Complements of Recursive Languages

The complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by a deterministic M.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}. ${ }^{\text {a }}$
${ }^{\text {a }}$ Recall p. 118.

Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene's theorem; Post, 1944) L is
recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \bar{M} accepts, then halt on state "no" because $x \notin L$. ${ }^{\text {a }}$
- The other direction is trivial.

[^0]
A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 164), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable. ${ }^{\text {a }}$
${ }^{\text {a Recall that }} \bar{H} \triangleq\{M ; x: M(x)=\nearrow\}$.

$R, R E$, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable.
\mathbf{R} : The set of all recursive languages.

- Note that coRE is not $\overline{\mathrm{RE}}$.
$-\operatorname{coRE} \triangleq\{L: \bar{L} \in \operatorname{RE}\}=\{\bar{L}: L \in \operatorname{RE}\}$.
$-\overline{\mathrm{RE}} \triangleq\{L: L \notin \mathrm{RE}\}$.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 164).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 144, p. 145, and p. 165).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 165).
- There are languages in neither RE nor coRE.

H Is Complete for RE^{a}

- Let L be any recursively enumerable language.
- Assume M accepts L.
- Clearly, one can decide whether $x \in L$ by asking if $M: x \in H$.
- Hence all recursively enumerable languages are reducible to H !
- H is said to be $\mathbf{R E}$-complete.
${ }^{\text {a Post (1944). }}$

Notations

- The language accepted by TM M is written as $L(M)$.
- If $M(x)=\nearrow$ for all x, then $L(M)=\emptyset$.
- If $M(x)$ is never "yes" nor \nearrow (as required by the definition of acceptance), we also let $L(M)=\emptyset$.

Nontrivial Properties of Sets in RE

- A property of the recursively enumerable languages can be defined by the set \mathcal{C} of all the recursively enumerable languages that satisfy it.
- The property of finite recursively enumerable languages is

$$
\{L: L=L(M) \text { for a } \mathrm{TM} M, L \text { is finite }\} .
$$

- The property of recursiveness is

$$
\{L: L=L(M) \text { for a TM } M, L \text { is recursive }\} .
$$

Nontrivial Properties of Sets in RE (continued)

- A property is trivial if $\mathcal{C}=\mathrm{RE}$ or $\mathcal{C}=\emptyset$.
- Answer to a trivial property (about the language a TM accepts) is either always "yes" or always "no."
- It is either possessed by all recursively enumerable languages or by none.
- Here is a trivial property (always yes): Does the TM accept a recursively enumerable language? ${ }^{\text {a }}$
- Here is a trivial property (always no): Does the TM accept a language that is finite and infinite?
${ }^{\text {a }}$ Or, $L(M) \in$ RE? Formally, $\{L: L=L(M)$ for a $T M M, L \in \operatorname{RE}\}$.

Nontrivial Properties of Sets in RE (continued)

- A property is nontrivial if $\mathcal{C} \neq \mathrm{RE}$ and $\mathcal{C} \neq \emptyset$.
- In other words, answer to a nontrivial property is "yes" for some TMs and "no" for others.
- It is possessed by some recursively enumerable languages but not by all.
- Here is a nontrivial property: Does the TM accept an empty language? ${ }^{\text {a }}$
- Some machines do, but some machines do not.
${ }^{\mathrm{a}}$ Or, $L(M)=\emptyset$? That is, does it go into an infinite loop on all inputs?

Nontrivial Properties of Sets in RE (concluded)

- Determining whether a property is trivial may not be trivial!
- Up to now, all nontrivial properties (of recursively enumerable languages) are undecidable. ${ }^{\text {a }}$
- In fact, Rice's theorem confirms that.

[^1]
Rice's Theorem

Theorem 13 (Rice, 1956) Suppose $\mathcal{C} \neq \emptyset$ and $\mathcal{C} \subsetneq R E$. a Then the question " $L(M) \in \mathcal{C}$?" is undecidable.

