INTEGER PROGRAMMING (IP)

- IP asks whether a system of linear inequalities with integer coefficients has an integer solution.
- In contrast, LINEAR PROGRAMMING (LP) asks whether a system of linear inequalities with integer coefficients has a rational solution.
- LP is solvable in polynomial time. ${ }^{\text {a }}$

[^0]
IP Is NP-Complete ${ }^{\text {a }}$

- Set covering can be expressed by the inequalities $A x \geq \overrightarrow{1}, \sum_{i=1}^{n} x_{i} \leq B, 0 \leq x_{i} \leq 1$, where
$-x_{i}=1$ if and only if S_{i} is in the cover.
- A is the matrix whose columns are the bit vectors of the sets S_{1}, S_{2}, \ldots
$-\overrightarrow{1}$ is the vector of 1 s .
- The operations in $A x$ are standard matrix operations.
- Item i is covered if the sum of the i th row of $A x$ is at least 1.

[^1]
IP Is NP-Complete (concluded)

- This shows IP is NP-hard.
- Many NP-complete problems can be expressed as an IP problem.
- To show that $\mathrm{IP} \in \mathrm{NP}$ is nontrivial.
- It will not work if we simply guess x_{i} unless this guess provabably needs only a polynomial number of bits. ${ }^{\text {a }}$
- IP with a fixed number of variables is in P. ${ }^{\text {b }}$

[^2]
Christos Papadimitriou (1949-)

Easier or Harder? ${ }^{\text {a }}$

- Adding restrictions on the allowable problem instances will not make a problem harder.
- We are now solving a subset of problem instances or special cases.
- The independent set proof (p. 383) and the KNAPSACK proof (p. 442): equally hard.
- CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (p. 332): equally hard.
- SAT to 2SAT (p. 364): easier.

[^3]
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions (the solution space) may make a problem harder, equally hard, or easier.
- It is problem dependent.
- min cut to bisection width (p. 416): harder.
- LP to IP (p. 461): harder.
- Sat to NaESAT (p. 376) and max CUT to max bisection (p. 414): equally hard.
- 3-Coloring to 2-Coloring (p. 426): easier.

coNP and Function Problems

I frankly confess
I do not know what he means.

- St. Augustin (354-430),

City of God (426)

coNP

- By definition, coNP is the class of problems whose complement is in NP.
$-L \in$ coNP if and only if $\bar{L} \in$ NP.
- NP problems have succinct certificates. ${ }^{\text {a }}$
- coNP is therefore the class of problems that have succinct disqualifications: ${ }^{\text {b }}$
- A "no" instance possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

[^4]
coNP (continued)

- Suppose L is a coNP problem.
- There exists a nondeterministic polynomial-time algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.
- If we swap "yes" and "no" in M, the new algorithm decides $\bar{L} \in$ NP in the classic sense (p. 115).

coNP (continued)

- So there are 3 major approaches to proving $L \in$ coNP.

1. Prove $\bar{L} \in$ NP.

- Especially when you already knew $\bar{L} \in \mathrm{NP}$.

2. Prove that only "no" instances possess short proofs (for their not being in L). ${ }^{\text {a }}$
3. Write an algorithm for it directly.
[^5]
coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP} .
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see p. 164).

Some coNP Problems

- SAT COMPLEMENT $\in \operatorname{coNP}$.
- SAT COMPLEMENT is the complement of SAT. ${ }^{\text {a }}$
- Or, the disqualification is a truth assignment that satisfies it.
- hamiltonian path complement \in conp.
- HAMILTONIAN PATH COMPLEMENT is the complement of HAMILTONIAN PATH.
- Or, the disqualification is a Hamiltonian path.

[^6]
Some coNP Problems (concluded)

- VALIDITY $\in \operatorname{coNP}$.
- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- TSP COMPLEMENT (D) \in coNP.
- TSP COMPLEMENT (D) asks if the optimal tour has a total distance of $>B$, where B is an input. ${ }^{\text {a }}$
- The disqualification is a tour with a distance $\leq B$.
${ }^{\text {a }}$ Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

A Nondeterministic Algorithm for sat complement (See also p. 120)
ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ then
6: "yes";
: else
8: "no";
9: end if

Analysis

- The algorithm decides language $\{\phi: \phi$ is unsatisfiable $\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is unsatisfiable if and only if every truth assignment falsifies ϕ.
- But every truth assignment falsifies ϕ if and only if every computation path results in "yes."

