Reductions and Completeness

It is unworthy of excellent men to lose hours like slaves in the labor of computation. — Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of that lowly section of the university known as the Sheffield Scientific School.F. Scott Fitzgerald (1920), "May Day"

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if:
 - There is a transformation R which for every problem instance x of B yields a problem instance R(x) of A.^a
 - The answer to " $R(x) \in A$?" is the same as the answer to " $x \in B$?"
 - R is easy to compute.
- We say problem A is at least as hard as^b problem B if B reduces to A.

^aSee also p. 156. ^bOr simply "harder than" for brevity.

Solving problem B by calling the algorithm for problem A once and without further processing its answer.^a

^aMore general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.

Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.^a
 - So if B is hard to solve, A must be hard, too!

^aThanks to a lively class discussion on October 13, 2009.

$\mathsf{Comments}^{\mathrm{a}}$

- Suppose B reduces to A via a transformation $R.^{b}$
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.^c
 - Some instances of A may never appear in R's range.
- But x must be an *arbitrary* instance for B.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

^bSometimes, we say "B can be reduced to A."

 $^{c}R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Is "Reduction" a Confusing Choice of Word?^a

- If B reduces to A, doesn't that intuitively make A smaller and simpler?
- But our definition means the opposite.
- Our definition says in this case B is a special case of A.^b
- Hence A is harder.

^aMoore & Mertens (2011). ^bSee also p. 157.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .

Reduction between Languages (concluded)

- Note that by Theorem 24 (p. 250), R runs in polynomial time.
 - In most cases, a polynomial-time R suffices for proofs.^a
- Suppose R is a reduction from L_1 to L_2 .
- Then solving " $R(x) \in L_2$?" is an algorithm for solving " $x \in L_1$?"^b

^aIn fact, unless stated otherwise, we will only require that the reduction R run in polynomial time. It is often called a **polynomial-time many-one reduction**.

^bOf course, it may not be the most efficient one.

A Paradox?

- Degree of difficulty is not defined in terms of *absolute* complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$ if B reduces to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem *requiring* n^{99} steps be reducible to a problem solvable in n^3 steps?

Paradox Resolved

- The so-called contradiction is the result of flawed logic.
- Suppose we solve the problem " $x \in B$?" via " $R(x) \in A$?"
- We must consider the time spent by R(x) and its length |R(x)|:

- Because R(x) (not x) is solved by A.

HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, \ldots, n\}$ such that
 - $-\pi(i) = j$ means the *i*th position is occupied by node *j*.

$$- (\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$$

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF^a R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path.
- R(G) has n^2 boolean variables $x_{ij}, 1 \le i, j \le n$.
- x_{ij} means

the *i*th position in the Hamiltonian path is occupied by node j.

• Our reduction will produce clauses.

^aRemember that R does not have to be onto.

The Clauses of R(G) and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj} (\equiv \neg (x_{ij} \land x_{kj}))$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each *i*.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik} (\equiv \neg (x_{ij} \land x_{ik}))$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j} (\equiv \neg (x_{k,i} \land x_{k+1,j}))$ for all $(i,j) \notin E$ and $k = 1, 2, \dots, n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1st and 2nd types of clauses, for each node j there is a unique position i such that $T \models x_{ij}$.
- From the 3rd and 4th types of clauses, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- The 5th type of clauses furthermore guarantee that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- $\bullet\,$ Conversely, suppose G has a Hamiltonian path

 $(\pi(1),\pi(2),\ldots,\pi(n)),$

where π is a permutation.

• Clearly, the truth assignment

 $T(x_{ij}) =$ true if and only if $\pi(i) = j$

```
satisfies all clauses of R(G).
```

A Comment $^{\rm a}$

- An answer to "Is R(G) satisfiable?" answers the question "Is G Hamiltonian?"
- But a "yes" does not give a Hamiltonian path for G.
 Providing a witness is not a requirement of reduction.
- A "yes" to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.^a

^aFloyd (1962); Marshall (1962).

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
 - $-h_{ijk}$ with $1 \le i, j, k \le n$.
- g_{ijk} : There is a path from node *i* to node *j* without passing through a node bigger than *k*.
- h_{ijk} : There is a path from node *i* to node *j* passing through *k* but not any node bigger than *k*.
- Input gate $g_{ij0} =$ true if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates.
 - It is a monotone circuit.

