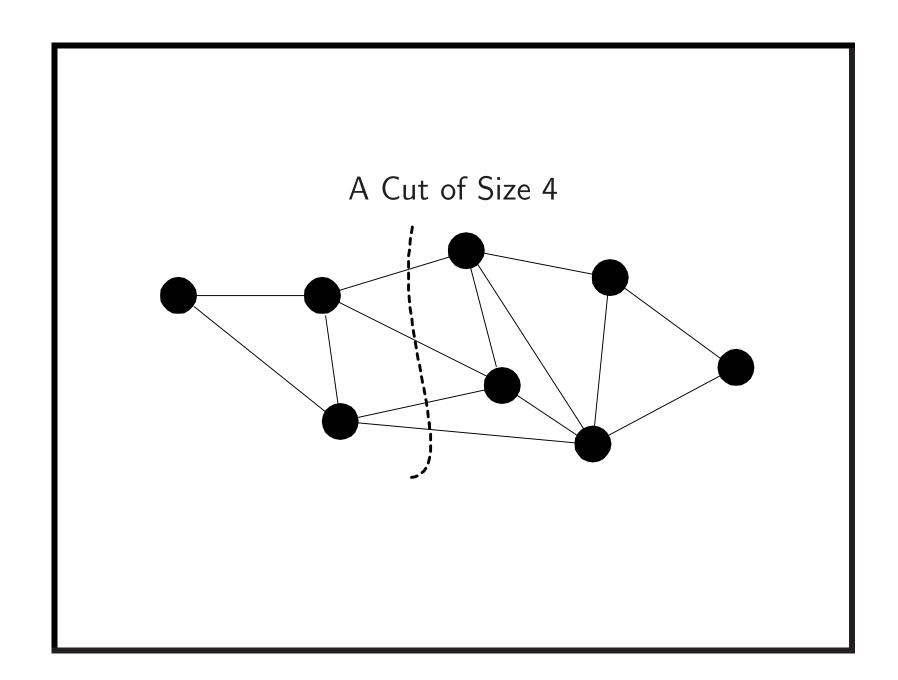
MIN CUT and MAX CUT

- A **cut** in an undirected graph G = (V, E) is a partition of the nodes into two nonempty sets S and V S.
- The size of a cut (S, V S) is the number of edges between S and V S.
- MIN CUT asks for the minimum cut size.
- MIN CUT \in P by the maxflow algorithm.^a
- MAX CUT asks if there is a cut of size at least K.
 - -K is part of the input.

^aFord & Fulkerson (1962); Orlin (2012) improves the running time to $O(|V| \cdot |E|)$.



MIN CUT and MAX CUT (concluded)

- MAX CUT has applications in circuit layout.
 - The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size.^a

^aRaspaud, Sýkora, & Vrťo (1995); Mak & Wong (2000).