An Alternative Characterization of coNP

Proposition 54 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in \operatorname{coNP}$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \forall y(x, y) \in R\} .
$$

(As on p. 345, we assume $|y| \leq|x|^{k}$ for some k.)

- $\bar{L}=\{x: \exists y(x, y) \in \neg R\} .{ }^{\text {a }}$
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \mathrm{NP}$ by Proposition 41 (p. 346).
- Hence $L \in$ coNP by definition.
${ }^{\text {a }}$ So a certificate y for \bar{L} is a disqualification for L, and vice versa.

coNP-Completeness

Proposition $55 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.
Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let $\overline{L^{\prime}}$ be any coNP language.
- Hence $L^{\prime} \in \mathrm{NP}$.
- Let R be the reduction from L^{\prime} to L.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- By the law of transposition, $x \notin L^{\prime}$ if and only if $R(x) \notin L$.

coNP Completeness (concluded)

- So $x \in \overline{L^{\prime}}$ if and only if $R(x) \in \bar{L}$.
- The same R is a reduction from $\overline{L^{\prime}}$ to \bar{L}.
- This shows \bar{L} is coNP-hard.
- But $\bar{L} \in \operatorname{coNP}$.
- This shows \bar{L} is coNP-complete.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- hamiltonian path complement is coNP-complete.
- TSP COMPLEMENT (D) is coNP-complete.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
$-\phi \in$ VALIDITY if and only if $\neg \phi \in$ SAT COMPLEMENT.
- The reduction from sat complement to validity is hence easy: $R(\phi)=\neg \phi$.

Possible Relations between $\mathrm{P}, \mathrm{NP}, \mathrm{coNP}^{\mathrm{a}}$

1. $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$.
2. $\mathrm{NP}=\mathrm{coNP}$ but $\mathrm{P} \neq \mathrm{NP}$.
3. NP \neq coNP and $P \neq N P$.

- Furthermore, NP \nsubseteq coNP and coNP \nsubseteq NP.
- This is the current consensus. ${ }^{\text {b }}$
${ }^{\text {a }}$ Thanks to a lively class discussion on November 25, 2021.
${ }^{\text {b }}$ Carl Friedrich Gauss (1777-1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

The Primality Problem

- An integer p is prime if $p>1$ and all positive numbers other than 1 and p itself cannot divide it.
- Primes asks if an integer N is a prime number.
- Dividing N by $2,3, \ldots, \sqrt{N}$ is not efficient.
- The length of N is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- It is an exponential-time algorithm.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- The running time is $\tilde{O}\left(\log ^{7.5} N\right)$.

```
    if \(n=a^{b}\) for some \(a, b>1\) then
    return "composite";
    end if
    for \(r=2,3, \ldots, n-1\) do
        if \(\operatorname{gcd}(n, r)>1\) then
            return "composite";
        end if
        if \(r\) is a prime then
            Let \(q\) be the largest prime factor of \(r-1\);
            if \(q \geq 4 \sqrt{r} \log n\) and \(n^{(r-1) / q} \neq 1 \bmod r\) then
                break; \{Exit the for-loop.\}
            end if
        end if
    end for \(\{r-1\) has a prime factor \(q \geq 4 \sqrt{r} \log n\).
    for \(a=1,2, \ldots, 2 \sqrt{r} \log n\) do
        if \((x-a)^{n} \neq\left(x^{n}-a\right) \bmod \left(x^{r}-1\right)\) in \(Z_{n}[x]\) then
            return "composite";
        end if
    end for
    return "prime"; \{The only place with"prime" output.\}
```


The Primality Problem (concluded)

- Later, we will focus on efficient "randomized" algorithms for Primes (used in Mathematica, e.g.).
- $\mathrm{NP} \cap$ coNP is the class of problems that have succinct certificates and succinct disqualifications.
- Each "yes" instance has a succinct certificate.
- Each "no" instance has a succinct disqualification.
- No instances have both.
- We will see that primes $\in \mathrm{NP} \cap$ coNP.
- In fact, primes $\in \mathrm{P}$ as mentioned earlier.

