Relations between Complexity Classes

It is, I own, not uncommon to be wrong in theory and right in practice. — Edmund Burke (1729–1797), A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

> The problem with QE is it works in practice, but it doesn't work in theory. — Ben Bernanke (2014)

Proper (Complexity) Functions

- We say that f : N → N is a proper (complexity)
 function if the following hold:
 - -f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \Box^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - M_f uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is bounded by f(n).

^aThe textbook calls " \square " the quasi-blank symbol. The use of $M_f(x)$ will become clear in Proposition 17 (p. 231).

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^{g} .^a
- Nonproper functions when serving as the time bounds for complexity classes spoil "theory building."
 - For example, $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$ for some recursive function f (the **gap theorem**).^b
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aFor f(g(n)), we need to add $f(n) \ge n$.

^bTrakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the textbook proves it.

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precisely f(n) steps,^a and
 - All of its strings are of length precisely g(n) at halting.^b
 - * Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

^aFully time constructible (Hopcroft & Ullman, 1979). ^bFully space constructible (Hopcroft & Ullman, 1979).

Precise TMs Are General

Proposition 17 Suppose a TM^a M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output, of length f(|x|), will serve as a "yardstick" or an "alarm clock."

^aDeterministic or nondeterministic.

The Proof (continued)

- Then M' simulates M(x).
- M'(x) halts when and only when the alarm clock runs out—even if M halts earlier.
- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
 - Because M' stops at the moment the "clock" string is exhausted—even if M(x) stops earlier, it is precise.
 - The time bound is therefore O(|x| + f(|x|)).

The Proof (concluded)

- If f is a space bound (sketch):
 - -M' simulates M on the quasi-blanks of M_f 's output string.^a
 - The total space, not counting the input string, is O(f(n)).
 - But we still need a way to make sure there is no infinite loop even if M does not halt.^b

^aThis is to make sure the space bound is precise. ^bSee the proof of Theorem 24 (p. 250).

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$\operatorname{NTIME}(n^k) \stackrel{\Delta}{=} \bigcup_{j>0} \operatorname{NTIME}(n^j).$$

Р	$\underline{\underline{\Delta}}$	$\operatorname{TIME}(n^k),$
	Δ	_

$$NP \stackrel{\Delta}{=} NTIME(n^k),$$

$$PSPACE \stackrel{\Delta}{=} SPACE(n^k),$$

NPSPACE
$$\stackrel{\Delta}{=}$$
 NSPACE (n^k) ,

$$E \stackrel{\Delta}{=} \text{TIME}(2^{kn}),$$

EXP
$$\stackrel{\Delta}{=}$$
 TIME $(2^{n^k}),$

NEXP
$$\stackrel{\Delta}{=}$$
 NTIME $(2^{n^k}),$

$$L \stackrel{\Delta}{=} SPACE(\log n),$$

NL
$$\stackrel{\Delta}{=}$$
 NSPACE(log n).

Complements of Nondeterministic Classes

- Recall that the complement of L, or \overline{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
- R, RE, and coRE are distinct.^a
 - Again, coRE contains the complements of *languages* in RE, *not* languages that are not in RE.

^aRecall p. 166.

The Co-Classes

• For any *complexity* class C, coC denotes the class

 $\{L: \bar{L} \in \mathcal{C}\}.$

- Clearly, if C is a *deterministic* time or space *complexity* class, then C = coC.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \overline{L} within the same time or space bound by reversing the "yes" and "no" states.^a
- Whether *non*deterministic classes for time are closed under complement is not known.

^aRecall p. 163.

Comments

• As

$$\mathrm{co}\mathcal{C} = \{ L : \bar{L} \in \mathcal{C} \},\$$

 $L \in \mathcal{C}$ if and only if $\overline{L} \in \operatorname{co}\mathcal{C}$.

- But it is *not* true that $L \in C$ if and only if $L \notin coC$. - coC is not defined as \overline{C} .
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \dots\}, \dots\}$.
- Then $\operatorname{co}\mathcal{C} = \{\{1, 3, 5, 7, 9, \dots\}, \dots\}.$

• But
$$\overline{C} = 2^{\{1,2,3,\dots\}} - \{\{2,4,6,8,10,\dots\},\dots\}.$$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

 $H_f \stackrel{\Delta}{=} \{ M; x : M \text{ accepts input } x \\ \text{after at most } f(|x|) \text{ steps } \},$

where M is deterministic.

