
Reductions and Completeness

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272

It is unworthy of excellent men

to lose hours like slaves

in the labor of computation.

— Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of

that lowly section of the university

known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if:

– There is a transformation R which for every problem

instance x of B yields a problem instance R(x) of A.a

– The answer to “R(x) ∈ A?” is the same as the

answer to “x ∈ B?”

– R is easy to compute.

• We say problem A is at least as hard asb problem B if B

reduces to A.

aSee also p. 156.
bOr simply “harder than” for brevity.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274

Reduction

x yes/noR(x)
R

algorithm
for A

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.a

aMore general reductions are possible, such as the Turing (1939) re-

duction and the Cook (1971) reduction.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275

Degrees of Difficulty (concluded)

• This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A

must be at least as hard.

– If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.a

– So if B is hard to solve, A must be hard, too!

aThanks to a lively class discussion on October 13, 2009.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276

Commentsa

• Suppose B reduces to A via a transformation R.b

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.c

– Some instances of A may never appear in R’s range.

• But x must be an arbitrary instance for B.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bSometimes, we say “B can be reduced to A.”
cR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 277

Is “Reduction” a Confusing Choice of Word?a

• If B reduces to A, doesn’t that intuitively make A

smaller and simpler?

• But our definition means the opposite.

• Our definition says in this case B is a special case of A.b

• Hence A is harder.

aMoore & Mertens (2011).
bSee also p. 157.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 279

Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 250), R runs in polynomial

time.

– In most cases, a polynomial-time R suffices for

proofs.a

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2?” is an algorithm for solving

“x ∈ L1?”
b

aIn fact, unless stated otherwise, we will only require that the reduc-

tion R run in polynomial time. It is often called a polynomial-time

many-one reduction.
bOf course, it may not be the most efficient one.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280

A Paradox?

• Degree of difficulty is not defined in terms of absolute

complexity.

• So a language B ∈ TIME(n99) may be “easier” than a

language A ∈ TIME(n3) if B reduces to A.

• But isn’t this a contradiction if the best algorithm for B

requires n99 steps?

• That is, how can a problem requiring n99 steps be

reducible to a problem solvable in n3 steps?

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281

Paradox Resolved

• The so-called contradiction is the result of flawed logic.

• Suppose we solve the problem “x ∈ B?” via “R(x) ∈ A?”

• We must consider the time spent by R(x) and its length

|R(x) |:
– Because R(x) (not x) is solved by A.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 282

hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i+ 1)) ∈ G for i = 1, 2, . . . , n− 1.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 283

hamiltonian path (concluded)

• So ⎛
⎝ 1 2 · · · n

π(1) π(2) · · · π(n)

⎞
⎠ .

• hamiltonian path asks if a graph has a Hamiltonian

path.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 284

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNFa R(G) such

that R(G) is satisfiable if and only if G has a

Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is

occupied by node j.

• Our reduction will produce clauses.

aRemember that R does not have to be onto.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 285

A Hamiltonian Path

1

2
3

4

5
6

78
9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1;

π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5, π(5) = 3, π(6) =

9, π(7) = 6, π(8) = 8, π(9) = 7.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj(≡ ¬(xij ∧ xkj)) for all i, j, k with i �= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik(≡ ¬(xij ∧ xik)) for all i, j, k with j �= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j(≡ ¬(xk,i ∧ xk+1,j)) for all (i, j) �∈ E and

k = 1, 2, . . . , n− 1.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 287

The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From the 1st and 2nd types of clauses, for each node j

there is a unique position i such that T |= xij .

• From the 3rd and 4th types of clauses, for each position

i there is a unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 288

The Proof (concluded)

• The 5th type of clauses furthermore guarantee that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 289

A Commenta

• An answer to “Is R(G) satisfiable?” answers the

question “Is G Hamiltonian?”

• But a “yes” does not give a Hamiltonian path for G.

– Providing a witness is not a requirement of reduction.

• A “yes” to “Is R(G) satisfiable?” plus a satisfying truth

assignment does provide us with a Hamiltonian path for

G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 290

Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V,E), we shall construct a

variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.a

aFloyd (1962); Marshall (1962).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 291

The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without

passing through a node bigger than k.

• hijk: There is a path from node i to node j passing

through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292

The Construction

• hijk is an and gate with predecessors gi,k,k−1 and

gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,

where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates.

