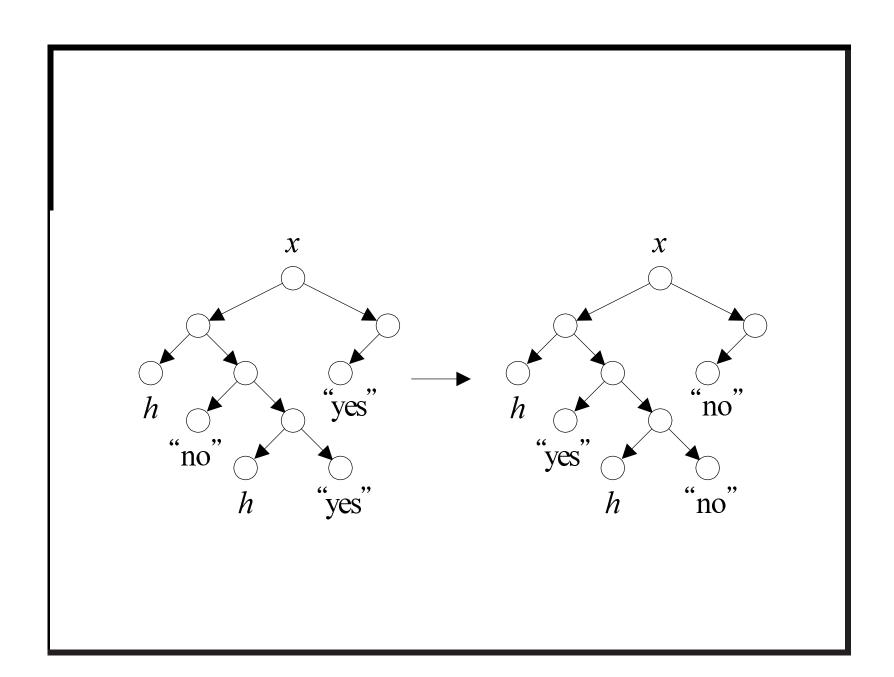
Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is deterministic, then M' decides \bar{L} .
 - So M and M' decide languages that complement each other.
- But if M is an NTM, then M' may not decide \bar{L} .
 - It is possible that M and M' accept the same input x (see next page).
 - So M and M' may accept languages that are not even disjoint.

 $^{^{\}mathrm{a}}\mathrm{By}$ the definition on p. 53, M must halt on all inputs.

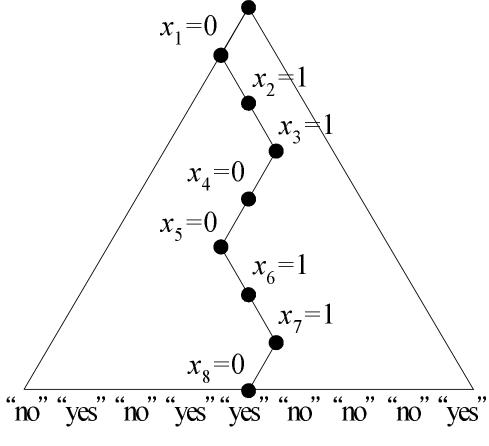


A Nondeterministic Algorithm for Satisfiability

 ϕ is a boolean formula with n variables.

```
1: for i = 1, 2, \dots, n do
```

- 2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choices.}
- 3: end for
- 4: {Verification:}
- 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then**
- 6: "yes";
- 7: else
- 8: "no";
- 9: end if



Analysis

- Recall that ϕ is satisfiable if and only if there is a truth assignment that satisfies ϕ .
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment^a out of 2^n .

^aEquivalently, a sequence of nondeterministic choices.