• Assume the input is binary as usual.

$H_f \in \mathsf{TIME}(f^3(n))$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 87), the universal TM (p. 142), and the linear speedup theorem (p. 97).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 94, the total running time is $O(\ell_M k_M^2 f^2(n))$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f^3(n))$, where the constant is independent of M.

$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

- Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine:

```
D_{f}(M) \{

if M_{H_{f}}(M; M) = "yes"

then "no";

else "yes";

}
```

The Proof (continued)

- $M_{H_f}(M; M)$ runs in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where $n = |M|.^a$
- By construction, $D_f(M)$ runs in the same amount of time as $M_{H_f}(M; M)$, i.e., f(n), where n = |M|.

^aMr. Hsiao-Fei Liu (F92922019) and Mr. Hong-Lung Wang (F92922085) pointed out on October 6, 2004, that this estimation (and the text's Lemma 7.2) forgets to include the time to write down M; M.

The Proof (concluded)

- First, suppose $D_f(D_f) =$ "yes".
- This implies

$$D_f; D_f \notin H_f.$$

- Thus D_f does not accept D_f within time $f(|D_f|)$.
- But $D_f(D_f)$ stops in time $f(|D_f|)$ with an answer.
- Hence $D_f(D_f) =$ "no", a contradiction
- Similarly, $D_f(D_f) = \text{``no''} \Rightarrow D_f(D_f) = \text{``yes.''}$

The Time Hierarchy Theorem

Theorem 18 If $f(n) \ge n$ is proper, then

 $\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}(f^3(2n+1)).$

• The quantified halting problem makes it so.

Corollary 19 $P \subsetneq E$.

• $P \subseteq TIME(2^n)$ because $poly(n) \le 2^n$ for n large enough.

• But by Theorem 18,

TIME $(2^n) \subsetneq$ TIME $((2^{2n+1})^3) \subseteq E$.

• So
$$P \subsetneq E$$
.

The Space Hierarchy Theorem **Theorem 20 (Hennie & Stearns, 1966)** If f(n) is proper, then

 $SPACE(f(n)) \subsetneq SPACE(f(n) \log f(n)).$

Corollary 21 $L \subsetneq PSPACE$.

Nondeterministic Time Hierarchy Theorems **Theorem 22 (Cook, 1973)** NTIME $(n^r) \subsetneq$ NTIME (n^s) whenever $1 \le r < s$.

Theorem 23 (Seiferas, Fischer, & Meyer, 1978) If $T_1(n)$ and $T_2(n)$ are proper, then

 $\operatorname{NTIME}(T_1(n)) \subsetneq \operatorname{NTIME}(T_2(n))$

whenever $T_1(n+1) = o(T_2(n)).$

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in-degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
 - The graph is the same as the computation tree earlier.
 - But identical configurations are merged into one node.^a
- So *M* accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

^aSo we end up with a graph not a tree.

Theorem 24 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
 - Explore the computation tree of the NTM for "yes."
 - Specifically, generate an f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 24(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and repeat the above steps.
 - Halt with "yes" when a "yes" is encountered or "no" if the tree is exhausted.
 - Each path simulation consumes at most O(f(n))space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 24(3)

• Let *k*-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in \text{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

Proof of Theorem 24(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the *first* cursor.

• The number of configurations is therefore at most $|K| \times (n+1) \times |\Sigma|^{2(k-2)f(n)} = O(c_1^{\log n + f(n)}) \qquad (2)$

for some $c_1 > 1$, which depends on M.

• Add edges to the configuration graph based on *M*'s transition function.

Proof of Theorem 24(3) (concluded)

- x ∈ L ⇔ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i,...).^a
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in $\text{TIME}(c^{\log n + f(n)})$ for some c > 1 because REACHABILITY $\in \text{TIME}(n^j)$ for some j and

$$\left[c_1^{\log n + f(n)}\right]^j = (c_1^j)^{\log n + f(n)}.$$

^aThere may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier (p. 116), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce a quasi-blank output of length f(n) first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n + f(n)}$ steps for some c > 1.^a

^aSee Eq. (2) on p. 253.