– It is a monotone circuit.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 293

Reduction of circuit sat to sat

• Given a circuit C, we will construct a boolean expression

R(C) such that R(C) is satisfiable if and only if C is.

– R(C) will turn out to be a CNF.

– R(C) is basically a depth-2 circuit; furthermore, each

gate has out-degree 1.

• The variables of R(C) are those of C plus g for each

gate g of C.

– The g’s propagate the truth values for the CNF.

• Each gate of C will be turned into equivalent clauses.

• Recall that clauses are ∧ed together by definition.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 294

The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).
• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).
• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses

(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 295

The Clauses of R(C) (continued)

g is a ∨ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h ∨ h′), (g ∨ ¬h), and (g ∨ ¬h′).

• The conjunction of the above clauses is equivalent to

[g ⇒ (h ∨ h′)] ∧ [(h ∨ h′) ⇒ g]

≡ g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h), (¬g ∨ h′), and (g ∨ ¬h ∨ ¬h′).

• It is equivalent to

g ⇔ (h ∧ h′).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 296

The Clauses of R(C) (concluded)

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

• Note: If gate g feeds gates h1, h2, . . ., then variable g

appears in the clauses for h1, h2, . . . in R(C).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 297

An Example

∧

�
�

�
�
�
�

∨

�
�

¬∧

∨

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

(h1 ⇔ x1) ∧ (h2 ⇔ x2) ∧ (h3 ⇔ x3) ∧ (h4 ⇔ x4)

∧ [g1 ⇔ (h1 ∧ h2)] ∧ [g2 ⇔ (h3 ∨ h4)]

∧ [g3 ⇔ (g1 ∧ g2)] ∧ (g4 ⇔ ¬g2)
∧ [g5 ⇔ (g3 ∨ g4)] ∧ g5.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 298

An Example (continued)

• The result is a CNF.

• The CNF adds new variables to the circuit’s original

input variables.

• The CNF has size proportional to the circuit’s number

of gates.

• Had we used the idea on p. 219 for the reduction, the

resulting formula may have an exponential length

because of the copying.a

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 299

An Example (concluded)

• But is R(C) valid if and only if C is?a

• In general, no.

• For example, the circuit equivalent to the valid x1 ∨ ¬x1

is turned into

(h1 ⇔ x1) ∧ (h2 ⇔ ¬x1) ∧ [g1 ⇔ (h1 ∨ h2)] ∧ (g1).

• This expression is clearly not valid.b

• So the reduction preserves satisfiability but not validity.

aContributed by Mr. Han-Ting Chen (R10922073) on October 21,

2021.
bAssign false to g1, e.g.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 300

Composition of Reductions

Proposition 28 If R12 is a reduction from L1 to L2 and

R23 is a reduction from L2 to L3, then the composition

R12 ◦R23 is a reduction from L1 to L3.

• So reducibility is transitive.a

aSee Proposition 8.2 of the textbook for a proof.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 301

Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element (the so-called hardest

problem)?

• It is not obvious that there should be a maximal

element.

– Many infinite structures (such as integers and real

numbers) do not have maximal elements.

• Surprisingly, most of the complexity classes that we have

seen so far have maximal elements!

aPost (1944); Cook (1971); Levin (1973).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 302

Completeness (concluded)

• Let C be a complexity class and L ∈ C.
• L is C-complete if every L′ ∈ C can be reduced to L.

– Most of the complexity classes we have seen so far

have complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest problems in the class.a

aSee also p. 169.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 303

Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.
• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 304

Illustration of Completeness and Hardness

A1

A2

A3

A4

L

A1

A2

A3

A4

L

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 305

Closedness under Reductions

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.
• It is easy to show that P, NP, coNP, L, NL, PSPACE,

and EXP are all closed under reductions.

• E is not closed under reductions.a

aBalcázar, Dı́az, & Gabarró (1988).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 306

Complete Problems and Complexity Classes

Proposition 29 Let C′ and C be two complexity classes

such that C′ ⊆ C. Assume C′ is closed under reductions and

L is C-complete. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 307

The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.
• Thus, trivially, L ∈ C′.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 308

Two Important Corollaries

Proposition 29 implies the following.

Corollary 30 P = NP if and only if an NP-complete

problem is in P.

Corollary 31 L = P if and only if a P-complete problem is

in L.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 309

Complete Problems and Complexity Classes, Again

Proposition 32 Let C′ and C be two complexity classes

closed under reductions. If L is complete for both C and C′,
then C = C′.

