Relations between Complexity Classes
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It is, I own, not uncommon to be
wrong in theory

and right in practice.

— Edmund Burke (1729-1797),

A Philosophical Enquiry into the Origin of Our

Ideas of the Sublime and Beautiful (1757)

The problem with QE is
it works in practice,

but it doesn’t work in theory.
— Ben Bernanke (2014)
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Proper (Complexity) Functions

e We say that f : N — N is a proper (complexity)
function if the following hold:

— f is nondecreasing.

— There i1s a k-string TM My such that
My (x) = rfUzD) for any .2

— M halts after O(| x|+ f(]x])) steps.
— My uses O(f(]x|)) space besides its input x.

e M ;’s behavior depends only on |z | not z’s contents.

e ) ’s running time is bounded by f(n).

*The textbook calls “I” the quasi-blank symbol. The use of M¢(x)
will become clear in Proposition 17 (p. 231).
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Examples of Proper Functions

e Most “reasonable” functions are proper: ¢, [logn],

polynomials of n, 2", v/n, n!, etc.
e If f and g are proper, then so are f + g, fg, and 29.2

e Nonproper functions when serving as the time bounds

for complexity classes spoil “theory building.”

— For example, TIME(f(n)) = TIME(2f(") for some
b

recursive function f (the gap theorem).

e Only proper functions f will be used in TIME( f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

textbook proves it.
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Precise Turing Machines

e A TM M is precise if there are functions f and g such
that for every n € N, for every = of length n, and for

every computation path of M,
— M halts after precisely f(n) steps,® and

— All of its strings are of length precisely g(n) at
halting.P
x Recall that if M is a TM with input and output,
we exclude the first and last strings.

e N can be deterministic or nondeterministic.

aFully time constructible (Hopcroft & Ullman, 1979).
PFully space constructible (Hopcroft & Ullman, 1979).
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Precise TMs Are General

Proposition 17 Suppose a T'M* M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M'" which decides L in time O(n + f(n)) (space O(f(n)),
respectively).

e M’ on input z first simulates the TM M associated

with the proper function f on .

e M;’s output, of length f(|x|), will serve as a

“yardstick” or an “alarm clock.”

aDeterministic or nondeterministic.
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The Proof (continued)
e Then M’ simulates M(x).

e M'(x) halts when and only when the alarm clock runs
out—even if M halts earlier.
e If f is a time bound:

— The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

— Because M’ stops at the moment the “clock” string

is exhausted—even if M (x) stops earlier, it is precise.

— The time bound is therefore O(|z |+ f(| x])).
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The Proof (concluded)

e If f is a space bound (sketch):
— M’ simulates M on the quasi-blanks of M¢’s output
string.®
— The total space, not counting the input string, is
O(f(n)).

— But we still need a way to make sure there is no

infinite loop even if M does not halt.”

@This is to make sure the space bound is precise.
PSee the proof of Theorem 24 (p. 250).
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Important Complexity Classes

e We write expressions like n* to denote the union of all

complexity classes, one for each value of k.

e For example,

NTIME(n U NTIME(n/).
7>0
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Important Complexity Classes (concluded)

P = TIME(n"),

NP NTIME(n®),
PSPACE SPACE(n"),
NPSPACE NSPACE(n*),

E TIME(2F™),
TIME(2™),
NTIME(2™"),
SPACE(logn),
NSPACE(logn).
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Complements of Nondeterministic Classes

e Recall that the complement of L, or L, is the language
> — L.
— SAT COMPLEMENT is the set of unsatisfiable boolean

expressions.

e R, RE, and coRE are distinct.?

— Again, coRE contains the complements of languages

in RE, not languages that are not in RE.

@Recall p. 166.
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The Co-Classes

e For any complezity class C, coC denotes the class

{L:LeC}.

e Clearly, if C is a deterministic time or space complezity
class, then C = coC.

— They are said to be closed under complement.