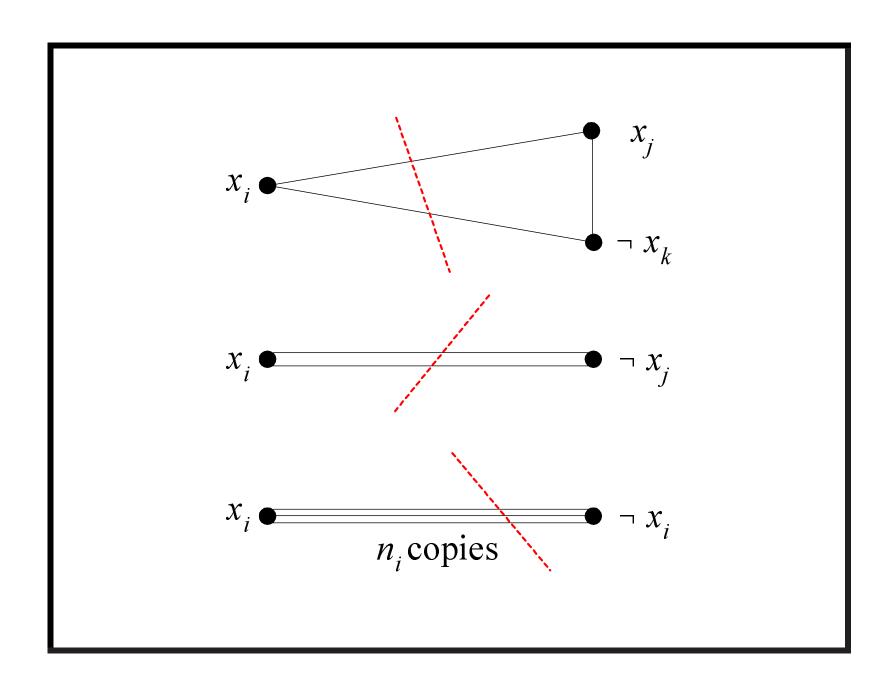
MAX CUT Is NP-Complete^a

- We will reduce NAESAT to MAX CUT.
- Given a 3SAT formula ϕ with m clauses, we shall construct a graph G = (V, E) and a goal K.
- Furthermore, there is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have *multiple* edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

^aKarp (1972); Garey, Johnson, & Stockmeyer (1976). MAX CUT remains NP-complete even for graphs with maximum degree 3 (Makedon, Papadimitriou, & Sudborough, 1985).

The Proof

- Suppose ϕ 's m clauses are C_1, C_2, \ldots, C_m .
- The boolean variables are x_1, x_2, \ldots, x_n .
- G has 2n nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
 - Call it a degenerate triangle.



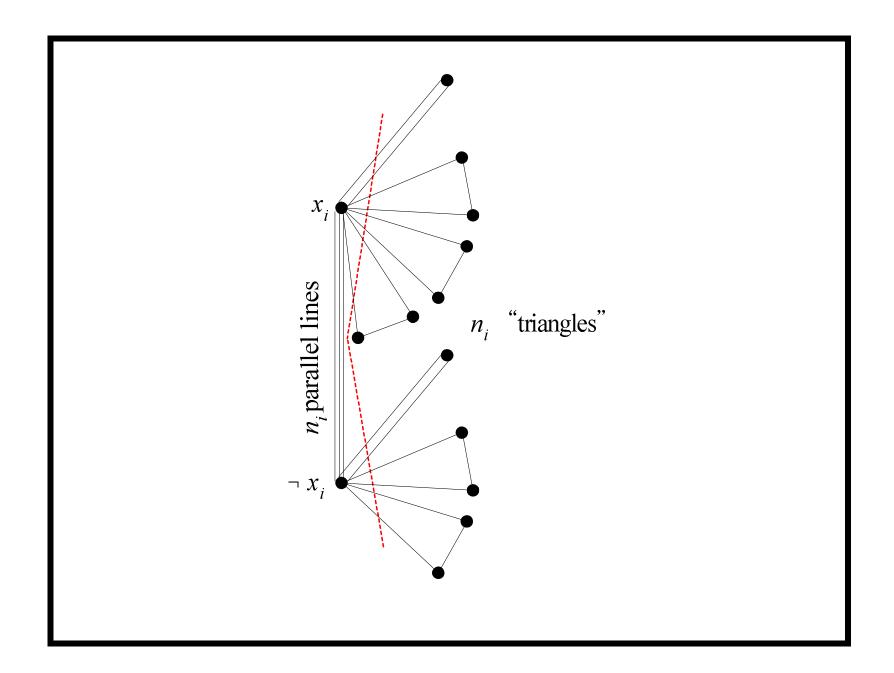
- Assume ϕ has no clauses with only one distinct literal (why?).
- Ignore clauses containing two opposite literals x_i and $\neg x_i$ (why?).
- For each variable x_i , add n_i copies of edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ .
- Note that

$$\sum_{i=1}^{n} n_i = 3m_i$$

- The summation counts the number of literals in ϕ .

- Set K = 5m.
- Suppose there is a cut (S, V S) of size 5m or more.
- A clause (a triangle, i.e.) contributes at most 2 to a cut however you split it.^a
- Suppose some x_i and $\neg x_i$ are on the same side of the cut.
- They together contribute at most $2n_i$ edges to the cut.
 - They appear in at most n_i different clauses.
 - A clause contributes at most 2 to a cut.

^aSee p. 404.

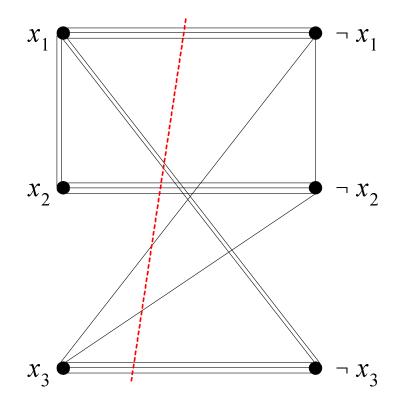


- Either x_i or $\neg x_i$ contributes at most n_i to the cut by the pigeonhole principle.
- Changing the side of that literal does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals x_i and $\neg x_i$ is $\sum_{i=1}^n n_i$.
- But we knew $\sum_{i=1}^{n} n_i = 3m$.