Reduction of $\ensuremath{\operatorname{CIRCUIT}}$ sat to $\ensuremath{\operatorname{sat}}$

- Given a circuit C, we will construct a boolean expression R(C) such that R(C) is satisfiable if and only if C is.
 - R(C) will turn out to be a CNF.
 - R(C) is basically a depth-2 circuit; furthermore, each gate has out-degree 1.
- The variables of R(C) are those of C plus g for each gate g of C.
 - The g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge ed together by definition.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

- Meaning: g must be false to make R(C) true.
- g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.
 - Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (continued) g is a \lor gate with predecessor gates h and h': Add clauses $(\neg g \lor h \lor h')$, $(g \lor \neg h)$, and $(g \lor \neg h')$. • The conjunction of the above clauses is equivalent to $[g \Rightarrow (h \lor h')] \land [(h \lor h') \Rightarrow g]$ $\equiv g \Leftrightarrow (h \lor h').$

- g is a \wedge gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(g \lor \neg h \lor \neg h')$.
 - It is equivalent to

$$g \Leftrightarrow (h \wedge h').$$

The Clauses of R(C) (concluded)

g is the output gate: Add clause (g).

- Meaning: g must be true to make R(C) true.
- Note: If gate g feeds gates h_1, h_2, \ldots , then variable g appears in the clauses for h_1, h_2, \ldots in R(C).

An Example (continued)

- The result is a CNF.
- The CNF adds new variables to the circuit's original input variables.
- The CNF has size proportional to the circuit's number of gates.
- Had we used the idea on p. 219 for the reduction, the resulting formula may have an exponential length because of the copying.^a

^aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

An Example (concluded)

- But is R(C) valid if and only if C is?^a
- In general, no.
- For example, the circuit equivalent to the valid $x_1 \vee \neg x_1$ is turned into

 $(h_1 \Leftrightarrow x_1) \land (h_2 \Leftrightarrow \neg x_1) \land [g_1 \Leftrightarrow (h_1 \lor h_2)] \land (g_1).$

- This expression is clearly not valid.^b
- So the reduction preserves satisfiability but *not* validity.

^aContributed by Mr. Han-Ting Chen (R10922073) on October 21, 2021.

^bAssign false to g_1 , e.g.

Composition of Reductions

Proposition 28 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

• So reducibility is transitive.^a

^aSee Proposition 8.2 of the textbook for a proof.

$\mathsf{Completeness}^{\mathrm{a}}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a *maximal* element (the so-called *hardest* problem)?
- It is not obvious that there should be a maximal element.
 - Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Surprisingly, most of the complexity classes that we have seen so far have maximal elements!

^aPost (1944); Cook (1971); Levin (1973).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Most of the complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class.^a

^aSee also p. 169.

Hardness

- Let \mathcal{C} be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.^a

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Closedness under Reductions

- A class C is **closed under reductions** if whenever L is reducible to L' and $L' \in C$, then $L \in C$.
- It is easy to show that P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.
- E is not closed under reductions.^a

^aBalcázar, Díaz, & Gabarró (1988).

Complete Problems and Complexity Classes

Proposition 29 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is C-complete. Then C = C' if and only if $L \in C'$.

- Suppose $L \in \mathcal{C}'$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because \mathcal{C}' is closed under reductions, $A \in \mathcal{C}'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- As $\mathcal{C}' \subseteq \mathcal{C}$, we conclude that $\mathcal{C} = \mathcal{C}'$.

The Proof (concluded)

- On the other hand, suppose $\mathcal{C} = \mathcal{C}'$.
- As L is C-complete, $L \in C$.
- Thus, trivially, $L \in \mathcal{C}'$.

Two Important Corollaries

Proposition 29 implies the following.

Corollary 30 P = NP if and only if an NP-complete problem is in P.

Corollary 31 L = P if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes, Again **Proposition 32** Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then C = C'.

- All languages $A \in \mathcal{C}$ reduce to $L \in \mathcal{C}$ and $L \in \mathcal{C}'$.
- Since \mathcal{C}' is closed under reductions, $A \in \mathcal{C}'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- The proof for $\mathcal{C}' \subseteq \mathcal{C}$ is symmetric.

Complete Problems and Complexity Classes, Again (concluded)

Proposition 33 Let C be a complexity class. If L is C-complete and L is reducible to $L' \in C$, then L' is also C-complete.

- Every language $A \in \mathcal{C}$ reduces to L.
- By Proposition 28 (p. 301), A reduces to L'.

Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a |x|^k × |x|^k table, where |x|^k is the time bound.
 It is essentially a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^k 1$.
- Columns are positions in the string of M.
- The (i, j)th table entry represents the contents of position j of the string *after* i steps of computation.

Some Conventions To Simplify the Table

- *M* halts after at most $|x|^k 2$ steps.^a
- Assume a large enough k to make it true for $|x| \ge 2$.
- Pad the table with ⊔s so that each row has length |x|^k.
 The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ, then the (i, j)th entry is a new symbol σ_q.

^a $|x|^k - 3$ may be safer.

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q .
- Modify M so that the cursor starts not at ▷ but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright .
- So the first symbol in every row is a \triangleright and not a \triangleright_q .

