
Yielding

• Fix a TM M .

• Configuration (q, w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M−→ (q′, w′, u′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q, w, u)
Mk−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′) after k ∈ N steps.

• (q, w, u)
M∗−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

Palindromesa

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

aBryson (2001), “Possibly the most demanding form of wordplay in

English[.]”

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46

100011000000100111

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47

A Matching Lower Bound for palindrome

Theorem 1 (Hennie, 1965) palindrome on single-string

TMs takes Ω(n2) steps in the worst case.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48

Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• An algorithm whose running time matches a lower

bound means it is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 49

The Kleene Stara ∗
• Let A be a set.

• The Kleene star of A, denoted by A∗, is the set of all

strings obtained by concatenating zero or more strings

from A.

– For example, suppose A = { 0, 1 }.
– Then

A∗ = { ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

– Note that every string in A∗ must be of finite length.

aKleene (1956).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 50

Stephen Kleene (1909–1994)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

The two words in the language I most respect

are Yes and No.

— Henry James (1843–1916),

The Portrait of a Lady (1881)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52

Decidability and Recursive Languages

• Let L ⊆ (Σ− {�})∗ be a language, i.e., a set of strings

of non-� symbols, with a finite length.

– For example, { 2, 3, 5, 7, 11, . . . } (the primes).

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x �∈ L, then M(x) = “no.”

• We say M decides L.

• If there exists a TM that decides L, then L is said to be

recursivea or decidable.

aLittle to do with the concept of “recursive” calls.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

Recursive and Nonrecursive Languages: Examples

• The set of palindromes over any alphabet is recursive.a

– palindrome cannot be solved by finite state

automata.

– In fact, finite-state automata are equivalent to

read-only, right-moving TMs.b

• The set of prime numbers { 2, 3, 5, 7, 11, 13, 17, . . .} is
recursive.c

aThere is a program that will halt and it returns “yes” if and only if

the input is a palindrome.
bThanks to a lively discussion on September 15, 2015.
cThere is a program that will halt and it returns “yes” if and only if

the input is a prime.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Recursive and Nonrecursive Languages: Examples
(concluded)

• The set of C programs that do not contain a while, a

for, or a goto is recursive.a

• But, the set of C programs that do not contain an

infinite loop is not recursive.b

aThere is a program that will halt and it returns “yes” if and only if

the input C code does not contain any of the keywords.
bSo there is no algorithm that will answer correctly in a finite amount

of time if a C program will run into an infinite loop on some inputs (see

p. 145).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

Acceptability and Recursively Enumerable Languages

• Let L ⊆ (Σ− {�})∗ be a language.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x �∈ L, then M(x) =↗.a

• We say M accepts L.

• If L is accepted by some TM, then L is said to be

recursively enumerable or semidecidable.b

aThis part is different from recursive languages.
bPost (1944).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56

Acceptability and Recursively Enumerable Languages
(concluded)

• A recursively enumerable language can be generated by

a TM, thus the name.a

– It means there is a program such that every x ∈ L

(and only they) will be printed out eventually.

• Of course, if L is infinite in size, this program will not

terminate.

aProposition 3.5 on p. 61 of the textbook proves it. Thanks to lively

class discussions on September 20, 2011, and September 12, 2017.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

Emil Post (1897–1954)

W. V. Quine (1985), “E.

L. Post worked alone in

New York, little heeded.”

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.

• Let TM M decide L.

• Need to design a TM that accepts L.

• We will modify M to obtain an M ′ that accepts L.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

The Proof (concluded)

• M ′ is identical to M except that when M is about to

halt with a “no” state, M ′ goes into an infinite loop.

– Simply replace every instruction that results in a

“no” state with ones that move the cursor to the

right forever and never halts.

• M ′ accepts L.

– If x ∈ L, then M ′(x) = M(x) = “yes.”

– If x �∈ L, then M(x) = “no” and so M ′(x) =↗.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60

Recursively Enumerable Languages: Examples

• The set of C program-input pairs that do not run into

an infinite loop is recursively enumerable.

– Just run its binary code in a simulator environment.