The Proof (concluded)

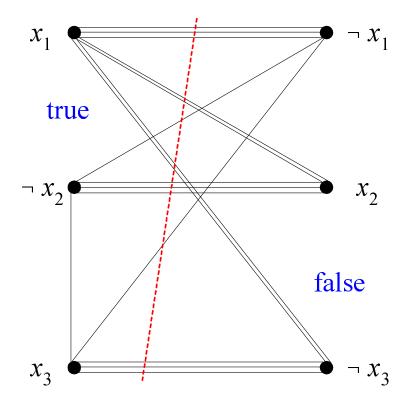
- The remaining $K 3m \ge 2m$ edges in the cut must come from the m triangles that correspond to clauses.
- Each can contribute at most 2 to the cut.
- So all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

This Cut Does Not Meet the Goal $K=5\times 3=15$



- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3).$
- The cut size is 13 < 15.

This Cut Meets the Goal $K = 5 \times 3 = 15$



- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3).$
- The cut size is now 15.

Remarks

- We had proved that MAX CUT is NP-complete for multigraphs.
- How about proving the same thing for simple graphs?^a
- How to modify the proof to reduce 4SAT to MAX CUT?b
- All NP-complete problems are mutually reducible by definition.^c
 - So they are equally hard in this sense.^d

^aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.

^bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.

^cContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

^dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

MAX BISECTION

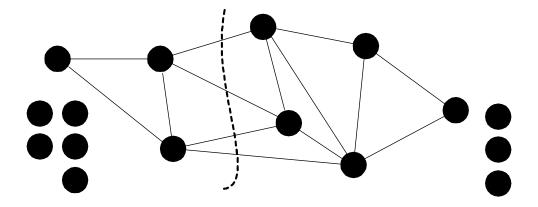
- MAX CUT becomes MAX BISECTION if we require that |S| = |V S|.
- It has many applications, especially in VLSI layout.

MAX BISECTION Is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add |V| = n isolated nodes to G to yield G'.
- G' has 2n nodes.
- G''s goal K is identical to G's
 - As the new nodes have no edges, they contribute 0 to the cut.
- This completes the reduction.

The Proof (concluded)

- A cut (S, V S) can be made into a bisection by allocating the new nodes between S and V S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.



BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size $at \ most \ K$ (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH is NP-complete.
- We reduce MAX BISECTION to BISECTION WIDTH.
- Given a graph G = (V, E), where |V| is even, we generate the complement of G.
- Given a goal of K, we generate a goal of $n^2 K$.

^aRecall p. 398.

[|]b|V| = 2n.

The Proof (concluded)

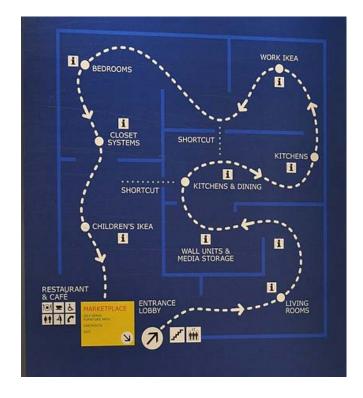
- To show the reduction works, simply notice the following easily verifiable claims.
 - A graph G = (V, E), where |V| = 2n, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 K$.

HAMILTONIAN PATH Is NP-Complete^a

Theorem 48 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

^aKarp (1972).

A Hamiltonian Path at IKEA, Covina, California?



Random HAMILTONIAN CYCLE

- Consider a random graph where each pair of nodes are connected by an edge independently with probability 1/2.
- Then it contains a Hamiltonian cycle with probability 1 o(1).^a

^aFrieze & Reed (1998).