— A deterministic TM deciding L can be converted to
one that decides L within the same time or space
bound by reversing the “yes” and “no” states.?

e Whether nondeterministic classes for time are closed

under complement is not known.

aRecall p. 163.
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Comments

As
coC={L:LeC},

L € C if and only if L € coC.

But it is not true that L € C if and only if L ¢ coC.

— coC is not defined as C
For example, suppose C = {{2,4,6,8,10,...
Then coC ={{1,3,5,7,9,...},...}.

But C = 21523} _{£9246,8,10,...},...}.
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The Quantified Halting Problem
e Let f(n) > n be proper.
e Define

Hy = { M;x : M accepts input x

after at most f(|z|) steps },

where M 1s deterministic.

e Assume the input is binary as usual.
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H; € TIME(f3(n))

e For each input M;x, we simulate M on z with an alarm
clock of length f(|z|).

— Use the single-string simulator (p. 87), the universal
TM (p. 142), and the linear speedup theorem (p. 97).

— Our simulator accepts M ;x if and only if M accepts

x before the alarm clock runs out.

e From p. 94, the total running time is O({prk%,f2(n)),
where /), is the length to encode each symbol or state of

M and kps is M’s number of strings.

o As k%, = O(n), the running time is O(f3(n)), where
the constant is independent of M.
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Hy ¢ TIME(f([n/2]))

e Suppose TM My, decides Hy in time f([n/2]).

e Consider machine:
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The Proof (continued)

o Mpy,(M;M) runs in time f(|2%]) = f(n), where
n=|M]|.>?

e By construction, D¢(M) runs in the same amount of
time as My, (M; M), i.e., f(n), where n = | M |.

@Mr. Hsiao-Fei Liu (F92922019) and Mr. Hong-Lung Wang
(F92922085) pointed out on October 6, 2004, that this estimation (and
the text’s Lemma 7.2) forgets to include the time to write down M; M.
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The Proof (concluded)

First, suppose D¢(Dy) = “yes”.

This implies
Df; Df Q/ Hf.

Thus D¢ does not accept Dy within time f(| Dy |).
But D¢(Dy) stops in time f(| Ds|) with an answer.

Hence D¢(Dy) = “no”, a contradiction

Similarly, D¢(Dys) = “no” = D¢(Dy) = “yes.”
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The Time Hierarchy Theorem

Theorem 18 If f(n) > n is proper, then
TIME(f(n)) € TIME(f*(2n + 1)).

e The quantified halting problem makes it so.
Corollary 19 P C E.
e P C TIME(2™) because poly(n) < 2" for n large enough.

e But by Theorem 18,

TIME (2") C TIME ((2°"*')?) CE.

e So P C E.
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The Space Hierarchy Theorem

Theorem 20 (Hennie & Stearns, 1966) If f(n) is
proper, then

SPACE(f(n)) & SPACE(f(n)log f(n)).

Corollary 21 L C PSPACE.
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Nondeterministic Time Hierarchy Theorems

Theorem 22 (Cook, 1973) NTIME(n") C NTIME(n?®)

whenever 1 < r < s.

Theorem 23 (Seiferas, Fischer, & Meyer, 1978) If
Ti(n) and T5(n) are proper, then

NTIME(T: (n)) € NTIME(Ts(n))

whenever Ty (n + 1) = o(T%(n)).
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The Reachability Method

The computation of a time-bounded TM can be

represented by a directed graph.
The TM’s configurations constitute the nodes.

There is a directed edge from node = to node y if x

yields ¢ in one step.

The start node representing the initial configuration has

zero in-degree.
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The Reachability Method (concluded)

e¢ When the TM is nondeterministic, a node may have an

out-degree greater than one.

— The graph is the same as the computation tree

earlier.

— But identical configurations are merged into one

node.?

e So M accepts the input if and only if there is a path
from the start node to a node with a “yes” state.

It is the reachability problem.

