Computation That Counts

And though the holes were rather small, they had to count them all.
 - The Beatles, A Day in the Life (1967)

Counting Problems

- Counting problems are concerned with the number of solutions.
- \#sAT: the number of satisfying truth assignments to a boolean formula.
- \#hamiltonian path: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
- The decision problem has a solution if and only if the solution count is larger than 0 .
- But they can be harder than their decision versions.

Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f:\{0,1\}^{*} \rightarrow \mathbb{Z}$.
- GCD, LCM, matrix-matrix multiplication, etc.
- If $\#$ sat $\in F P$, then $P=N P$.
- Given boolean formula ϕ, calculate its number of satisfying truth assignments, k, in polynomial time.
- Declare " $\phi \in \mathrm{SAT}^{\prime}$ " if and only if $k \geq 1$.
- The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- CYClE asks if a directed graph contains a cycle. ${ }^{\text {a }}$
- \#CYCLE counts the number of cycles in a directed graph.
- CYCle is in P by a simple greedy algorithm.
- But \#cycle is hard unless $\mathrm{P}=\mathrm{NP}$.

[^0]
Hardness of \#CYCLE

Theorem 97 (Arora, 2006) If \#cycle $\in F P$, then $P=N P$.

- It suffices to reduce the NP-complete hamiltonian cycle to \#CyCle.
- Consider a directed graph G with n nodes.
- Define $N \equiv\left\lfloor n \log _{2}(n+1)\right\rfloor$.
- Replace each edge $(u, v) \in G$ with this subgraph:

The Proof (continued)

- This subgraph has $N+1$ levels.
- There are now 2^{N} paths from u to v.
- Call the resulting digraph G^{\prime}.
- Recall that a Hamiltonian cycle on G contains n edges.
- To each Hamiltonian cycle on G, there correspond $\left(2^{N}\right)^{n}=2^{n N}$ cycles (not necessarily Hamiltonian) on G^{\prime}.
- So if G contains a Hamiltonian cycle, then G^{\prime} contains at least $2^{n N}$ cycles.

The Proof (continued)

- Now suppose G contains no Hamiltonian cycles.
- Then every cycle on G contains at most $n-1$ nodes.
- There are hence at most n^{n-1} cycles on G.
- Each k-node cycle on G induces $\left(2^{N}\right)^{k}$ cycles on G^{\prime}.
- So G^{\prime} contains at most $n^{n-1}\left(2^{N}\right)^{n-1}$ cycles.
- As $n \geq 1$,

$$
\begin{aligned}
& n^{n-1}\left(2^{N}\right)^{n-1}=2^{n N} \frac{n^{n-1}}{2^{N}} \leq 2^{n N} \frac{n^{n-1}}{2^{n \log _{2}(n+1)-1}} \\
= & 2^{n N} \frac{2 n^{n-1}}{(n+1)^{n}} \leq 2^{n N} \frac{2}{n+1}\left(\frac{n}{n+1}\right)^{n-1}<2^{n N}
\end{aligned}
$$

The Proof (concluded)

- In summary, $G \in$ hamiltonian cycle if and only if G^{\prime} contains at least $2^{n N}$ cycles.
- G^{\prime} contains at most $n^{n} 2^{n N}$ cycles.
- Every k-cycle on G induces $\left(2^{N}\right)^{k} \leq 2^{n N}$ cycles on G^{\prime}.
- Every cycle on G^{\prime} is associated with a unique cycle on G.
- There are at most n^{n} cycles in G.
- This number has a polynomial length $O\left(n^{2} \log n\right)$.
- Hence hamiltonian cycle \in P.

Counting Class \#P

A function f is in $\# \mathrm{P}($ or $f \in \# \mathrm{P}$) if

- There exists a polynomial-time NTM M.
- $M(x)$ has $f(x)$ accepting paths for all inputs x.