TSP (D) Is NP-Complete

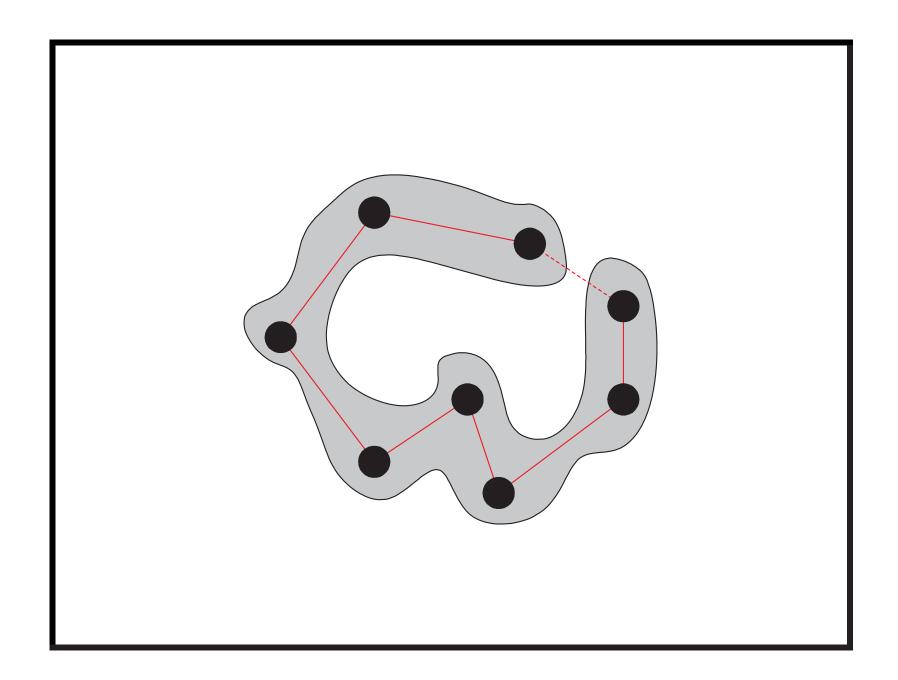
Corollary 49 TSP (D) is NP-complete.

- We will reduce HAMILTONIAN PATH to TSP (D).
- Consider a graph G with n nodes.
- Create a weighted complete graph G' with the same nodes as G.
- Set $d_{ij} = 1$ on G' if $[i, j] \in G$ and $d_{ij} = 2$ on G' if $[i, j] \notin G$.
 - Note that G' is a complete graph.
- Set the budget B = n + 1.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G' has a tour of distance at most n+1.
- Then that tour on G' must contain at most one edge with weight 2.
- If a tour on G' contains one edge with weight 2, remove that edge to arrive at a Hamiltonian path for G.
- Suppose a tour on G' contains no edge with weight 2.
- Remove any edge to arrive at a Hamiltonian path for G.

^aA tour is a cycle, not a path.



TSP (D) Is NP-Complete (concluded)

- On the other hand, suppose G has a Hamiltonian path.
- There is a tour on G' containing at most one edge with weight 2.
 - Start with a Hamiltonian path.
 - Insert the edge connecting the beginning and ending nodes to yield a tour.
- The total cost is then at most (n-1)+2=n+1=B.
- We conclude that there is a tour of length B or less on G' if and only if G has a Hamiltonian path.

Random TSP

- Suppose each distance d_{ij} is picked uniformly and independently from the interval [0, 1].
- Then the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β .^a
- In fact, the total distance of the shortest tour deviates from the mean by more than t with probability at most $e^{-t^2/(4n)}!^b$

^aBeardwood, Halton, & Hammersley (1959).

^bRhee & Talagrand (1987); Dubhashi & Panconesi (2012).

Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color?^a
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-coloring is NP-complete for $k \geq 3$ (why?).
- EXACT-k-COLORING asks if the nodes of a graph can be colored using $exactly\ k$ colors.
- It remains NP-complete for $k \geq 3$ (why?).

ak is not part of the input; k is part of the problem statement.

3-COLORING Is NP-Complete^a

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We now construct a graph that can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