2So we end up with a graph not a tree.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248



lllustration of the Reachability Method

Initial
configuration
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Relations between Complexity Classes

Theorem 24 Suppose f(n) is proper. Then

. SPACE(f(n)) € NSPACE(f(n)),
TIME(f(n)) € NTIME(f(n)).
C

. NTIME(f(n)) € SPACE(f(n)).

. NSPACE(f(n)) C TIME(klgn+/(n)).

Proof of 2:
— Explore the computation tree of the NTM for “yes.”

— Specifically, generate an f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.
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Proof of Theorem 24(2)

e (continued)
Simulate the NTM based on the choices.
Recycle the space and repeat the above steps.

Halt with “yes” when a “yes” is encountered or “no”

if the tree is exhausted.

Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.
The total space is O(f(n)) because space is recycled.
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Proof of Theorem 24(3)
e Let k-string NTM

M= (K,3, A, s)
with input and output decide L € NSPACE(f(n)).

e Use the reachability method on the configuration graph
of M on input z of length n.

e A configuration is a (2k + 1)-tuple

<Q7w17u17w27u27 .- .,wk,’U,k).
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Proof of Theorem 24(3) (continued)

We only care about

(q, 1, Wa, U, ...y W1, Uk—1),

where ¢ is an integer between 0 and n for the position of
the first cursor.

The number of configurations is therefore at most

‘K‘ > (n 4+ 1) > ‘2 ‘2(k—2)f(n) _ O(Cllogn—l-f(n)) (2>

for some ¢y > 1, which depends on M.

Add edges to the configuration graph based on M’s

transition function.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253



Proof of Theorem 24(3) (concluded)

e r € L & there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”,i,...).2

e This is REACHABILITY on a graph with O(cllOg nt/ ("))

nodes.

o It is in TIME(c'*8 /(™) for some ¢ > 1 because
REACHABILITY € TIME(n’) for some j and

j .
[Cllog n+f(n)} — (C{)log n+f(n)

@There may be many of them.
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Space-Bounded Computation and Proper Functions

e In the definition of space-bounded computations earlier
(p- 116), the TMs are not required to halt at all.

e When the space is bounded by a proper function f,
computations can be assumed to halt:

— Run the TM associated with f to produce a
quasi-blank output of length f(n) first.

— The space-bounded computation must repeat a

configuration if it runs for more than &7/ steps

for some ¢ > 1.2

2See Eq. (2) on p. 253.
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Space-Bounded Computation and Proper Functions
(concluded)

e (continued)

— So an infinite loop occurs during simulation for a

computation path longer than 87/ (") steps.

— Hence we only simulate up to 87T/ time steps

per computation path.
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A Grand Chain of Inclusions?

It is an easy application of Theorem 24 (p. 250) that

L CNL C P C NP C PSPACE C EXP.

By Corollary 21 (p. 245), we know L. C PSPACE.
So the chain must break somewhere between L and EXP.
It is suspected that all four inclusions are proper.

e But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (B89902053, R93922004,
D95922007) on October 22, 2004.
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What Is Wrong with the Proof7#
By Theorem 24(2) (p. 250),

NL C TIME (kOﬂog ”>> C TIME (n)

for some ¢; > 0.

e By Theorem 18 (p. 244),
TIME (n°t) C TIME (n“?) C P
for some ¢y > 1.

e SO
NL # P.

aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11,
2014.
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What Is Wrong with the Proof? (concluded)
e Recall from p. 234 that TIME(k®U°8™)) is a shorthand

for
| ) TIME (j0<10g“>) |
i>0

e So the correct proof runs more like

NL C | J TIME (j0<1°g">) C | TIME (n%) = P.
7>0 c>0

e And
NL #P

no longer follows.
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Nondeterministic and Deterministic Space

By Theorem 6 (p. 132),

NTIME(f(n)) € TIME(c/ (™),

an exponential gap.