- Note that the input is a TM program M.
- Assume that $\emptyset \notin \mathcal{C}$ (otherwise, repeat the proof for $\mathrm{RE}-\mathcal{C}$.
- Let $L \in \mathcal{C}$ be accepted by TM M_{L} (recall that $\left.\mathcal{C} \neq \emptyset\right)$.
- Let M_{H} accept the undecidable language H.
- M_{H} exists (p. 144).

[^2]
The Proof (continued)

- Construct machine $M_{x}(y)$:

$$
\text { if } M_{H}(x)=\text { "yes" then } M_{L}(y) \text { else } \nearrow
$$

- On the next page, we will prove that

$$
\begin{equation*}
x \in H \text { if and only if } L\left(M_{x}\right) \in \mathcal{C} \tag{1}
\end{equation*}
$$

- As a result, the halting problem is reduced to deciding $L\left(M_{x}\right) \in \mathcal{C}$.
- Hence $L\left(M_{x}\right) \in \mathcal{C}$ must be undecidable, ${ }^{\text {a }}$ and we are done.

[^3]
The Proof (concluded)

- Suppose $x \in H$, i.e., $M_{H}(x)=$ "yes."
- $M_{x}(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
- Hence $L\left(M_{x}\right)=L \in \mathcal{C}$.
- Suppose $M_{H}(x)=\nearrow$.
- M_{x} never halts.
- $L\left(M_{x}\right)=\emptyset \notin \mathcal{C}$.

Comments

- Rice's theorem is about nontrivial properties of the languages accepted by Turing machines.
- It says they are undecidable.
- Rice's theorem is not about Turing machines' operations themselves, such as

Does this TM contain 5 states?
Does this TM take more than 1,000 steps on ϵ ?

- Both are decidable, and the answers are contingent.

Comments (concluded)

- Rather, it is about

Does this TM accept a language acceptable by one that contains 5 states?
Does this TM accept a language acceptable by one that takes more than 1,000 steps on ϵ ?

- Because both properties are nontrivial, ${ }^{\text {a }}$ they are undecidable by Rice's theorem.

[^4]
Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Nonemptiness.
- Finiteness.
- Recursiveness.
- Σ^{*}.
- Regularity. ${ }^{\text {a }}$
- Context-freedom. ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Is it a regular language?
${ }^{\mathrm{b}}$ Is it a context-free language?

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) Entscheidungsproblem). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Church (1936).
${ }^{\text {b }}$ Rosser (1937).
${ }^{c}$ Robinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$

[^5]
Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

Boolean Logic

Christianity is either false or true. - Girolamo Savonarola (1497)

Both of us had said the very same thing. Did we both speak the truth - or one of us did -or neither?

- Joseph Conrad (1857-1924),

Lord Jim (1900)

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$ (multiple conjunction).
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$ (multiple disjunction).

[^6]
Boolean Logic (concluded)

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right) .
$$

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
$-\left\{x_{1}=\right.$ true,$x_{2}=$ false $\}$ is appropriate to $x_{1} \vee x_{2}$.
$-\left\{x_{2}=\right.$ true, $x_{3}=$ false $\}$ is not appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

Truth Table ${ }^{a}$

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows.
- Each row corresponds to one truth assignment of the n variables and records the truth value of ϕ under it.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Just check if they give identical truth values under all appropriate truth assignments.

[^7]

A Second Truth Table

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

\section*{A Third Truth Table
 | p | $\neg p$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |}

Proof of Equivalency by the Truth Table:

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

De Morgan's Laws ${ }^{\text {a }}$

- De Morgan's laws state that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & \equiv \neg \phi_{1} \vee \neg \phi_{2}, \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & \equiv \neg \phi_{1} \wedge \neg \phi_{2} .
\end{aligned}
$$

- Here is a proof of the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

${ }^{\text {a }}$ Augustus DeMorgan (1806-1871) or William of Ockham (12881348).

Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i},
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example,

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is unsatisfiable.

[^8]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant ${ }^{\text {a }}$ or simply term D_{i} is the conjunction of zero or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) .
$$

${ }^{\mathrm{a}} D_{i}$ implies ϕ, thus the term.