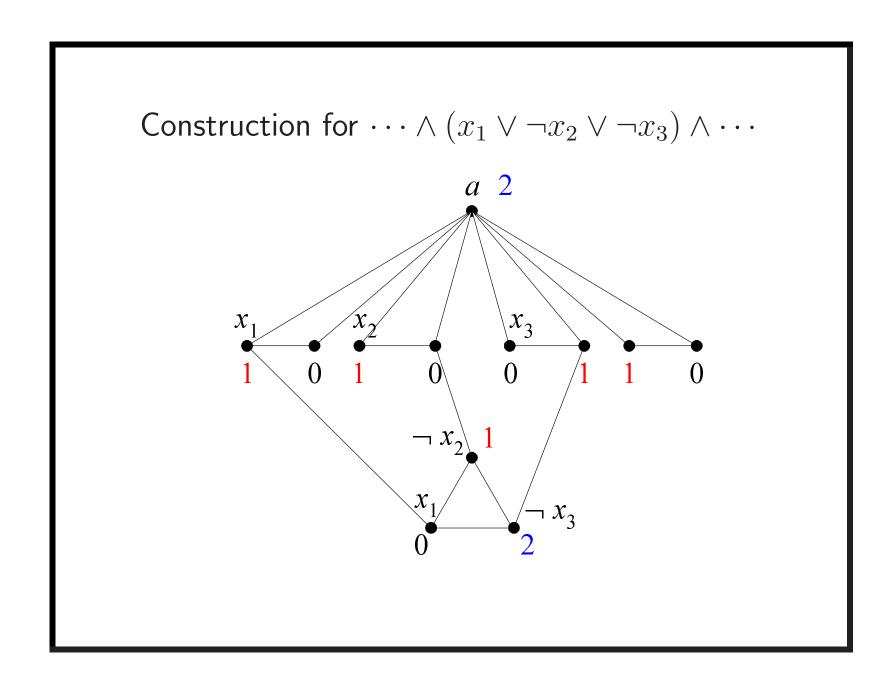
^aKarp (1972).

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \vee c_{i2} \vee c_{i3})$ is also represented by a triangle

$$[c_{i1}, c_{i2}, c_{i3}].$$

- Node c_{ij} and a node in an a-triangle $[a, x_k, \neg x_k]$ with the same label represent distinct nodes.
- There is an edge between literal c_{ij} in the a-triangle and the node representing the jth literal of C_i .

^aAlternative proof: There is an edge between $\neg c_{ij}$ and the node that represents the *j*th literal of C_i . Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.



Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

- Treat 1 as true and 0 as false.^a
 - We are dealing with the a-triangles here, not the clause triangles yet.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.
 - Here, treat 0 as true and 1 as false.
 - Ignore 2's truth value as it is irrelevant now.

^aThe opposite also works.

Suppose the clauses are NAE-satisfiable.

- For each *a*-triangle:
 - Color node a with color 2.
 - Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).

- For each clause triangle:
 - Pick any two literals with opposite truth values.^a
 - Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
 - Color the remaining node with color 2 regardless of its truth value.

^aBreak ties arbitrarily.

The Proof (concluded)

- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.

More on 3-COLORING and the Chromatic Number

- 3-COLORING remains NP-complete for planar graphs.^a
- Assume G is 3-colorable.
- There is a classic algorithm that finds a 3-coloring in time $O(3^{n/3}) = 1.4422^n$.
- It can be improved to $O(1.3289^n)$.c

^aGarey, Johnson, & Stockmeyer (1976); Dailey (1980).

^bLawler (1976).

^cBeigel & Eppstein (2000).

More on 3-COLORING and the Chromatic Number (concluded)

- The **chromatic number** $\chi(G)$ is the smallest number of colors needed to color a graph G.
- There is an algorithm to find $\chi(G)$ in time $O((4/3)^{n/3}) = 2.4422^n$.^a
- It can be improved to $O((4/3 + 3^{4/3}/4)^n) = O(2.4150^n)^b$ and $2^n n^{O(1)}$.
- Computing $\chi(G)$ cannot be easier than 3-COLORING.^d

^aLawler (1976).

^bEppstein (2003).

^cKoivisto (2006).

 $^{^{\}rm d} {\rm Contributed}$ by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.

TRIPARTITE MATCHING^a (3DM)