– Then the simulator will terminate if and only if the C

program will terminate.

– When the C program terminates, the simulator

simply exits with a “yes” state.

• The set of C programs that contain an infinite loop is

not recursively enumerable.a

aSee p. 165 for the proof.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

Turing-Computable Functions

• Let f : (Σ− {�})∗ → Σ∗.

– Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string x ∈ (Σ− {�})∗,
M(x) = f(x).

– f may be a partial function.

– Then f(x) is undefined if and only if M(x) diverges.

• We call f a (partial) recursive functiona if such an

M exists.

aGödel (1931, 1934); Kleene (1936).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

Kurt Gödela (1906–1978)

Quine (1978), “this the-

orem [· · ·] sealed his im-

mortality.”

aThis photo was taken by Alfred Eisenstaedt (1898–1995).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

Church’s Thesis

• What is computable is Turing-computable; TMs are

algorithms.a

• No “intuitively computable” problems have been shown

not to be Turing-computable (yet).b

aChurch (1936); Kleene (1943, 1953).
bQuantum computer of Manin (1980) and Feynman (1982); DNA

computer of Adleman (1994).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64

Church’s Thesis (continued)

• Many other computation models have been proposed.

– Recursive function,a λ calculus,b boolean

circuits,c formal language,d assembly

language-like RAM,e cellular automaton,f

recurrent neural network,g and extensions of the

Turing machine (more strings, two-dimensional

strings, etc.).

aSkolem (1923); Gödel (1934); Kleene (1936).
bChurch (1936).
cShannon (1937).
dPost (1943).
eShepherdson & Sturgis (1963).
fConway (1970).
gSiegelmann & Sontag (1991).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

Church’s Thesis (concluded)

• All have been proved to be equivalent.

• Church’s thesis is also called the Church-Turing

Thesis.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66

Alonso Church (1903–1995)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

Extended Church’s Thesisa

• All “reasonably succinct encodings” of problems are

polynomially related (e.g., n2 vs. n6).

– Representations of a graph as an adjacency matrix

and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.

∗ 10012 vs. 1111111111.

• All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász at-

tributed to Leonid Levin.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

Extended Church’s Thesis (concluded)

• Representations that are not succinct may give

misleadingly low complexities.

– Consider an algorithm with binary inputs that runs

in 2n steps.

– Suppose the input uses unary representation instead.

– Then the same algorithm runs in linear time because

the input length is now 2n!

• So a succinct representation means honest accounting.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69

Physical Church-Turing Thesis

• The physical Church-Turing thesis states that:

Anything computable in physics can also be

computed on a Turing machine.a

• The universe is a Turing machine.b

aCooper (2012).
bEdward Fredkin’s (1992) digital physics.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

The Strong Church-Turing Thesisa

• The strong Church-Turing thesis states that:b

A Turing machine can compute any function

computable by any “reasonable” physical device

with only polynomial slowdown.c

• A CPU, a GPU, and a DSP chip are good examples of

physical devices.d

aVergis, Steiglitz, & Dickinson (1986).
bhttp://ocw.mit.edu/courses/mathematics/18-405j-advanced

-complexity-theory-fall-2001/lecture-notes/lecture10.pdf
cOr speedup.
dThanks to a lively discussion on September 23, 2014.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

The Strong Church-Turing Thesis (continued)

• Factoring is believed to be a hard problem for Turing

machines (but there is no proof yet).

• But a quantum computer can factor numbers in

probabilistic polynomial time.a

• If a large-scale stable quantum computer can be reliably

built, the strong Church-Turing thesis may be refuted.b

aShor (1994).
bContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

September 22, 2015.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

The Strong Church-Turing Thesis (concluded)

• As of 2019,a

There is no publicly known application of

commercial interest based upon quantum

algorithms that could be run on a near-term

analog or digital NISQb computer that would

provide an advantage over classical approaches.

aGrumbling & Horowitz (2019).
b“Noisy, Intermediate-Scale Quantum.”

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple

M = (K,Σ, δ, s).