Analysis (concluded)

• The algorithm decides language

```
\{ \phi : \phi \text{ is satisfiable } \}.
```

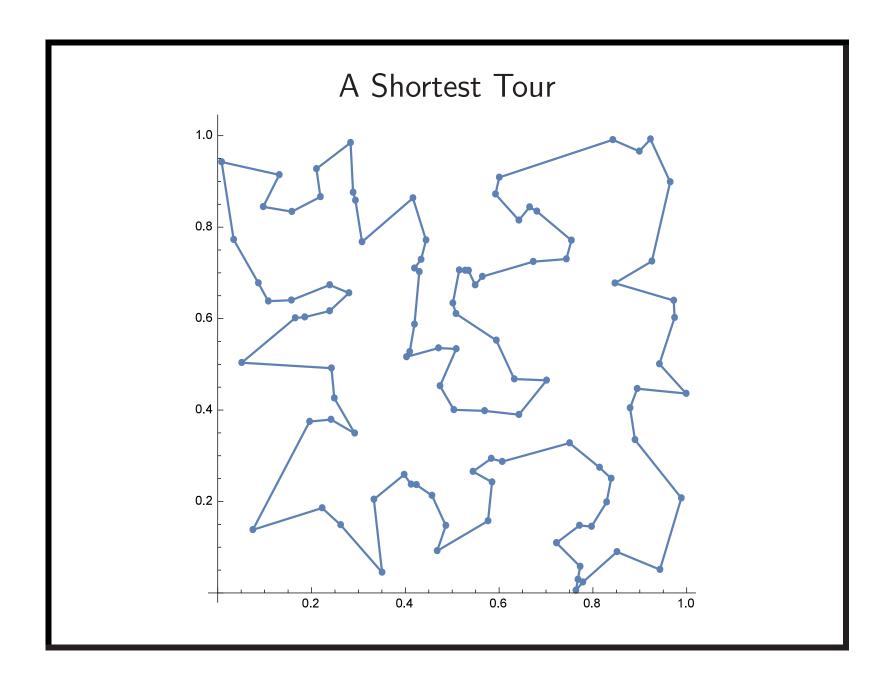
- Suppose ϕ is satisfiable.
 - * There is a truth assignment that satisfies ϕ .
 - * So there is a computation path that results in "yes."
- Suppose ϕ is not satisfiable.
 - * That means every truth assignment makes ϕ false.
 - * So every computation path results in "no."
- General paradigm: Guess a "proof" then verify it.

The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distance d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.^a
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.^b

^aEach city is visited exactly once.

^bBoth problems are extremely important. They are equally hard (p. 415 and p. 516).



A Nondeterministic Algorithm for TSP (D)

```
1: for i = 1, 2, ..., n do
2: Guess x_i \in \{1, 2, ..., n\}; {The ith city.}<sup>a</sup>
3: end for
4: {Verification:}
5: if x_1, x_2, ..., x_n are distinct and \sum_{i=1}^{n-1} d_{x_i, x_{i+1}} \leq B then
6: "yes";
7: else
8: "no";
9: end if
```

^aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most B.
 - Then there is a computation path for that tour.^a
 - And it leads to "yes."
- Suppose the input graph contains no tour of the cities with a total distance at most B.
 - Then every computation path leads to "no."

^aIt does not mean the algorithm will follow that path. It merely means such a computation path (i.e., a sequence of nondeterministic choices) exists.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
 - -N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- NTIME(f(n)) is a complexity class.

NP ("Nondeterministic Polynomial")

• Define

$$NP \stackrel{\Delta}{=} \bigcup_{k>0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently *verifiable* problems (see p. 343).
 - Boolean satisfiability (p. 120 and p. 201), e.g.
- The most important open problem in computer science is whether P = NP.

Remarks on the $P \stackrel{?}{=} NP$ Open Problem^a

- Many practical applications depend on answers to the $P \stackrel{?}{=} NP$ question.
- Verification of password should be easy (so it is in NP).
 - A computer should not take a long time to let a user log in.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took 63 years to settle the Continuum Hypothesis; how long will it take for this one?

^aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic $TM\ M$ in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

- On input x, M explores the computation tree of N(x) using depth-first search.
 - -M does not need to know f(n).
 - As N is time-bounded, the depth-first search will halt.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths lead to "yes," then M enters the "no" state.
- The simulation takes time $O(c^{f(n)})$ for some c > 1 because the computation tree has that many nodes.

Corollary 7 NTIME
$$(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)})$$
.

^aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\bigcup_{c>1} \mathrm{TIME}(c^{f(n)}) \subseteq \mathrm{NTIME}(f(n))?$

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM in the worst case as done in Theorem 6 (p. 132)?
- This is a key question in theory with important practical implications.

Nondeterministic Space Complexity Classes

- \bullet Let L be a language.
- Then

$$L \in NSPACE(f(n))$$

if there is an NTM with input and output that decides L and operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem, a constant coefficients do not matter.

^aTheorem 5 (p. 96).

Graph Reachability

- Let G(V, E) be a directed graph (**digraph**).
- REACHABILITY asks, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about its *nondeterministic* space complexity?

The First Try: $\mathsf{NSPACE}(n \log n)$ 1: Determine the number of nodes m; {Note $m \leq n$.} 2: $x_1 := a$; {Assume $a \neq b$.} 3: **for** $i = 2, 3, \dots, m$ **do** Guess $x_i \in \{v_1, v_2, \dots, v_m\}$; {The *i*th node.} 5: end for 6: **for** i = 2, 3, ..., m **do** 7: if $(x_{i-1}, x_i) \notin E$ then 8: "no"; 9: end if if $x_i = b$ then 10: "yes"; 11: end if 12: 13: **end for** 14: "no";

```
In Fact, REACHABILITY \in NSPACE(\log n)
 1: Determine the number of nodes m; {Note m \leq n.}
 2: x := a;
 3: for i = 2, 3, ..., m do
   Guess y \in \{v_1, v_2, \dots, v_m\}; {The next node.}
 5: if (x,y) \notin E then
   "no";
 7: end if
8: if y = b then
   "yes";
9:
   end if
10:
   x := y; {Recycle the space.}
12: end for
13: "no";
```

Space Analysis

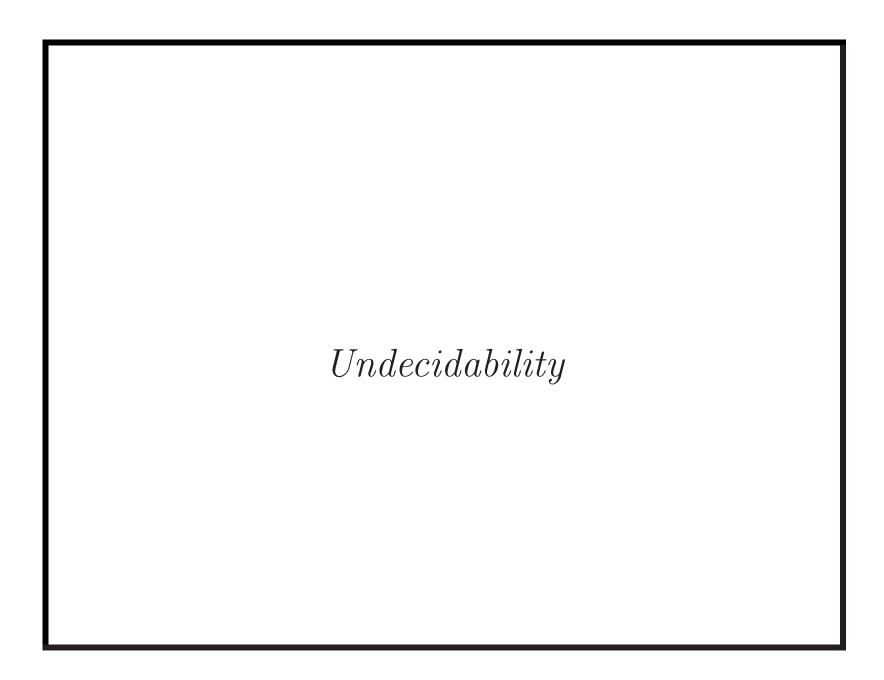
- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