Space-Bounded Computation and Proper Functions (concluded)

- (continued)
 - So an infinite loop occurs during simulation for a computation path longer than $c^{\log n + f(n)}$ steps.
 - Hence we only simulate up to $c^{\log n + f(n)}$ time steps per computation path.

A Grand Chain of Inclusions $^{\rm a}$

- It is an easy application of Theorem 24 (p. 250) that $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.$
- By Corollary 21 (p. 245), we know $L \subsetneq PSPACE$.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

^aWith input from Mr. Chin-Luei Chang (B89902053, R93922004, D95922007) on October 22, 2004.

What Is Wrong with the Proof? $^{\rm a}$

• By Theorem 24(2) (p. 250),

$$\mathrm{NL} \subseteq \mathrm{TIME}\left(k^{O(\log n)}\right) \subseteq \mathrm{TIME}\left(n^{c_1}\right)$$

for some $c_1 > 0$.

• By Theorem 18 (p. 244),

TIME $(n^{c_1}) \subsetneq$ TIME $(n^{c_2}) \subseteq P$

for some $c_2 > c_1$.

• So

 $NL \neq P.$

a
Contributed by Mr. Yuan-Fu
 Shao (R02922083) on November 11, 2014.

What Is Wrong with the Proof? (concluded)

• Recall from p. 234 that $\text{TIME}(k^{O(\log n)})$ is a shorthand for

$$\bigcup_{j>0} \text{TIME}\left(j^{O(\log n)}\right).$$

• So the correct proof runs more like

$$\mathrm{NL} \subseteq \bigcup_{j>0} \mathrm{TIME}\left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} \mathrm{TIME}\left(n^c\right) = \mathrm{P}.$$

• And

$$NL \neq P$$

no longer follows.

Nondeterministic and Deterministic Space

• By Theorem 6 (p. 132),

```
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}(c^{f(n)}),
```

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

Savitch's Theorem

```
Theorem 25 (Savitch, 1970)
```

```
REACHABILITY \in SPACE(\log^2 n).
```

- Let G(V, E) be a graph with n nodes.
- For $i \ge 0$, let

```
PATH(x, y, i)
```

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if

```
PATH(x, y, \lceil \log n \rceil)
```

holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute $PATH(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path's (x, y, i)s.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

The Proof (continued): Algorithm for PATH(x, y, i)1: **if** i = 0 **then** if x = y or $(x, y) \in E$ then 2: return true; 3: else 4: 5: return false; end if 6: 7: else for z = 1, 2, ..., n do 8: if PATH(x, z, i-1) and PATH(z, y, i-1) then 9: return true; 10: end if 11: end for 12:return false; 13:14: **end if**

The Proof (concluded)

- The space requirement is proportional to the depth of the tree ([log n]) times the size of the items stored at each node.
- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

The Relation between Nondeterministic and Deterministic Space Is Only Quadratic Corollary 26 Let $f(n) \ge \log n$ be proper. Then $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's proof to the configuration graph of the NTM on its input.
- From p. 253, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct *explicitly* the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We checked node connectedness only when i = 0 on p. 263, by examining the input graph G.
- Suppose we are given configurations x and y.
- Then we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a
- So connectivity is checked locally and on demand.

^aThanks to a lively class discussion on October 15, 2003.

The Proof (continued)

- The z variable in the algorithm on p. 263 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before proceeding with it.^a
 - * Adopt the same width for each symbol and state of the NTM and for the cursor position on the input string.^b

- If it is not, advance to the next z.

^aThanks to a lively class discussion on October 13, 2004. ^bContributed by Mr. Jia-Ming Zheng (R04922024) on October 17, 2017.

The Proof (concluded)

- Each z has length O(f(n)).
- So each node needs space O(f(n)).
- The depth of the recursive call on p. 263 is $O(\log c^{f(n)})$, which is O(f(n)).
- The total space is therefore $O(f^2(n))$.

Implications of Savitch's Theorem

Corollary 27 PSPACE = NPSPACE.

- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes.^a
- It is known that^b

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (3)

• So

$$coNL = NL.$$

• But it is not known whether $coNP = NP.^{c}$

```
<sup>a</sup>Recall p. 237.

<sup>b</sup>Szelepscényi (1987); Immerman (1988).

<sup>c</sup>If P = NP, then coNP = NP. Contributed by Mr. Yu-Ming Lu

(R06723032, D08922008) on October 21, 2021.
```