Some \#P Problems

- $f(\phi)=$ number of satisfying truth assignments to ϕ.
- The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
- Hence $f \in \# \mathrm{P}$.
- f is also called \#sat.
- \#hamiltonian Path.
- \#3-COLORING.

\#P Completeness

- Function f is \#P-complete if
$-f \in \#$ P.
$-\# \mathrm{P} \subseteq \mathrm{FP}^{f}$.
* Every function in \#P can be computed in polynomial time with access to a black box ${ }^{\text {a }}$ for f.
- It said to be polynomial-time Turing-reducible to f.
- Oracle f can be accessed only a polynomial number of times.
${ }^{\text {a }}$ Think of it as a subroutine. It is also called an oracle.

\#sAT Is \#P-Complete ${ }^{\text {a }}$

- First, it is in \#P (p. 859).
- Let $f \in \# \mathrm{P}$ compute the number of accepting paths of M.
- Cook's theorem uses a parsimonious reduction from M on input x to an instance ϕ of SAt.
- That is, $M(x)$'s number of accepting paths equals ϕ 's number of satisfying truth assignments.
- Call the oracle \#sat with ϕ to obtain the desired answer regarding $f(x)$.
${ }^{\text {a }}$ Valiant (1979); in fact, \#2sAT is also \#P-complete.

Leslie G. Valiant ${ }^{\text {a }}$ (1949-)

Avi Wigderson (2009), "Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [...] We all became addicted to this remarkable throughput, and expect more."

${ }^{\text {a }}$ Turing Award (2010).

CYCLE COVER

- A set of node-disjoint cycles that cover all nodes in a directed graph is called a cycle cover.

- There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 98 cycle cover and bipartite perfect matching (p. 519) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G^{\prime} from any directed graph G.
- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G^{\prime}.
- And vice versa.

Corollary 99 CYCLE COVER $\in P$.

Permanent

- The permanent of an $n \times n$ integer matrix A is

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)}
$$

- π ranges over all permutations of n elements.
- $0 / 1$ PERMANENT computes the permanent of a $0 / 1$ (binary) matrix.
- The permanent of a binary matrix is at most n !.
- Simpler than determinant (9) on p. 523: no signs.
- Surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 524).
- \#bipartite perfect matching is related to permanent.

Proposition 100 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
- The (i, j) th entry $A_{i j}$ is 1 if $(i, j) \in E$ and 0 otherwise.
- Then $\operatorname{perm}(A)=$ number of perfect matchings in G.

Illustration of the Proof Based on p. 865 (Left)

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & \boxed{1} & 0 \\
0 & \boxed{1} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \boxed{1} \\
1 & 0 & \boxed{1} & 1 & 0 \\
\boxed{1} & 0 & 0 & 0 & 1
\end{array}\right]
$$

- $\operatorname{perm}(A)=4$.
- The permutation corresponding to the perfect matching on p. 865 is marked.

Permanent and Counting Cycle Covers

Proposition 101 0/1 Permanent and cycle cover are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 865 (right).
- Then $\operatorname{perm}(A)=$ number of cycle covers.

Three Parsimoniously Equivalent ${ }^{\text {a }}$ Problems

We summarize Propositions 98 (p. 864) and 100 (p. 867) in the following.

Lemma 102 0/1 PERMANENT, BIPARTITE PERFECT
MATCHING, and CYCLE COVER are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact \#P-complete.

[^1]
WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The cycle count of G is sum of the weights of all cycle covers.
- Let A be G 's adjacency matrix but $A_{i j}=w_{i}$ if the edge (i, j) has weight w_{i}.
- Then $\operatorname{perm}(A)=G$'s cycle count (same proof as Proposition 101 on p. 870).
- \#CyCle cover is a special case: All weights are 1.