Basic Modular Arithmetics ${ }^{\text {a }}$

- Let $m, n \in \mathbb{Z}^{+}$.
- $m \mid n$ means m divides $n ; m$ is n 's divisor.
- We call the numbers $0,1, \ldots, n-1$ the residue modulo n.
- The greatest common divisor of m and n is denoted $\operatorname{gcd}(m, n)$.

[^7]
Basic Modular Arithmetics (concluded)

- We use

$$
a \equiv b \quad \bmod n
$$

if $n \mid(a-b)$.

- So $25 \equiv 38 \bmod 13$.
- We use

$$
a=b \bmod n
$$

if b is the remainder of a divided by n.

- So $25=12 \bmod 13$.

Primitive Roots in Finite Fields

Theorem 56 (Lucas \& Lehmer, 1927) ${ }^{\text {a }}$ A number
$p>1$ is a prime if and only if there is a number $1<r<p$ such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- This r is called a primitive root or generator of p.
- We will prove one direction of the theorem later. ${ }^{\text {b }}$

[^8]
Derrick Lehmer ${ }^{\text {a }}$ (1905-1991)

${ }^{\mathrm{a}}$ Inventor of the linear congruential generator in 1951.

Pratt's Theorem

Theorem 57 (Pratt, 1975) Primes $\in N P \cap$ coNP.

- PRIMES \in coNP because a succinct disqualification is a proper divisor.
- A proper divisor of a number means it is not a prime.
- Now suppose p is a prime.
- p 's certificate includes the r in Theorem 56 (p. 488).
- There may be multiple choices for r.

The Proof (continued)

- Use recursive doubling to check if $r^{p-1}=1 \bmod p$ in time polynomial in the length of the input, $\log _{2} p$.
$-r, r^{2}, r^{4}, \ldots \bmod p$, a total of $\sim \log _{2} p$ steps.
- We also need all prime divisors of $p-1: q_{1}, q_{2}, \ldots, q_{k}$.
- Whether r, q_{1}, \ldots, q_{k} are easy to find is irrelevant.
- Checking $r^{(p-1) / q_{i}} \neq 1 \bmod p$ is also easy.
- Checking $q_{1}, q_{2}, \ldots, q_{k}$ are all the divisors of $p-1$ is easy.

The Proof (concluded)

- We still need certificates for the primality of the q_{i} 's.
- The complete certificate is recursive and tree-like:

$$
\begin{equation*}
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), q_{2}, C\left(q_{2}\right), \ldots, q_{k}, C\left(q_{k}\right)\right) . \tag{5}
\end{equation*}
$$

- We next prove that $C(p)$ is succinct.
- As a result, $C(p)$ can be checked in polynomial time.

A Certificate for 23^{a}

- Note that 5 is a primitive root modulo 23 and

$$
23-1=22=2 \times 11 .^{\mathrm{b}}
$$

- So

$$
C(23)=(5 ; 2, C(2), 11, C(11)) .
$$

- Note that 2 is a primitive root modulo 11 and $11-1=10=2 \times 5$.
- So

$$
C(11)=(2 ; 2, C(2), 5, C(5))
$$

${ }^{\text {a }}$ Thanks to a lively discussion on April 24, 2008.
${ }^{\mathrm{b}}$ Other primitive roots are $7,10,11,14,15,17,19,20,21$.

A Certificate for 23 (concluded)

- Note that 2 is a primitive root modulo 5 and $5-1=4=2^{2}$.
- So

$$
C(5)=(2 ; 2, C(2))
$$

- In summary,

$$
C(23)=(5 ; 2, C(2), 11,(2 ; 2, C(2), 5,(2 ; 2, C(2))))
$$

- In Mathematica, PrimeQCertificate[23] yields

$$
\{23,5,\{2,\{11,2,\{2,\{5,2,\{2\}\}\}\}\}\}
$$

The Succinctness of the Certificate

Lemma 58 The length of $C(p)$ is at most quadratic at $5 \log _{2}^{2} p$.