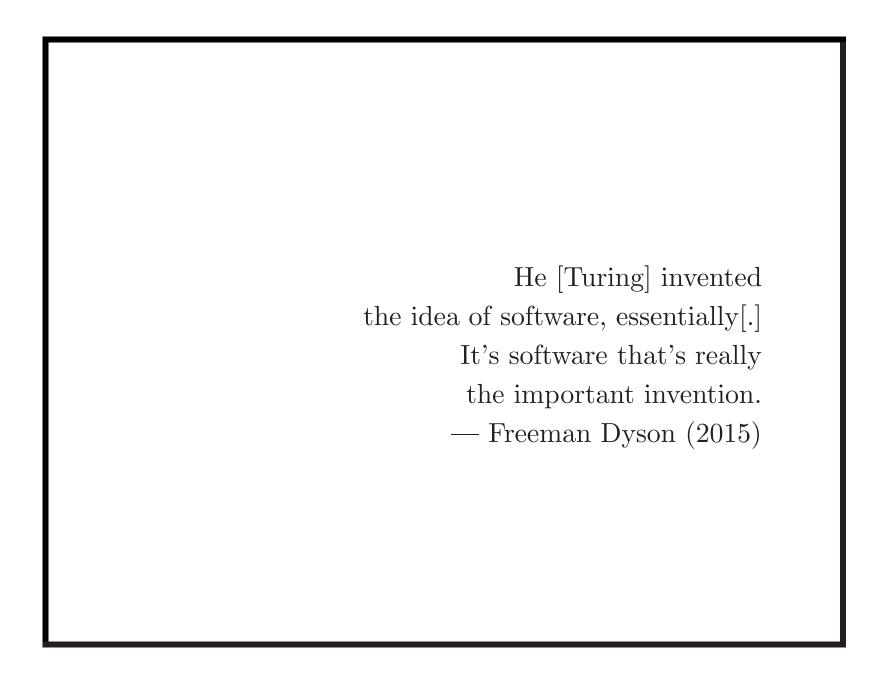
REACHABILITY \in NSPACE(log n).

- REACHABILITY with more than one terminal node also has the same complexity.
- In fact, REACHABILITY for undirected graphs is in SPACE(log n).^a
- It is well-known that REACHABILITY ∈ P.^b

^aReingold (2004).

^bSee, e.g., p. 246.





Universal Turing Machine^a

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
 - Both M and x are over the alphabet of U.
- U simulates M on x so that

$$U(M;x) = M(x).$$

• *U* is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.

^aTuring (1936) calls it "universal computing machine."

^bSee pp. 57–58 of the textbook.

The Halting Problem

- Undecidable problems are problems that have no algorithms.
 - Equivalently, they are languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$H \stackrel{\Delta}{=} \{ M; x : M(x) \neq \nearrow \}.$$

- Does M halt on input x?
- *H* is called the **halting set**.

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- \bullet When M is about to halt, U enters a "yes" state.
- If M(x) diverges, so does U.
- This TM accepts H.

H Is Not Recursive^a

- Suppose H is recursive.
- Then there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H :
 - 1: **if** $M_H(M; M) =$ "yes" **then**
 - 2: \(\neg \); {Inserting an infinite loop here.}
 - 3: **else**
 - 4: "yes";
 - 5: end if

^aTuring (1936).

H Is Not Recursive (concluded)

- Consider D(D):
 - $-D(D) = \nearrow \Rightarrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \nearrow$, a contradiction.
 - $-D(D) = \text{"yes"} \Rightarrow M_H(D; D) = \text{"no"} \Rightarrow D; D \notin H \Rightarrow D(D) = \nearrow$, a contradiction.

