Computation That Counts

And though the holes were rather small, they had to count them all. — The Beatles, A Day in the Life (1967)

Counting Problems

- Counting problems are concerned with the number of solutions.
 - #SAT: the number of satisfying truth assignments to a boolean formula.
 - #HAMILTONIAN PATH: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
 - The decision problem has a solution if and only if the solution count is larger than 0.
- But they can be harder than their decision versions.

Decision and Counting Problems

• FP is the set of polynomial-time computable functions $f: \{0,1\}^* \to \mathbb{Z}.$

- GCD, LCM, matrix-matrix multiplication, etc.

- If #SAT \in FP, then P = NP.
 - Given boolean formula ϕ , calculate its number of satisfying truth assignments, k, in polynomial time.

- Declare " $\phi \in SAT$ " if and only if $k \ge 1$.

• The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- CYCLE asks if a directed graph contains a cycle.^a
- #CYCLE counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But #CYCLE is hard unless P = NP.

^aA cycle has no repeated nodes.

Hardness of #CYCLE

Theorem 97 (Arora, 2006) If $\#CYCLE \in FP$, then P = NP.

- It suffices to reduce the NP-complete HAMILTONIAN CYCLE to #CYCLE.
- Consider a *directed* graph G with n nodes.

• Define
$$N \equiv \lfloor n \log_2(n+1) \rfloor$$
.

• Replace each edge $(u, v) \in G$ with this subgraph:

The Proof (continued)

- This subgraph has N + 1 levels.
- There are now 2^N paths from u to v.
- Call the resulting digraph G'.
- Recall that a Hamiltonian cycle on G contains n edges.
- To each Hamiltonian cycle on G, there correspond $(2^N)^n = 2^{nN}$ cycles (not necessarily Hamiltonian) on G'.
- So if G contains a Hamiltonian cycle, then G' contains at least 2^{nN} cycles.

The Proof (continued)

- Now suppose G contains no Hamiltonian cycles.
- Then every cycle on G contains at most n-1 nodes.
- There are hence at most n^{n-1} cycles on G.
- Each k-node cycle on G induces $(2^N)^k$ cycles on G'.
- So G' contains at most $n^{n-1}(2^N)^{n-1}$ cycles.
- As $n \ge 1$,

$$n^{n-1} (2^N)^{n-1} = 2^{nN} \frac{n^{n-1}}{2^N} \le 2^{nN} \frac{n^{n-1}}{2^{n\log_2(n+1)-1}}$$
$$= 2^{nN} \frac{2n^{n-1}}{(n+1)^n} \le 2^{nN} \frac{2}{n+1} \left(\frac{n}{n+1}\right)^{n-1} < 2^{nN}.$$

The Proof (concluded)

- In summary, $G \in$ HAMILTONIAN CYCLE if and only if G' contains at least 2^{nN} cycles.
- G' contains at most $n^n 2^{nN}$ cycles.
 - Every k-cycle on G induces $(2^N)^k \leq 2^{nN}$ cycles on G'.
 - Every cycle on G' is associated with a unique cycle on G.
 - There are at most n^n cycles in G.
- This number has a polynomial length $O(n^2 \log n)$.
- Hence Hamiltonian cycle $\in P$.

Counting Class #P

A function f is in #P (or $f \in \#P$) if

- There exists a polynomial-time NTM M.
- M(x) has f(x) accepting paths for all inputs x.

Some *#P* Problems

- $f(\phi) =$ number of satisfying truth assignments to ϕ .
 - The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
 - Hence $f \in \#P$.
 - -f is also called #SAT.
- #HAMILTONIAN PATH.
- #3-COLORING.

#P Completeness

- Function f is #P-complete if
 - $-f \in \#\mathbf{P}.$
 - $\ \#\mathbf{P} \subseteq \mathbf{F}\mathbf{P}^f.$
 - * Every function in #P can be computed in polynomial time with access to a black box^a for f.
 - · It said to be polynomial-time Turing-reducible to f.
 - Oracle f can be accessed only a polynomial number of times.