- This claim holds when $p=2$ or $p=3$.
- In general, $p-1$ has $k \leq \log _{2} p$ prime divisors $q_{1}=2, q_{2}, \ldots, q_{k}$.
- Reason:

$$
2^{k} \leq \prod_{i=1}^{k} q_{i} \leq p-1
$$

- Note also that, as $q_{1}=2$,

$$
\begin{equation*}
\prod_{i=2}^{k} q_{i} \leq \frac{p-1}{2} \tag{6}
\end{equation*}
$$

The Proof (continued)

- $C(p)$ requires:
- 2 parentheses;
$-2 k<2 \log _{2} p$ separators (at most $2 \log _{2} p$ bits);
- r (at most $\log _{2} p$ bits);
- $q_{1}=2$ and its certificate 1 (at most 5 bits);
$-q_{2}, \ldots, q_{k}$ (at most $2 \log _{2} p$ bits); ${ }^{\text {a }}$
- $C\left(q_{2}\right), \ldots, C\left(q_{k}\right)$.

[^9]
The Proof (concluded)

- $C(p)$ is succinct because, by induction,

$$
\begin{aligned}
|C(p)| & \leq 5 \log _{2} p+5+5 \sum_{i=2}^{k} \log _{2}^{2} q_{i} \\
& \leq 5 \log _{2} p+5+5\left(\sum_{i=2}^{k} \log _{2} q_{i}\right)^{2} \\
& \leq 5 \log _{2} p+5+5 \log _{2}^{2} \frac{p-1}{2} \quad \text { by inequality }(6) \\
& <5 \log _{2} p+5+5\left[\left(\log _{2} p\right)-1\right]^{2} \\
& =5 \log _{2}^{2} p+10-5 \log _{2} p \leq 5 \log _{2}^{2} p
\end{aligned}
$$

$$
\text { for } p \geq 4 \text {. }
$$

Turning the Proof into an Algorithm ${ }^{\text {a }}$

- How to turn the proof into a nondeterministic polynomial-time algorithm?
- First, guess a $\log _{2} p$-bit number r.
- Then guess up to $\log _{2} p$ numbers $q_{1}, q_{2}, \ldots, q_{k}$ each containing at most $\log _{2} p$ bits.
- Then recursively do the same thing for each of the q_{i} to form a certificate (5) on p. 492.
- Finally check if the two conditions of Theorem 56 (p. 488) hold throughout the tree.

[^10]
Euler's ${ }^{a}$ Totient or Phi Function

- Let

$$
\Phi(n)=\{m: 1 \leq m<n, \operatorname{gcd}(m, n)=1\}
$$

be the set of all positive integers less than n that are prime to n. ${ }^{\mathrm{b}}$

$$
-\Phi(12)=\{1,5,7,11\}
$$

- Define Euler's function of n to be $\phi(n)=|\Phi(n)|$.
- $\phi(p)=p-1$ for prime p, and $\phi(1)=1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n 's factorization.

[^11]

Leonhard Euler (1707-1783)

Three Properties of Euler's Function ${ }^{\text {a }}$

The inclusion-exclusion principle ${ }^{\mathrm{b}}$ can be used to prove the following.

Lemma 59 If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{\ell}^{e_{\ell}}$ is the prime factorization of n, then

$$
\phi(n)=n \prod_{i=1}^{\ell}\left(1-\frac{1}{p_{i}}\right) .
$$

- For example, if $n=p q$, where p and q are distinct primes, then

$$
\phi(n)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1
$$

[^12]Three Properties of Euler's Function (concluded)
Corollary $60 \phi(m n)=\phi(m) \phi(n)$ if $\operatorname{gcd}(m, n)=1$.
Lemma 61 (Gauss) $\sum_{m \mid n} \phi(m)=n$.