Comments

- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes with D(D).
 - Concepts should be familiar to computer scientists.
 - Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

^aEckert & Mauchly (1943); von Neumann (1945); Turing (1946).

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? [···]

The whole of the rest of my life might be consumed in looking at that blank sheet of paper.

— Bertrand Russell (1872–1970), Autobiography, Vol. I (1967)

Self-Loop Paradoxes^a

Russell's Paradox (1901): Consider $R = \{A : A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction." b

Epimenides and Eubulides: The Cretan says, "All

Cretans are liars."c

^aE.g., Quine (1966), The Ways of Paradox and Other Essays and Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.

^bGottlob Frege (1848–1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

^cAlso quoted in *Titus* 1:12.

Self-Loop Paradoxes (continued)

Liar's Paradox: "This sentence is false."

Hypochondriac: a patient with imaginary symptoms and ailments.^a

Sharon Stone in *The Specialist* (1994): "I'm not a woman you can trust."

Numbers 12:3: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

Psalms 116:11: "Everyone is a liar."

^aLike Gödel and the pianist Glenn Gould (1932–1982).

Self-Loop Paradoxes (continued)

- A restaurant in Boston: No Name Restaurant (1917–2020).
- U.S. Department of State (March 19, 2020): U.S. citizens who live in the United States should arrange for immediate return to the United States[.]
- The Egyptian Book of the Dead: "ye live in me and I would live in you." a

^aSee also *John* 14:10 and 17:21.

Self-Loop Paradoxes (concluded)

Jerome K. Jerome (1887), Three Men in a Boat: "How could I wake you, when you didn't wake me?"

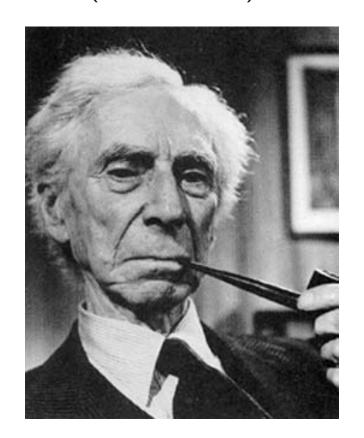
Winston Churchill (January 23, 1948): "For my part, I consider that it will be found much better by all parties to leave the past to history, especially as I propose to write that history myself."

Nicola Lacey (2004), A Life of H. L. A. Hart: "Top Secret [MI5] Documents: Burn before Reading!"

Bertrand Russell^a (1872–1970)

Norbert Wiener (1953), "It is impossible to describe Bertrand Russell except by saying that he looks like the Mad Hatter."

Karl Popper (1974), "perhaps the greatest philosopher since Kant."



^aNobel Prize in Literature (1950).

Reductions in Proving Undecidability

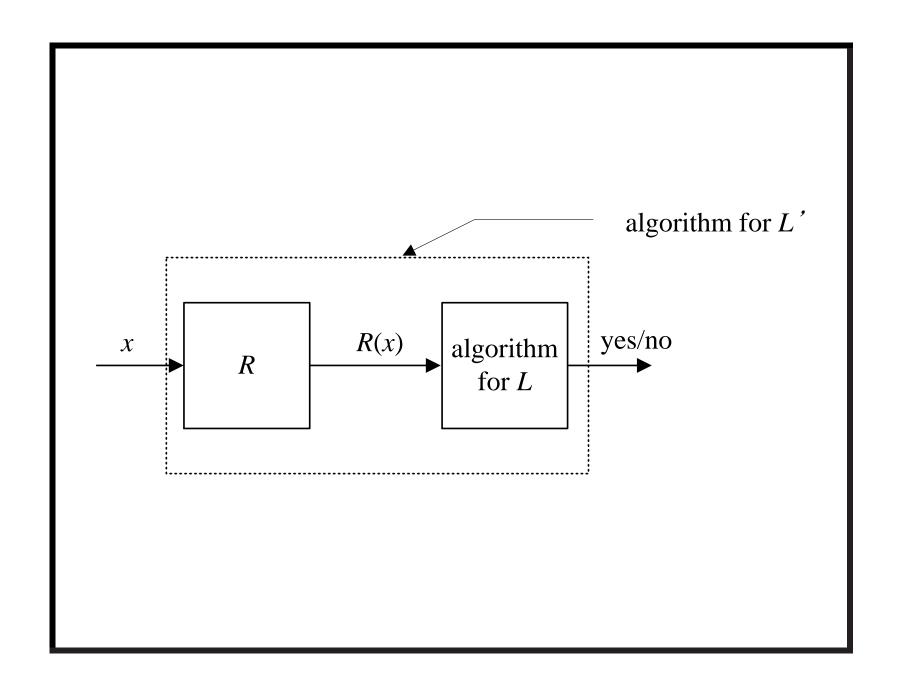
- Suppose we are asked to prove that L is undecidable.
- Suppose L' (such as H) is known to be undecidable.
- Find a computable transformation R (called reduction^a) from L' to L such that^b