Some Conventions To Simplify the Table (concluded)

- *M* will halt before the last row is reached.
- All subsequent rows will be identical to the row where *M* halts.
- *M* accepts *x* if and only if the $(|x|^k 1, j)$ th entry is "yes" for some position *j*.

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is

A P-Complete Problem

Theorem 34 (Ladner, 1975) CIRCUIT VALUE *is P-complete*.

- It is easy to see that CIRCUIT VALUE $\in P$.
- For any $L \in P$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true.
- Let M decide L in time n^k .
- Let T be the computation table of M on x.

- Recall that three out of T's 4 borders are known.
- So when i = 0, or j = 0, or $j = |x|^k 1$, the value of T_{ij} is known.
 - The *j*th symbol of x or \sqcup , $a \triangleright$, or $a \sqcup$, respectively.
- Consider other entries T_{ij} .

• T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$:

$$\begin{array}{c|cccc} T_{i-1,j-1} & T_{i-1,j} & T_{i-1,j+1} \\ & & T_{ij} \end{array}$$

- T_{ij} does not depend on any other entries!
- T_{ij} does not depend on i, j, or x either (given $T_{i-1,j-1}, T_{i-1,j}$, and $T_{i-1,j+1}$).
- The dependency is thus "local."

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma = \Sigma \cup \{ \sigma_q : \sigma \in \Sigma, q \in K \}.$
- Encode each symbol of Γ as an *m*-bit number,^a where

 $m = \lceil \log_2 |\Gamma| \rceil.$

^aCalled **state assignment** in circuit design.

- Let the *m*-bit binary string $S_{ij1}S_{ij2}\cdots S_{ijm}$ encode T_{ij} .
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{ij\ell}$, where

$$0 \le i \le n^k - 1,$$

$$0 \le j \le n^k - 1,$$

$$1 \le \ell \le m.$$

• Each bit $S_{ij\ell}$ depends on only 3m other bits:

$$T_{i-1,j-1}: \quad S_{i-1,j-1,1} \quad S_{i-1,j-1,2} \quad \cdots \quad S_{i-1,j-1,m}$$

$$T_{i-1,j}: \quad S_{i-1,j,1} \quad S_{i-1,j,2} \quad \cdots \quad S_{i-1,j,m}$$

$$T_{i-1,j+1}: \quad S_{i-1,j+1,1} \quad S_{i-1,j+1,2} \quad \cdots \quad S_{i-1,j+1,m}$$

• So truth values for the 3m bits determine $S_{ij\ell}$.

• This means there is a boolean function F_{ℓ} with 3m inputs such that

$$S_{ij\ell} = F_{\ell}(\overbrace{S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}}^{T_{i-1,j-1}}, \underbrace{F_{\ell}(\overbrace{S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}}^{T_{i-1,j}}, \underbrace{S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}}_{T_{i-1,j+1}}, \underbrace{F_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}}_{S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}}^{T_{i-1,j-1,1}})$$
for all $i, j > 0$ and $1 \le \ell \le m$.

- These F_{ℓ} 's depend only on M's specification, not on x, i, or j.
- Their sizes are constant.^a
- These boolean functions can be turned into boolean circuits (see p. 218).
- Compose these m circuits in parallel to obtain circuit C with 3m-bit inputs and m-bit outputs.

- Schematically, $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}) = T_{ij}$.^b

^aIt means independence of the input x. ^bC is like an ASIC (application-specific IC) chip.

The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme column borders.
- R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" appear at position $(|x|^k 1, 1)$.
- Encode "yes" as 1 and "no" as 0.

A Corollary

The construction in the above proof yields the following, more general result.

Corollary 35 If $L \in TIME(T(n))$, then a circuit with $O(T^2(n))$ gates can decide L.

MONOTONE CIRCUIT VALUE

- A **monotone** boolean circuit's output cannot change from true to false when one input changes from false to true.
- Monotone boolean circuits are hence less expressive than general circuits.
 - They can compute only *monotone* boolean functions.
- Monotone circuits do not contain \neg gates (prove it).
- MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied to monotone circuits.

${\rm MONOTONE}\ {\rm CIRCUIT}\ {\rm VALUE}\ Is\ P-Complete$

Despite their limitations, MONOTONE CIRCUIT VALUE is as hard as CIRCUIT VALUE.

Corollary 36 (Goldschlager, 1977) MONOTONE CIRCUIT VALUE *is P-complete.*

 Given any general circuit, "move the ¬'s downwards" using de Morgan's laws^a to yield a monotone circuit with the same output.

Theorem 37 (Goldschlager, 1977) PLANAR MONOTONE CIRCUIT VALUE *is P-complete*.

^aHow? Need to make sure no exponential blowup.

MAXIMUM FLOW Is P-Complete

Theorem 38 (Goldschlager, Shaw, & Staples, 1982) MAXIMUM FLOW *is P-complete*.