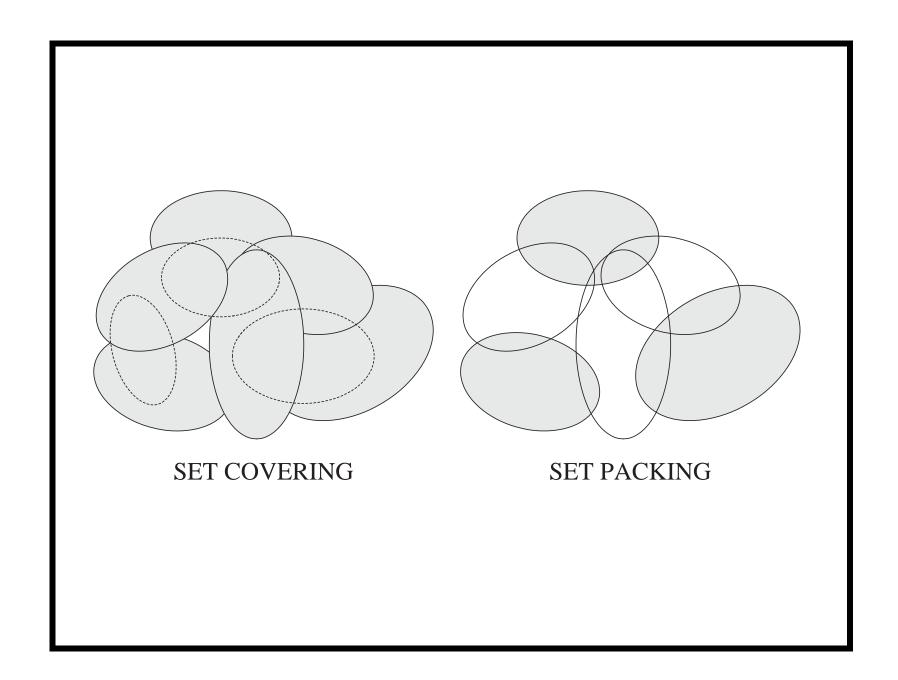
- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 50 (Karp, 1972) TRIPARTITE MATCHING is NP-complete.

^aPrincess Diana (November 20, 1995), "There were three of us in this marriage, so it was a bit crowded."

Related Problems

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- EXACT COVER asks if there are disjoint sets in F whose union is U.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS (X3C) asks if there are m sets in F that are disjoint (so have U as their union).



Related Problems (concluded)

Corollary 51 (Karp, 1972) SET COVERING, SET PACKING, EXACT COVER, and X3C are all NP-complete.

- Does Set Covering remain NP-complete when $|S_i| = 3$?
- SET COVERING is used to prove that the influence maximization problem in social networks is NP-complete.^b

^aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015.

^bKempe, Kleinberg, & Tardos (2003).

KNAPSACK

- There is a set of *n* items.
- Item i has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- We are given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$.
- KNAPSACK asks if there exists a subset

$$I \subseteq \{1, 2, \dots, n\}$$

such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i \geq K$.

- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete^a

- KNAPSACK \in NP: Guess an I and check the constraints.
- We shall reduce X3C^b to KNAPSACK, in which $v_i = w_i$ for all i and K = W.
- The simplified KNAPSACK now asks if a subset of v_1, v_2, \ldots, v_n adds up to exactly K.
 - Picture yourself as a radio DJ.

^aKarp (1972). It can be solved in time $O(2^{n/2})$ with space $O(2^{n/4})$ (Schroeppel & Shamir, 1981; Vyskoč, 1987).

^bEXACT COVER BY 3-SETS.

^cThis important problem is called SUBSET SUM or 0-1 KNAPSACK. The range of our reduction will be a proper subset of SUBSET SUM.

- The primary differences between the two problems are:^a
 - Sets vs. numbers.
 - Union vs. addition.
- We are given a family $F = \{ S_1, S_2, \dots, S_n \}$ of size-3 subsets of $U = \{ 1, 2, \dots, 3m \}$.
- x3c asks if there are m sets in F that cover the set U.
 - These m subsets are disjoint by necessity.

^aThanks to a lively class discussion on November 16, 2010.

- Think of a set as a bit vector^a in $\{0,1\}^{3m}$.
 - Assume m = 3.
 - 110010000 means the set $\{1, 2, 5\}$.
 - 001100010 means the set $\{3,4,8\}$.
- Our goal is

$$\overbrace{11\cdots 1}^{3m}$$

^aAlso called characteristic vector.

- A bit vector can also be seen as a binary number.
- Set union resembles addition:

001100010

+ 110010000

111110010

which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.

• Trouble occurs when there is *carry*:

01000000

+ 010000000

10000000

• This denotes the wrong set $\{1\}$, not the correct set $\{2\}$.

• Or consider

$$\begin{array}{c} 001100010 \\ + 001110000 \\ \hline 011010010 \end{array}$$

• This denotes the wrong set $\{2,3,5,8\}$, not the correct set $\{3,4,5,8\}$.^a

^aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.