Clauses and Implicants

- The V of clauses yields a clause.
- For example,

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right) \vee\left(x_{2} \vee x_{3}\right) \\
= & x_{1} \vee x_{2} \vee x_{1} \vee \neg x_{2} \vee x_{2} \vee x_{3} .
\end{aligned}
$$

- The \wedge of implicants yields an implicant.
- For example,

$$
\begin{aligned}
& \left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{2}\right) \wedge\left(x_{2} \wedge x_{3}\right) \\
= & x_{1} \wedge x_{2} \wedge x_{1} \wedge \neg x_{2} \wedge x_{2} \wedge x_{3} .
\end{aligned}
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs
$\phi=x_{j}:$

- This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought:
- Turn ϕ_{1} into a DNF.
- Apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought:
- Turn ϕ_{1} into a CNF.
- Apply de Morgan's laws to make a DNF for ϕ.

Any Expression ϕ Can Be Converted into CNFs and DNFs (continued)

$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought:

- Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought:
- Turn ϕ_{1} and ϕ_{2} into CNFs, ${ }^{\text {a }}$

$$
\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigwedge_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

${ }^{\text {a Corrected by Mr. Chun-Jie Yang (R99922150) on November 9, } 2010 . ~}$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought:

- Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought:
- Turn ϕ_{1} and ϕ_{2} into DNFs,

$$
\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigvee_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \mathrm{\vee CNF}) & \neg(((a) \wedge(y)) \vee((z \vee w))) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
= & \neg(a \vee z \vee w) \vee \neg(y \vee z \vee w) \\
\text { de Morgan } & \neg \\
\text { de Morgan } & (\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w) .
\end{array}
$$

Functional Completeness

- A set of logical connectives is called functionally complete if every boolean expression is equivalent to one involving only these connectives.
- The set $\{\neg, \vee, \wedge\}$ is functionally complete.
- Every boolean expression can be turned into a CNF, which involves only \neg, \vee, and \wedge.
- The sets $\{\neg, \vee\}$ and $\{\neg, \wedge\}$ are functionally complete. ${ }^{\text {a }}$
- By the above result and de Morgan's laws.
- $\{$ NAND $\}$ and $\{$ NOR $\}$ are functionally complete. ${ }^{\text {b }}$
${ }^{\text {a Post (1921). }}$
${ }^{\text {b }}$ Peirce (c. 1880); Sheffer (1913).

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.

[^9]
Satisfiability (concluded)

- ϕ is unsatisfiable or a contradiction if ϕ is false under all appropriate truth assignments.
- Or, equivalently, if $\neg \phi$ is valid (prove it).
- ϕ is a contingency if ϕ is neither a tautology nor a contradiction.

Ludwig Wittgenstein (1889-1951)

Wittgenstein
"Whereof one cannot speak, thereof one must be silent."

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (sat): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 120).
- A most important problem in settling the "P $\stackrel{?}{=} \mathrm{NP}$ " problem (p. 332).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- VALIDITY: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
$-\phi$ and $\neg \phi$ are basically of the same length.
- So unsat and validity have the same complexity.
- Both are solvable in exponential time by the truth table method.

Relations among sAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the four problems-satisfiability, unsatisfiability, validity, and contingency-are known to be in P .

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- We can assign true or false to f for each of the 2^{n} truth assignments.

Boolean Functions (continued)

Assignment	Truth value
1	true or false
2	true or false
\vdots	\vdots
2^{n}	true or false

- A boolean expression expresses a boolean function.
- Think of its truth values under all possible truth assignments.

Boolean Functions (continued)

- A boolean function expresses a boolean expression.
$-\bigvee_{T \models \phi, \text { literal } y_{i} \text { is true in "row" } T}\left(y_{1} \wedge \cdots \wedge y_{n}\right)$. ${ }^{\text {a }}$ * The implicant $y_{1} \wedge \cdots \wedge y_{n}$ is called the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The size ${ }^{\mathrm{b}}$ is $\leq n 2^{n} \leq 2^{2 n}$.
- This DNF is optimal for the parity function, for example. ${ }^{\text {c }}$

[^10]
Boolean Functions (continued)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

Boolean Functions (concluded)

Corollary 15 Every n-ary boolean function can be expressed by a boolean expression of size $O\left(n 2^{n}\right)$.