The Chinese Remainder Theorem

- Let $n=n_{1} n_{2} \cdots n_{k}$, where n_{i} are pairwise relatively prime.
- For any integers $a_{1}, a_{2}, \ldots, a_{k}$, the set of simultaneous equations

$$
\begin{aligned}
x= & a_{1} \bmod n_{1} \\
x= & a_{2} \bmod n_{2} \\
& \vdots \\
x= & a_{k} \bmod n_{k},
\end{aligned}
$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem ${ }^{\text {a }}$

Lemma 62 For all $0<a<p, a^{p-1}=1 \bmod p$.

- Recall $\Phi(p)=\{1,2, \ldots, p-1\}$.
- Consider $a \Phi(p)=\{a m \bmod p: m \in \Phi(p)\}$.
- $a \Phi(p)=\Phi(p)$.
$-a \Phi(p) \subseteq \Phi(p)$ as a remainder must be between 1 and $p-1$.
- Suppose $a m \equiv a m^{\prime} \bmod p$ for $m>m^{\prime}$, where $m, m^{\prime} \in \Phi(p)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod p$, and p divides a or $m-m^{\prime}$, which is impossible.

[^13]
The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield $(p-1)$!.
- Multiply all the numbers in $a \Phi(p)$ to yield $a^{p-1}(p-1)$!.
- As $a \Phi(p)=\Phi(p)$, we have

$$
a^{p-1}(p-1)!\equiv(p-1)!\bmod p .
$$

- Finally, $a^{p-1}=1 \bmod p$ because $p \nmid(p-1)!$.

The Fermat-Euler Theorem ${ }^{\text {a }}$

Corollary 63 For all $a \in \Phi(n), a^{\phi(n)}=1 \bmod n$.

- The proof is similar to that of Lemma 62 (p. 505).
- Consider $a \Phi(n)=\{a m \bmod n: m \in \Phi(n)\}$.
- $a \Phi(n)=\Phi(n)$.
$-a \Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and $n-1$ and relatively prime to n.
- Suppose $a m \equiv a m^{\prime} \bmod n$ for $m^{\prime}<m<n$, where $m, m^{\prime} \in \Phi(n)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod n$, and n divides a or $m-m^{\prime}$, which is impossible.

[^14]
The Proof (concluded) ${ }^{\text {a }}$

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a \Phi(n)$ to yield $a^{\phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a \Phi(n)=\Phi(n)$,

$$
\prod_{m \in \Phi(n)} m \equiv a^{\phi(n)}\left(\prod_{m \in \Phi(n)} m\right) \bmod n .
$$

- Finally, $a^{\phi(n)}=1 \bmod n$ because $n \backslash \prod_{m \in \Phi(n)} m$.

[^15]
An Example

- As $12=2^{2} \times 3$,

$$
\phi(12)=12 \times\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4 .
$$

- In fact, $\Phi(12)=\{1,5,7,11\}$.
- For example,

$$
5^{4}=625=1 \bmod 12 .
$$

Exponents

- The exponent of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^{+}$such that

$$
m^{k}=1 \bmod p
$$

- Every residue $s \in \Phi(p)$ has an exponent.
$-1, s, s^{2}, s^{3}, \ldots$ eventually repeats itself modulo p, say $s^{i} \equiv s^{j} \bmod p, i<j$, which means $s^{j-i}=1 \bmod p$.
- If the exponent of m is k and $m^{\ell}=1 \bmod p$, then $k \mid \ell$.
- Otherwise, $\ell=q k+a$ for $0<a<k$, and $m^{\ell}=m^{q k+a} \equiv m^{a} \equiv 1 \bmod p$, a contradiction.