An Example ${ }^{\text {a }}$

There are 3 cycle covers, and the cycle count is

$$
(4 \cdot 1 \cdot 1) \cdot(1)+(1 \cdot 1) \cdot(2 \cdot 3)+(4 \cdot 2 \cdot 1 \cdot 1)=18 .
$$

[^2]
Three \#P-Complete Counting Problems

Theorem 103 (Valiant, 1979) 0/1 PERMANENT, \#BIPARTITE PERFECT MATCHING, and \#CYCLE COVER are \#P-complete.

- By Lemma 102 (p. 871), it suffices to prove that \#CYCLE COVER is \#P-complete.
- \#sat is \#P-complete (p. 861).
- \#3sat is \#P-complete because it and \#sat are parsimoniously equivalent.
- We shall prove that \#3sat is polynomial-time Turing-reducible to \#cycle cover.

The Proof (continued)

- Let ϕ be the given 3sat formula.
- It contains n variables and m clauses (hence $3 m$ literals).
- It has \# ϕ satisfying truth assignments.
- First we construct a weighted directed graph H with cycle count

$$
\# H=4^{3 m} \times \# \phi .
$$

- Then we construct an unweighted directed graph G.
- We shall make sure \#H (hence \# ϕ) is polynomial-time Turing-reducible to $\# G$ (G 's number of cycle covers).

The Proof: Comments (continued)

- Our reduction is not expected to be parsimonious.
- Suppose otherwise and

$$
\# \phi=\# G
$$

- Hence G has a cycle cover if and only if ϕ is satisfiable.
- But cycle cover $\in P$ (p. 864).
- Thus 3sAT $\in P$, a most unlikely event!

The Proof: the Clause Gadget (continued)

- Each clause is associated with a clause gadget.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- They are not parallel lines as bold edges are schematic only (preview p. 890).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select all 3 bold edges.
- The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment: (1) $a=0, b=0, c=1$, (2) $a=0, b=1, c=0$, etc.

The Proof: the XOR Gadget (continued)

The Proof: Properties of the XOR Gadget (continued)

- The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- Only those cycle covers that take exactly one schematic edge in every XOR gadget will have nonzero weights.
- There will be $3 m$ XOR gadgets, one for each literal.

The Proof: Properties of the XOR Gadget (continued)
Total weight of $-1-2+6-3=0$ for cycle covers not entering or leaving it.

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $-1+1-6+2+3+1=0$ for cycle covers entering at u and leaving at v^{\prime}. ${ }^{\text {a }}$

- Same for cycle covers entering at v and leaving at u^{\prime}.
${ }^{\text {a }}$ Corrected by Mr. Yu-Tsung Dai (B91201046) and Mr. Che-Wei Chang (R95922093) on December 27, 2006.

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $1+2+2-1+1-1=4$ for cycle covers entering at u and leaving at u^{\prime}.

- Same for cycle covers entering at v and leaving at v^{\prime}.

The Proof: Summary (continued)

- Cycle covers not entering all of the XOR gadgets contribute 0 to the cycle count.
- Let x denote an XOR gadget not entered for some cycle covers for H.
- Now, such cycle covers' contribution to the cycle count totals, by p. 882,

$$
\begin{aligned}
& \sum_{\text {cycle cover } c \text { not entering } x}(\text { weight of } c \text { for } H) \\
= & \sum_{\text {cycle cover } c \text { not entering } x}(\text { weight of } c \text { for } H-x) \times(\text { weight of } c \text { for } x) \\
= & \sum_{\text {cycle cover } c \text { not entering } x}(\text { weight of } c \text { for } H-x) \times 0=0 .
\end{aligned}
$$

The Proof: Summary (continued)

- Cycle covers entering any of the XOR gadgets and leaving illegally contribute 0 to the cycle count by p. 883 .
- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4.
- Each such act multiplies the weight by 4 according to p. 884 .

The Proof: Summary (continued)

- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
- Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to respect the XOR gadgets.