• K,Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.
• All strings start with a �.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is the last

(kth) string.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

A 2-String TM

δ

�1000110000111001110001110���

�111110000�������������������

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first

symbol of the input.

– The cursor of the second string is positioned at the

last symbol of the input.

– The symbols under the cursors are then compared.

– The two cursors are then moved in opposite

directions until the ends are reached.

– The machine accepts if and only if the symbols under

the two cursors are identical at all steps.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

δ

�ababbaabbaabbaabbaba���

�ababbaabbaabbaabbaba���

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

palindrome Revisited (concluded)

• The running times of a 2-string TM and a single-string

TM are quadratically related: n2 vs. n.

• This is consistent with the extended Church’s thesis.a

– “Reasonable” models are related polynomially in

running times.

aRecall p. 68.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Configurations and Yielding

• The concept of configuration and yielding is the same as

before except that a configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that � is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,

2k︷ ︸︸ ︷
�, x︸︷︷︸

1

, �, ε︸︷︷︸
2

, �, ε︸︷︷︸
3

, . . . , �, ε︸︷︷︸
k

).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

Time seemed to be

the most obvious measure

of complexity.

— Stephen Arthur Cook (1939–)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

Time Complexity

• The multistring TM is the basis of our notion of the

time expended by TMs.

• If a k-string TM M halts after t steps on input x, then

the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81

Time Complexity (concluded)

• Machine M operates within time f(n) for f : N→ N

if for any input string x, the time required by M on x is

at most f(|x |).
– |x | is the length of string x.

• Function f(n) is a time bound for M .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82

Time Complexity Classesa

• Suppose language L ⊆ (Σ− {�})∗ is decided by a

multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

• Trivially, TIME(f(n)) ⊆ TIME(g(n)) if f(n) ≤ g(n) for

all n.

aHartmanis & Stearns (1965); Hartmanis, Lewis, & Stearns (1965).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83

Juris Hartmanisa (1928–)

aTuring Award (1993).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84

Richard Edwin Stearnsa (1936–)

aTuring Award (1993).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85

The Simulation Technique

Theorem 3 Given any k-string M operating within time

f(n), there exists a (single-string) M ′ operating within time

O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86

The Proof

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of

M by this string of M ′:

(q,�w′
1u1 � w′

2u2 � · · ·� w′
kuk ��).

– � is a special delimiter.

– w′
i is wi with the firsta and last symbols “primed.”

– It serves the purpose of “,” in a configuration.b

aThe first symbol is of course �.
bAn alternative is to use (q,�w′

1|u1 � w′
2|u2 � · · · � w′

k|uk � �) by

priming only � in wi, where “|” is a new symbol.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 87

The Proof (continued)

• The first symbol of w′
i is the primed version of �: �′.

– Cursors are not allowed to move to the left of �.a

– Now the cursor of M ′ can move between the

simulated strings of M .b

• The “priming” of the last symbol of each wi ensures that

M ′ knows which symbol is under each cursor of M .c

aRecall p. 24.
bThanks to a lively discussion on September 22, 2009.
cAdded because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 88

The Proof (continued)

• The initial configuration of M ′ is

(s,��′′ x�

k − 1 pairs︷ ︸︸ ︷
�′′ � · · ·�′′ ��).

– �′′ is double-primed because it is the beginning and

the ending symbol as the cursor is reading it.a

– Again, think of it as a new symbol.

aAdded after the class discussion on September 20, 2011.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 89

The Proof (continued)

• We simulate each move of M thus:

1. M ′ scans the string to pick up the k symbols under

the cursors.

– The states of M ′ must be enlarged to include

K × Σk to remember them.a

– The transition functions of M ′ must also reflect it.

2. M ′ then changes the string to reflect the overwriting

of symbols and cursor movements of M .

aRecall the TM program on p. 36.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90

The Proof (continued)

• It is possible that some strings of M need to be

lengthened (see next page).

– The linear-time algorithm on p. 39 can be used for

each such string.

• The simulation continues until M halts.