- In general, the exponential length in n cannot be avoided (p. 221).
- The size of the truth table is also $O\left(n 2^{n}\right)$. ${ }^{\text {a }}$
${ }^{\text {a }}$ There are $2^{n} n$-bit strings.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\}
$$

- There are $n+5$ sorts.

Boolean Circuits (concluded)

- Gates with a sort from $\left\{\right.$ true, $\left.\mathrm{false}, x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- A boolean function can be realized by infinitely many equivalent boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

An Example

$$
\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \vee\left(\neg\left(x_{3} \vee x_{4}\right)\right)
$$

- Circuits are potentially more economical because of the possibility of "sharing." a

[^11]
CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

- CIRCUit sat \in NP: Guess a truth assignment and then evaluate the circuit. ${ }^{\text {a }}$

CIRCUIT VALUE: The same as CIRCUIT sat except that the circuit has no variable gates.

- circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

[^12]
Some ${ }^{\text {a }}$ Boolean Functions Need Exponential Circuits ${ }^{\text {b }}$

Theorem 16 For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions (p. 211).
- So it suffices to prove that there are fewer than $2^{2^{n}}$ boolean circuits with up to $2^{n} /(2 n)$ gates.

[^13]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Claude Elwood Shannon (1916-2001)

Howard Gardner (1987), "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."

Comments

- The lower bound $2^{n} /(2 n)$ is rather tight because an upper bound is $n 2^{n}$ (p. 213).
- The proof counted the number of circuits.
- Some circuits may not be valid at all.
- Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outgoing edges because they have been counted as incoming edges. ${ }^{\text {a }}$
${ }^{\text {a }}$ If you prove the theorem by considering outgoing edges, the bound will not be good. (Try it!)

[^0]: ${ }^{\text {a }}$ Either M or \bar{M} (but not both) must accept the input and halt.

[^1]: ${ }^{\text {a }}$ Such as the universal halting problem H^{*} on p. 161.

[^2]: ${ }^{a} A$ nontrivial property, i.e.

[^3]: ${ }^{\text {a}}$ By Theorem 8 (p. 156).

[^4]: ${ }^{a}$ Why?

[^5]: ${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
 ${ }^{\mathrm{b}}$ Tarski (1949).

[^6]: ${ }^{\text {a }}$ George Boole (1815-1864) in 1847.

[^7]: ${ }^{\text {a }}$ Post (1921); Wittgenstein (1922). Here, 1 is used to denote true; 0 is used to denote false. This is called the standard representation (Beigel, 1993).

[^8]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

[^9]: ${ }^{a}$ Wittgenstein (1922). Wittgenstein is one of the most important philosophers of all time. Russell (1919), "The importance of 'tautology' for a definition of mathematics was pointed out to me by my former pupil Ludwig Wittgenstein, who was working on the problem. I do not know whether he has solved it, or even whether he is alive or dead." "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928, "I met him on the $5: 15$ train."

[^10]: ${ }^{\text {a }}$ Similar to programmable logic array. This is called the table lookup representation (Beigel, 1993).
 ${ }^{\mathrm{b}}$ We count only the literals here.
 ${ }^{\text {c }}$ Du \& Ko (2000).

[^11]: ${ }^{\text {a }}$ But see p. 294 for an efficient equivalent boolean expression. Contributed by Mr. Han-Ting Chen (R10922073) on October 14, 2021.

[^12]: ${ }^{\text {a }}$ Essentially the same algorithm as the one on p. 120.

[^13]: ${ }^{\text {a }}$ Can be strengthened to "Almost all" (Lupanov, 1958).
 ${ }^{\mathrm{b}}$ Riordan \& Shannon (1942); Shannon (1949).