$$\forall x \ \{ x \in L' \text{ if and only if } R(x) \in L \}.$$

• Now we can answer " $x \in L'$?" for any x by answering " $R(x) \in L$?" because it has the same answer.

^aPost (1944).

^bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.



Reductions in Proving Undecidability (concluded)

- L' is said to be **reduced** to L.^a
- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L', a contradiction!
- So L must be undecidable.

Theorem 8 Suppose language L_1 can be reduced to language L_2 . If L_1 is undecidable, then L_2 is undecidable.

^aIntuitively, L can be used to solve L'.

Special Cases and Reduction

- Suppose L_1 can be reduced to L_2 .
- As the reduction R maps members of L_1 to a *subset* of L_2 , a we may say L_1 is a "special case" of L_2 .
- That is one way to understand the use of the somewhat confusing term "reduction."

^aBecause R may not be onto.

 $^{^{\}rm b}$ Contributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.

Subsets and Decidability

- Suppose L_1 is undecidable and $L_1 \subseteq L_2$.
- Is L_2 undecidable?^a
- It depends.
- When $L_2 = \Sigma^*$, L_2 is decidable: Just answer "yes."
- If $L_2 L_1$ is decidable, then L_2 is undecidable.
 - Clearly,

 $x \in L_1$ if and only if $x \in L_2$ and $x \notin L_2 - L_1$.

- Therefore, if L_2 were decidable, then L_1 would be.

 $^{^{\}rm a} {\rm Contributed}$ by Ms. Mei-Chih Chang (D03922022) on October 13, 2015.

Subsets and Decidability (concluded)

- Suppose L_2 is decidable and $L_1 \subseteq L_2$.
- Is L_1 decidable?
- It depends again.
- When $L_1 = \emptyset$, L_1 is decidable: Just answer "no."
- But if $L_2 = \Sigma^*$ and $L_1 = H$, then L_1 is undecidable.

The Universal Halting Problem

• The universal halting problem:

 $H^* \stackrel{\Delta}{=} \{ M : M \text{ halts on all inputs} \}.$

• It is also called the **totality problem**.

*H** Is Not Recursive^a

- We will reduce H to H^* .
- Given the question " $M; x \in H$?", construct the following machine (this is the reduction):^b

$$M_x(y) \{M(x);\}$$

- M halts on x if and only if M_x halts on all inputs.
- In other words, $M; x \in H$ if and only if $M_x \in H^*$.
- So if H^* were recursive (recall the box for L on p. 155), H would be recursive, a contradiction.

^aKleene (1936).

^bSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_x ignores its input y; x is part of M_x 's code but not M_x 's input.

More Undecidability

- $\{M; x : \text{there is a } y \text{ such that } M(x) = y \}.$
- $\{M; x:$ the computation M on input x uses all states of M.
- $\{M; x; y : M(x) = y\}.$