• M ′ then erases all strings of M except the last one.a

aWhatever remains on the tape of M ′ is considered output. So �′s
and �′′s need to be removed.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 91

The Proof (continued)a

string 1 string 2 string 3 string 4

string 1 string 2 string 3 string 4

aIf we interleave the strings, the simulation may be easier. Con-

tributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September

22, 2015. This is similar to constructing a single-string multi-track TM

in, e.g., Hopcroft & Ullman (1969).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92

The Proof (continued)

• Since M halts within time f(|x |), none of its strings

ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).
• Simulating each step of M takes, per string of M ,

O(kf(|x |)) steps.
– O(f(|x |)) steps to collect information from this

string.

– O(kf(|x |)) steps to write and, if needed, to lengthen

the string.

aWe tacitly assume f(n) ≥ n.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 93

The Proof (concluded)

• There are k strings.

• So M ′ takes O(k2f(|x |)) steps to simulate each step of

M .

• As there are f(|x |) steps of M to simulate, M ′ operates
within time O(k2f(|x |)2).a

aIs the time reduced to O(kf(|x |)2) if the interleaving data structure

is adopted?

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 94

Simulation with Two-String TMs

We can do better with two-string simulating TMs.

Theorem 4 Given any k-string M operating within time

f(n), k > 2, there exists a two-string M ′ operating within

time O(f(n) log f(n)) such that M(x) = M ′(x) for any input

x.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 95

Linear Speedupa

Theorem 5 Let L ∈ TIME(f(n)). Then for any ε > 0,

L ∈ TIME(f ′(n)), where f ′(n) Δ
= εf(n) + n+ 2.

See Theorem 2.2 of the textbook for a proof.

aHartmanis & Stearns (1965).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96

Proof Ideas

• Take the TM program on p. 36.

• It accepts if and only if the input contains two

consecutive 1’s.

• Assume M = (K,Σ, δ, s), where

K = { s′, s00, s01, s10, s11, . . . , “yes”, “no” },
Σ = { 0, 1, (00), (01), (10), (11), (0�), (1�),�, � }.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 97

Proof Ideas (continued)

• First convert the input into 2-tuples onto the second

string.

• So

11︷ ︸︸ ︷
10011001110 becomes

6︷ ︸︸ ︷
(10)(01)(10)(01)(11)(0�).

• The length is therefore about halved.

• The transition table below covers only the second string

for brevity.

• It presents only the key lines of code.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98

Proof Ideas (continued)

p ∈ K σ ∈ Σ δ(p, σ)

...
...

...

s′ (00) (s′, (00),→)

s′ (01) (s01, (01),→)

s′ (10) (s′, (10),→)

s′ (11) (“yes”, (11),−)
s′ (0�) (“no”, (0�),−)
s′ (1�) (“no”, (1�),−)
s′ � (“no”,�,−)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99

Proof Ideas (concluded)

s01 (10) (“yes”, (10),−)
s01 (11) (“yes”, (11),−)
s01 (01) (s01, (01),→)

s01 (00) (s′, (00),→)

s01 (0�) (“no”, (1�),−)
s01 (1�) (“yes”, (1�),−)
s01 � (“no”,�,−)
...

...
...

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 100

Implications of the Speedup Theorem

• State size can be traded for speed.a

• If the running time is cn with c > 1, then c can be made

arbitrarily close to 1.

• If the running time is superlinear, say 14n2 + 31n, then

the constant in the leading term (14 in this example)

can be made arbitrarily small.

– Arbitrary linear speedup can be achieved.b

– This justifies the big-O notation in the analysis of

algorithms.

amk · |Σ|3mk-fold increase to gain a speedup of O(m). No free lunch.
bCan you apply the theorem multiple times to achieve superlinear

speedup? Thanks to a question by a student on September 21, 2010.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 101

P

• By the linear speedup theorem, any polynomial time

bound can be represented by its leading term nk for

some k ≥ 1.

• If L ∈ TIME(nk) for some k ∈ N, it is a polynomially

decidable language.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is

denoted by P:

P
Δ
=

⋃
k>0

TIME(nk).