• All languages A ∈ C reduce to L ∈ C and L ∈ C′.

• Since C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• The proof for C′ ⊆ C is symmetric.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 310

Complete Problems and Complexity Classes, Again
(concluded)

Proposition 33 Let C be a complexity class. If L is

C-complete and L is reducible to L′ ∈ C, then L′ is also

C-complete.

• Every language A ∈ C reduces to L.

• By Proposition 28 (p. 301), A reduces to L′.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 311

Table of Computation

• Let M = (K,Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound.

– It is essentially a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 312

Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.a

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with �s so that each row has length |x |k.
– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.

a|x |k − 3 may be safer.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 313

Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 314

Some Conventions To Simplify the Table (concluded)

• M will halt before the last row is reached.

• All subsequent rows will be identical to the row where

M halts.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some position j.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 315

Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k
︷ ︸︸ ︷

�0s10001 � � · · · �

• A typical row looks like

| x |k
︷ ︸︸ ︷

�10100q01110100 � � · · · �

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 316

Comments (concluded)

• The last rows must look like

|x |k︷ ︸︸ ︷
� · · · “yes” · · · � or

| x |k︷ ︸︸ ︷
� · · · “no” · · · �

• Three out of the table’s 4 borders are known:

� � � � � � � �

�

�

�

�

� �

� �

...

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 317

A P-Complete Problem

Theorem 34 (Ladner, 1975) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 318

The Proof (continued)

• Recall that three out of T ’s 4 borders are known.

• So when i = 0, or j = 0, or j = |x |k − 1, the value of Tij

is known.

– The jth symbol of x or �, a �, or a �, respectively.
• Consider other entries Tij .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 319

The Proof (continued)

• Tij depends on only Ti−1,j−1, Ti−1,j, and Ti−1,j+1:

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Tij does not depend on any other entries!

• Tij does not depend on i, j, or x either (given Ti−1,j−1,

Ti−1,j, and Ti−1,j+1).

• The dependency is thus “local.”

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 320

The Proof (continued)

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K }.
• Encode each symbol of Γ as an m-bit number,a where

m = �log2 |Γ |�.
aCalled state assignment in circuit design.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 321

The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij.

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sij�, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ � ≤ m.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 322

The Proof (continued)

• Each bit Sij� depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j: Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So truth values for the 3m bits determine Sij�.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 323

The Proof (continued)

• This means there is a boolean function F� with 3m

inputs such that

Sij�

= F�(

Ti−1,j−1︷ ︸︸ ︷
Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Ti−1,j︷ ︸︸ ︷
Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Ti−1,j+1︷ ︸︸ ︷
Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m)

for all i, j > 0 and 1 ≤ � ≤ m.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 324

The Proof (continued)

• These F�’s depend only on M ’s specification, not on x, i,

or j.

• Their sizes are constant.a

• These boolean functions can be turned into boolean

circuits (see p. 218).

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j, Ti−1,j+1) = Tij .
b

aIt means independence of the input x.
bC is like an ASIC (application-specific IC) chip.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 325

Circuit C

Ti - 1,j - 1

Tij

Ti - 1,j + 1Ti - 1,j

C

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 326

The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

column borders.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” appear at position (|x |k − 1, 1).

• Encode “yes” as 1 and “no” as 0.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 327

The Computation Tableau and R(x)

� � � � � � � �

�

�

�

�

� � � � � �

� � � � � �

� � � � � �

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 328

A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 35 If L ∈ TIME(T (n)), then a circuit with

O(T 2(n)) gates can decide L.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 329

monotone circuit value

• A monotone boolean circuit’s output cannot change

from true to false when one input changes from false to

true.

• Monotone boolean circuits are hence less expressive than

general circuits.

– They can compute only monotone boolean functions.

• Monotone circuits do not contain ¬ gates (prove it).

• monotone circuit value is circuit value applied

to monotone circuits.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 330

monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as

hard as circuit value.

Corollary 36 (Goldschlager, 1977) monotone circuit

value is P-complete.

• Given any general circuit, “move the ¬’s downwards”
using de Morgan’s lawsa to yield a monotone circuit

with the same output.

Theorem 37 (Goldschlager, 1977) planar monotone

circuit value is P-complete.

aHow? Need to make sure no exponential blowup.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 331

maximum flow Is P-Complete

Theorem 38 (Goldschlager, Shaw, & Staples, 1982)

maximum flow is P-complete.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 332

