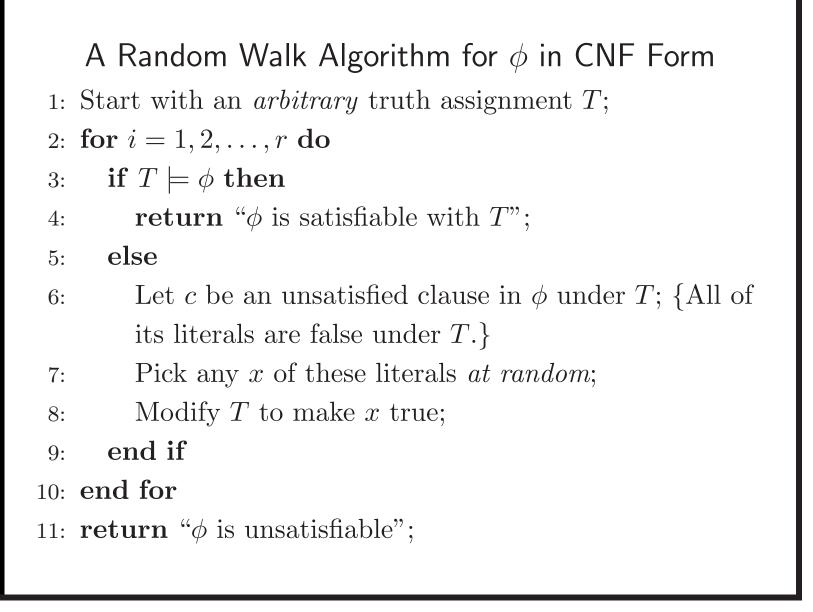
$$E[x] = \sum_{i} ip_{i} = \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$
$$\geq \sum_{i \ge kE[x]} ip_{i} \ge kE[x] \sum_{i \ge kE[x]} p_{i}$$
$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

^aAndrei Andreyevich Markov (1856–1922).

Andrei Andreyevich Markov (1856–1922)

FSAT for k-SAT Formulas (p. 519)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-SAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.



3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will answer "unsatisfiable."
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333\cdots + \epsilon)^n)$ time with r = 3n,^a much better than $O(2^n)$.^b
- We will show immediately that it works well for 2SAT.
- The state of the art as of 2014 is expected $O(1.30704^n)$ time for 3SAT and expected $O(1.46899^n)$ time for 4SAT.^c

^aUse this setting per run of the algorithm.

^bSchöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the bound to deterministic $O(1.3303^n)$. ^cHertli (2014).

Random Walk Works for $2 \ensuremath{\mathrm{SAT}}^a$

Theorem 68 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in *i* values.

- Their Hamming distance is i.

• Recall T is arbitrary.

^aPapadimitriou (1991).

The Proof

- Let t(i) denote the expected number of repetitions of the flipping step^a until a satisfying truth assignment is found.
- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.

^aThat is, Statement 7.

- So we have at least a 50% chance of moving closer to \hat{T} .
- Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• Now, put the necessary relations together:

$$t(0) = 0, (11)$$

$$t(i) \leq \frac{t(i-1) + t(i+1)}{2} + 1, \quad 0 < i < n, (12)$$

$$t(n) < t(n-1) + 1. (13)$$

• Technically, this is a one-dimensional random walk with an absorbing barrier at i = 0 and a reflecting barrier at i = n (if we replace " \leq " with "=").^a

^aThe proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

- Add up the relations for $2t(1), 2t(2), 2t(3), \dots, 2t(n-1), t(n) \text{ to obtain}^{a}$ $2t(1) + 2t(2) + \dots + 2t(n-1) + t(n)$ $\leq t(0) + t(1) + 2t(2) + \dots + 2t(n-2) + 2t(n-1) + t(n) + 2(n-1) + 1.$
- Simplify it to yield

$$t(1) \le 2n - 1.$$
 (14)

^aAdding up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ will also work, thanks to Mr. Yen-Wu Ti (D91922010).

• Add up the relations for $2t(2), 2t(3), \dots, 2t(n-1), t(n)$ to obtain

$$2t(2) + \dots + 2t(n-1) + t(n)$$

$$\leq t(1) + t(2) + 2t(3) + \dots + 2t(n-2) + 2t(n-1) + t(n+2) + 2(n-2) + 1.$$

• Simplify it to yield

$$t(2) \le t(1) + 2n - 3 \le 2n - 1 + 2n - 3 = 4n - 4$$

by Eq. (14) on p. 564.

• Continuing the process, we shall obtain^a

$$t(i) \le 2in - i^2.$$

• The worst upper bound happens when i = n, in which case

$$t(n) \le n^2.$$

• We conclude that

$$t(i) \le t(n) \le n^2$$

for $0 \le i \le n$.

^aSee also Feller (1968).

The Proof (concluded)

- So the expected number of steps is at most n^2 .
- The algorithm picks $r = 2n^2$.
- Apply the Markov inequality (p. 555) with k = 2 to yield the desired probability of 0.5.
- The proof does *not* yield a polynomial bound for 3SAT.^a

^aContributed by Mr. Cheng-Yu Lee (**R95922035**) on November 8, 2006.

Boosting the Performance

• We can pick $r = 2mn^2$ to have an error probability of

$$\leq \frac{1}{2m}$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r = 2n^{2}$ " algorithm m times.
- The error probability is now reduced to

$$\leq 2^{-m}.$$

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, \ldots, \sqrt{N}$.
- But it runs in $\Omega(2^{(\log_2 N)/2})$ steps.
- COMPOSITENESS asks if a number is composite.

The Fermat Test for Primality

Fermat's "little" theorem (p. 505) suggests the following primality test for any given number N:

- 1: Pick a number a randomly from $\{1, 2, \ldots, N-1\};$
- 2: if $a^{N-1} \not\equiv 1 \mod N$ then

4: else

- 5: **return** "N is (probably) a prime";
- 6: **end if**

The Fermat Test for Primality (continued)

- Carmichael numbers are composite numbers that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.^a
 - The Fermat test will return "N is a prime" for all Carmichael numbers N.
- If there are finitely many Carmichael numbers, store them for matches before running the Fermat test.
- Unfortunately, there are infinitely many such numbers.^b
 - The number of Carmichael numbers less than N exceeds $N^{2/7}$ for N large enough.

^aCarmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!

^bAlford, Granville, & Pomerance (1992).

The Fermat Test for Primality (concluded)

- The Fermat test will fail all of them.
- So the Fermat test is an *incorrect* algorithm for PRIMES.
- Even suppose N is not a Carmichael number but remains composite.
- We need many $a \in \{1, 2, \dots, N-1\}$ such that $a^{N-1} \not\equiv 1 \mod N$.
- Otherwise, the correct answer will come only with a vanishing probability (say 1/N).^a

^aContributed by Mr. Vincent Hwang (R10922138) on December 9, 2021.