Lemma 64 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem (p. 505), all exponents divide $p-1$.
- A primitive root of p is thus a number with exponent $p-1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)=\{1,2, \ldots, p-1\}$ that have exponent k.
- We already knew that $R(k)=0$ for $k X(p-1)$.
- As every number has an exponent,

$$
\begin{equation*}
\sum_{k \mid(p-1)} R(k)=p-1 . \tag{7}
\end{equation*}
$$

Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent k satisfies $x^{k}=1 \bmod p$.
- By Lemma 64 (p. 510) there are at most k residues of exponent k, i.e., $R(k) \leq k$.
- Let s be a residue of exponent k.
- $1, s, s^{2}, \ldots, s^{k-1}$ are distinct modulo p.
- Otherwise, $s^{i} \equiv s^{j} \bmod p$ with $i<j$.
- Then $s^{j-i}=1 \bmod p$ with $j-i<k$, a contradiction.
- As all these k distinct numbers satisfy $x^{k}=1 \bmod p$, they comprise all the solutions of $x^{k}=1 \bmod p$.

Size of $R(k)$ (continued)

- But do all of them have exponent k (i.e., $R(k)=k$)?
- And if not (i.e., $R(k)<k$), how many of them do?
- Pick s^{ℓ}, where $\ell<k$.
- Suppose $\ell \notin \Phi(k)$ with $\operatorname{gcd}(\ell, k)=d>1$.
- Then

$$
\left(s^{\ell}\right)^{k / d}=\left(s^{k}\right)^{\ell / d}=1 \bmod p .
$$

- Therefore, s^{ℓ} has exponent at most $k / d<k$.
- So s^{ℓ} has exponent k only if $\ell \in \Phi(k)$.
- We conclude that

$$
R(k) \leq \phi(k) .
$$

Size of $R(k)$ (continued)

- Because all $p-1$ residues have an exponent,

$$
p-1=\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1
$$

by Lemma 61 (p. 503) and Eq. (7) (p. 511).

- Hence

$$
R(k)= \begin{cases}\phi(k), & \text { when } k \mid(p-1), \\ 0, & \text { otherwise }\end{cases}
$$

Size of $R(k)$ (concluded)

- Incidentally, we have shown that

$$
g^{\ell}, \quad \text { where } \ell \in \Phi(k)
$$

are all the numbers with exponent k if g has exponent k.

- As $R(p-1)=\phi(p-1)>0, p$ has primitive roots.
- This proves one direction of Theorem 56 (p. 488).

A Few Calculations

- Let $p=13$.
- From p. $507 \phi(p-1)=4$.
- Hence $R(12)=4$.
- Indeed, there are 4 primitive roots of p.
- As

$$
\Phi(p-1)=\{1,5,7,11\},
$$

the primitive roots are

$$
g^{1}, g^{5}, g^{7}, g^{11}
$$

where g is any primitive root.

[^0]: ${ }^{\text {a }}$ Khachiyan (1979).

[^1]: ${ }^{\text {a }}$ Karp (1972); Borosh \& Treybig (1976); Papadimitriou (1981).

[^2]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 25, 2021.
 ${ }^{\text {b }}$ Lenstra (1983).

[^3]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 29, 2003.

[^4]: ${ }^{\text {a Recall Proposition }} 41$ (p. 346).
 ${ }^{\mathrm{b}}$ To be proved in Proposition 54 (p. 478).

[^5]: ${ }^{a}$ Recall Proposition 41 (p. 346).

[^6]: ${ }^{\text {a }}$ Recall p. 209.

[^7]: ${ }^{a}$ Carl Friedrich Gauss.

[^8]: ${ }^{\text {a }}$ François Edouard Anatole Lucas (1842-1891); Derrick Henry Lehmer (1905-1991).
 ${ }^{\mathrm{b}}$ See pp. 499ff.

[^9]: ${ }^{a}$ Why?

[^10]: ${ }^{\text {a }}$ Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on November 24, 2015.

[^11]: ${ }^{\text {a }}$ Leonhard Euler (1707-1783).
 ${ }^{\mathrm{b}} Z_{n}^{*}$ is an alternative notation.

[^12]: ${ }^{\text {a }}$ See p. 224 of the textbook.
 ${ }^{\mathrm{b}}$ Consult any textbooks on discrete mathematics.

[^13]: ${ }^{\text {a }}$ Pierre de Fermat (1601-1665).

[^14]: ${ }^{\text {a }}$ Proof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

[^15]: ${ }^{\text {a Some typographical errors corrected by Mr. Jung-Ying Chen }}$ (D95723006) on November 18, 2008.