• P contains problems that can be efficiently solved.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 102

Philosophers have explained space.

They have not explained time.

— Arnold Bennett (1867–1931),

How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation

attributed to me that says

640K of memory is enough.

— Bill Gates (1996)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103

Space Complexity

• Consider a k-string TM M with input x.

• Assume non-� is never written over by �.a
– The purpose is not to artificially reduce the space

needs (see below).

• If M halts in configuration

(H,w1, u1, w2, u2, . . . , wk, uk),

then the space required by M on input x is

k∑
i=1

|wiui |.

aCorrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on

September 27, 2006.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104

Space Complexity (continued)

• Suppose we do not charge the space used only for input

and output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output

is a k-string TM that satisfies the following conditions.

– The input string is read-only.a

– The cursor on the last string never moves to the left.

∗ The output string is essentially write-only.

– The cursor of the input string does not go beyond

the first �.
aCalled an off-line TM in Hartmanis, Lewis, & Stearns (1965).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105

Space Complexity (concluded)

• If M is a TM with input and output, then the space

required by M on input x is

k−1∑
i=2

|wiui |.

• Machine M operates within space bound f(n) for

f : N→ N if for any input x, the space required by M

on x is at most f(|x |).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106

Space Complexity Classes

• Let L be a language.

• Then

L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(log n).a

• A linear speedup theorem similar to the one on p. 96

exists, so constant coefficients do not matter.

aKeep 3 counters.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107

If she can hesitate as to “Yes,”

she ought to say “No” directly.

— Jane Austen (1775–1817),

Emma (1815)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108

Nondeterminisma

• A nondeterministic Turing machine (NTM) is a

quadruple N = (K,Σ,Δ, s).

• K,Σ, s are as before.

• Δ ⊆ K × Σ× (K ∪ {h, “yes”, “no”})× Σ× {←,→,−} is
a relation, not a function.b

– For each state-symbol combination (q, σ), there may

be multiple valid next steps.

– Multiple lines of code may be applicable.

– But only one will be taken.

aRabin & Scott (1959).
bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,

2008.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109

Nondeterminism (continued)

• As before, a program contains lines of code:

(q1, σ1, p1, ρ1, D1) ∈ Δ,

(q2, σ2, p2, ρ2, D2) ∈ Δ,

...

(qn, σn, pn, ρn, Dn) ∈ Δ.

• But we cannot write

δ(qi, σi) = (pi, ρi, Di)

as in the deterministic case (p. 25) anymore.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110

Nondeterminism (concluded)

• A configuration yields another configuration in one step

if there exists a rule in Δ that makes this happen.

• There remains only one thread of computation.a

– Nondeterminism is not parallelism, multiprocessing,

multithreading, or quantum computation.

aThanks to a lively discussion on September 22, 2015.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111

Michael O. Rabina (1931–)

aTuring Award (1976).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112

Dana Stewart Scotta (1932–)

aTuring Award (1976).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113

Computation Tree and Computation Path

�����

�

����

�����

�

�

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114

Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there

is a sequence of valid configurations that ends in “yes.”

• In other words,

– If x ∈ L, then N(x) = “yes” for some computation

path.

– If x �∈ L, then N(x) �= “yes” for all computation

paths.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115

Decidability under Nondeterminism (continued)

• It is not required that the deciding NTM halts in all

computation paths.a

• If x �∈ L, no nondeterministic choices should lead to a

“yes” state.

• The key is the algorithm’s overall behavior not whether

it gives a correct answer for each particular run.

• Note that determinism is a special case of

nondeterminism.

aUnlike the deterministic case (p. 53). So “accepts” may be a more

proper term. Some books use “decides” only when the NTM always

halts.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116

Decidability under Nondeterminism (concluded)

• For example, suppose L is the set of primes.a

• Then we have the primality testing problem.

• An NTM N decides L if:

– If x is a prime, then N(x) = “yes” for some

computation path.

– If x is not a prime, then N(x) �= “yes” for all

computation paths.

aContributed by Mr. Yu-Ming Lu (R06723032, D08922008) on March

7, 2019.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117