There is no proof yet that the exponential gap is

inherent.
How about NSPACE vs. SPACE?

Surprisingly, the relation is only quadratic—a

polynomial—by Savitch’s theorem.
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Savitch's Theorem

Theorem 25 (Savitch, 1970)

REACHABILITY € SPACE(log® n).

e Let G(V, E) be a graph with n nodes.

e For ¢ >0, let
PATH(x,y,1)

mean there is a path from node = to node y of length at

most 2°.

e There is a path from z to y if and only if

PATH(z,y, [logn|)
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The Proof (continued)

For ¢ > 0, PATH(z, y, ) if and only if there exists a z
such that PATH(z, 2,7 — 1) and PATH(z,y,7 — 1).

For PATH(x,y,0), check the input graph or if x = y.

Compute PATH(z, y, [logn]) with a depth-first search

on a graph with nodes (x,y,%)s (see next page).*

Like stacks in recursive calls, we keep only the current
path’s (z,v,1)s.

aContributed by Mr. Chuan-Yao Tan on October 11, 2011.
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The Proof (continued): Algorithm for PATH(x, y, 7)
: if © = 0 then
if t =y or (z,y) € E then
return true;

else

end if
. else
for z=1,2,....,ndo
if PATH(z, 2,7 — 1) and PATH(z,y,7 — 1) then
10: return true;
11: end if

end for

1
2
3
4
5: return false;
6
7
8
9

return false;
: end if
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The Proof (continued)

PATH(x,y,log n)

PATH(x,z,log n-1) PATH(z.y,log n-1)
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The Proof (concluded)

e The space requirement is proportional to the depth of
the tree ([logn]|) times the size of the items stored at

each node.

e Depth is [logn|, and each node (x,y, %) needs space
O(logn).

e The total space is O(log” n).
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The Relation between Nondeterministic and
Deterministic Space Is Only Quadratic

Corollary 26 Let f(n) > logn be proper. Then
NSPACE(f(n)) € SPACE(f*(n)).

e Apply Savitch’s proof to the configuration graph of the
NTM on its input.

e From p. 253, the configuration graph has O(c/(™)

nodes; hence each node takes space O(f(n)).

e But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(c/ (™) space!
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The Proof (continued)

The way out is not to generate the graph at all.
Instead, keep the graph implicit.

We checked node connectedness only when 2 = 0 on

p. 263, by examining the input graph G.
Suppose we are given configurations xr and y.

Then we go over the Turing machine’s program to
determine if there is an instruction that can turn z into

y in one step.?

e So connectivity is checked locally and on demand.

@Thanks to a lively class discussion on October 15, 2003.
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The Proof (continued)

e The z variable in the algorithm on p. 263 simply runs
through all possible valid configurations.

— Let z=0,1,...,0(c/(™).

— Make sure z is a valid configuration before
proceeding with it.?
x Adopt the same width for each symbol and state of

the NTM and for the cursor position on the input
string.P

— If it is not, advance to the next z.

@Thanks to a lively class discussion on October 13, 2004.
PContributed by Mr. Jia-Ming Zheng (R04922024) on October 17,

2017.
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The Proof (concluded)
Each z has length O(f(n)).

So each node needs space O(f(n)).

The depth of the recursive call on p. 263 is O(log cf(”>),
which is O(f(n)).

The total space is therefore O(f%(n)).
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Implications of Savitch's Theorem

Corollary 27 PSPACE = NPSPACE.
e Nondeterminism is less powerful with respect to space.

e Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

e Closure under complement is trivially true for

deterministic complexity classes.?

e It is known thatP

coNSPACE(f(n)) = NSPACE(f(n)). (3)

coNL NL.

But it is not known whether coNP = NP.¢

@Recall p. 237.

bSzelepscényi (1987); Immerman (1988).
°If P = NP, then coNP = NP. Contributed by Mr. Yu-Ming Lu

(R0O6723032, D08922008) on October 21, 2021.
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