The Proof: the Choice Gadget (continued)

- One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

Full Graph $(w \vee x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

The Proof: a Key Observation (continued)

Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

$$
w=1, x=0, y=0, z=1 \Leftrightarrow \text { One Cycle Cover }
$$

The Proof: a Key Corollary (continued)

- Recall that there are $3 m$ XOR gadgets.
- Each satisfying truth assignment to ϕ contributes $4^{3 m}$ to the cycle count \#H.
- Hence

$$
\begin{equation*}
\# H=4^{3 m} \times \# \phi, \tag{27}
\end{equation*}
$$

as desired.

$$
" w=1, x=0, y=0, z=1 " \text { Adds } 4^{6} \text { to Cycle Count }
$$

The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be efficiently replaced by some unweighted graph G.
- Furthermore, knowing $\# G$ should enable us to calculate \#H efficiently.
- This done, $\# \phi$ will have been Turing-reducible to $\# G$. ${ }^{\mathrm{a}}$
- We proceed to construct this graph G.
${ }^{\text {a }}$ By way of $\# H$.

The Proof: Construction of G (continued)

- Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):

- The cycle count $\# H$ remains unchanged.

The Proof: Construction of G (continued)

- We move on to edges with weight -1 .
- First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 877), and there are m of them (one per clause).
- Each revised XOR gadget contains 7 nodes (p. 896), and there are $3 m$ of them (one per literal).
- Each choice gadget contains 2 nodes (p. 888), and there are $n \leq 3 m$ of them (one per variable).
- So

$$
M \leq 4 m+21 m+6 m=31 m
$$

The Proof: Construction of G (continued)

- $\# H \leq 2^{L}$ for some $L=O(m \log m)$.
- The maximum absolute value of the edge weight is 1 .
- Hence each term in the permanent is at most 1.
- There are $M!\leq(31 m)$! terms.
- Hence

$$
\begin{align*}
\# H & \leq \sqrt{2 \pi(31 m)}\left(\frac{31 m}{e}\right)^{31 m} e^{\frac{1}{12 \times(31 m)}} \\
& =2^{O(m \log m)} \tag{28}
\end{align*}
$$

by a refined Stirling's formula.

The Proof: Construction of G (continued)

- Replace each edge with weight -1 with the following:

- Each increases the number of cycle covers 2^{L+1}-fold.
- The desired unweighted G has been obtained.

The Proof (continued)

- $\# G$ equals $\# H$ after replacing each appearance -1 in $\# H$ with 2^{L+1} :

$$
\begin{aligned}
& \# H=\cdots+\overbrace{1 \cdot 1 \cdots(-1) \cdots 1}^{\text {a cycle cover }}+\cdots, \\
& \# G=\cdots+\overbrace{1 \cdot 1 \cdots 2^{L+1} \cdots 1}^{\text {a cycle cover }}+\cdots
\end{aligned}
$$

- Let $\# G=\sum_{i=0}^{n} a_{i} \times\left(2^{L+1}\right)^{i}$, where $0 \leq a_{i}<2^{L+1}$.
- Recall that $\# H \leq 2^{L}$ (p. 898).
- So each a_{i} counts the number of cycle covers with i edges of weight -1 as there is no "overflow" in $\# G$.

The Proof (concluded)

- We conclude that

$$
\# H=a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}
$$

indeed easily computable from $\# G$.

- We know $\# H=4^{3 m} \times \# \phi$ from Eq. (27) on p. 893.
- So

$$
\# \phi=\frac{a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}}{4^{3 m}}
$$

- Equivalently,

$$
\# \phi=\frac{\# G \bmod \left(2^{L+1}+1\right)}{4^{3 m}}
$$

Finis

[^0]: ${ }^{\text {a }} \mathrm{A}$ cycle has no repeated nodes.

[^1]: ${ }^{\text {a }}$ Meaning the numbers of solutions are equal in a reduction.

[^2]: ${ }^{\text {a }}$ Each edge has weight 1 unless stated otherwise.