- Carry may also lead to a situation where we obtain our solution $\overbrace{11\cdots 1}^{3m}$ with more than m sets in F.
- For example, with m = 3,

 $000100010 \\ 001110000 \\ 101100000 \\ + 000001101 \\ \hline 111111111$

• But the correct union result, $\{1, 3, 4, 5, 6, 7, 8, 9\}$, is not an exact cover.

- And it uses 4 sets instead of the required m = 3.^a
- To fix this problem, we enlarge the base just enough so that there are no carries.^b
- Because there are n vectors in total, we change the base from 2 to n + 1.
- Every positive integer N has a unique expression in base b: There are b-adic digits $0 \le d_i < b$ such that

$$N = \sum_{i=0}^{k} d_i b^i, \quad d_k \neq 0.$$

^aThanks to a lively class discussion on November 20, 2002.

^bYou cannot simply map ∪ to ∨ because knapsack requires + not ∨!

• Set v_i to be the integer corresponding to the bit vector^a encoding S_i :

$$v_i \stackrel{\Delta}{=} \sum_{j \in S_i} 1 \times (n+1)^{3m-j}$$
 (base $n+1$). (4)

• Set

$$K \stackrel{\Delta}{=} \sum_{j=0}^{3m-1} 1 \times (n+1)^j = \overbrace{11 \cdots 1}^{3m}$$
 (base $n+1$).

^aThis bit vector contains three 1s.

• Suppose there is a set I such that

$$\sum_{i \in I} v_i = \overbrace{11 \cdots 1}^{3m} \quad \text{(base } n+1\text{)}.$$

- Then every position must be contributed by exactly one v_i and |I| = m.
- As a result, every member of U is covered by exactly one S_i with $i \in I$.

• For example, the case on p. 448 becomes

000100010 001110000 101100000 000001101

102311111

in base n + 1 = 6.

• As desired, it no longer meets the goal.

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $I = \{1, 2, ..., m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11 \cdots 1}^{3m}.$$

- It is important to note that the meaning of addition (+) is independent of the base.^a
 - It is just regular addition.
 - But the same S_i yields different integers v_i in Eq. (4) on p. 450 under different bases.

^aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

The Proof (concluded)

• On the other hand, suppose there exists an I such that

$$\sum_{i \in I} v_i = \overbrace{1 \, 1 \cdots 1}^{3m}$$

in base n+1.

• The no-carry property implies that |I| = m and

$$\{S_i:i\in I\}$$

is an exact cover.

SUBSET SUM^a Is NP-Complete

• The proof actually proves:

Corollary 52 Subset sum is NP-complete.

- The proof can be slightly revised to reduce EXACT COVER to SUBSET SUM.
- The proof would *not* work if you used m + 1 as the base.^b

^aRecall p. 442.

^bContributed by Mr. Yuchen Wang (R08922157) on November 19, 2020.

An Example

• Let m = 3, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and

$$S_1 = \{1, 3, 4\},$$
 $S_2 = \{2, 3, 4\},$
 $S_3 = \{2, 5, 6\},$
 $S_4 = \{6, 7, 8\},$
 $S_5 = \{7, 8, 9\}.$

- Note that n = 5, as there are 5 S_i 's.
- So the base is n+1=6.

An Example (continued)

• Our reduction produces

$$K = \sum_{j=0}^{3\times3-1} 6^{j} = 11 \cdots 1_{6} = 2015539_{10},$$

$$v_{1} = 101100000_{6} = 1734048_{10},$$

$$v_{2} = 011100000_{6} = 334368_{10},$$

$$v_{3} = 010011000_{6} = 281448_{10},$$

$$v_{4} = 000001110_{6} = 258_{10},$$

$$v_{5} = 000000111_{6} = 43_{10}.$$

An Example (concluded)

• Note $v_1 + v_3 + v_5 = K$ because

101100000

010011000

+ 000000111

111111111

• Indeed,

$$S_1 \cup S_3 \cup S_5 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\},\$$

an exact cover by 3-sets.

BIN PACKING

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 53 BIN PACKING is NP-complete.

BIN PACKING (concluded)

- But suppose a_1, a_2, \ldots, a_N are randomly distributed between 0 and 1.
- Let B be the smallest number of unit-capacity bins capable of holding them.
- Then B can deviate from its average by more than t with probability at most $2e^{-2t^2/N}$.

^aRhee & Talagrand (1987); Dubhashi & Panconesi (2012).