^aThink of it as a subroutine. It is also called an **oracle**.

$\#_{SAT}$ Is #P-Complete^a

- First, it is in #P (p. 859).
- Let f ∈ #P compute the number of accepting paths of M.
- Cook's theorem uses a **parsimonious** reduction from M on input x to an instance ϕ of SAT.
 - That is, M(x)'s number of accepting paths equals ϕ 's number of satisfying truth assignments.
- Call the oracle #SAT with ϕ to obtain the desired answer regarding f(x).

^aValiant (1979); in fact, #2SAT is also #P-complete.

Leslie G. Valiant^a (1949–)

Avi Wigderson (2009), "Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [...] We all became addicted to this remarkable throughput, and expect more."

^aTuring Award (2010).

CYCLE COVER

• A set of node-disjoint cycles that cover all nodes in a *directed* graph is called a **cycle cover**.

• There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING **Proposition 98** CYCLE COVER and BIPARTITE PERFECT MATCHING (p. 519) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G' from any directed graph G.
- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G'.
- And vice versa.

Corollary 99 CYCLE COVER $\in P$.

Permanent

• The **permanent** of an $n \times n$ integer matrix A is

$$\operatorname{perm}(A) = \sum_{\pi} \prod_{i=1}^{n} A_{i,\pi(i)}.$$

- π ranges over all permutations of n elements.

• 0/1 PERMANENT computes the permanent of a 0/1 (binary) matrix.

- The permanent of a binary matrix is at most n!.

- Simpler than determinant (9) on p. 523: no signs.
- Surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 524).
- #BIPARTITE PERFECT MATCHING is related to permanent.

Proposition 100 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
 - The (i, j)th entry A_{ij} is 1 if $(i, j) \in E$ and 0 otherwise.
- Then perm(A) = number of perfect matchings in G.

Illustration of the Proof Based on p. 865 (Left)

- $\operatorname{perm}(A) = 4.$
- The permutation corresponding to the perfect matching on p. 865 is marked.

Permanent and Counting Cycle Covers

Proposition 101 0/1 PERMANENT and CYCLE COVER are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 865 (right).
- Then perm(A) = number of cycle covers.

Three Parsimoniously Equivalent^a Problems We summarize Propositions 98 (p. 864) and 100 (p. 867) in the following.

Lemma 102 0/1 PERMANENT, BIPARTITE PERFECT MATCHING, and CYCLE COVER are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact #P-complete.

^aMeaning the numbers of solutions are equal in a reduction.

WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The **cycle count** of *G* is sum of the weights of all cycle covers.
 - Let A be G's adjacency matrix but $A_{ij} = w_i$ if the edge (i, j) has weight w_i .
 - Then perm(A) = G's cycle count (same proof as Proposition 101 on p. 870).
- #CYCLE COVER is a special case: All weights are 1.

Three #P-Complete Counting Problems Theorem 103 (Valiant, 1979) 0/1 PERMANENT, #BIPARTITE PERFECT MATCHING, and #CYCLE COVER are #P-complete.

- By Lemma 102 (p. 871), it suffices to prove that #CYCLE COVER is #P-complete.
- #SAT is #P-complete (p. 861).
- #3SAT is #P-complete because it and #SAT are parsimoniously equivalent.
- We shall prove that #3SAT is polynomial-time Turing-reducible to #CYCLE COVER.

The Proof (continued)

- Let ϕ be the given 3SAT formula.
 - It contains n variables and m clauses (hence 3m literals).
 - It has $\#\phi$ satisfying truth assignments.
- First we construct a *weighted* directed graph H with cycle count

$$\#H = 4^{3m} \times \#\phi.$$

- Then we construct an unweighted directed graph G.
- We shall make sure #H (hence $\#\phi$) is polynomial-time Turing-reducible to #G (G's number of cycle covers).

The Proof: Comments (continued)

- Our reduction is not expected to be parsimonious.
 - Suppose otherwise and

$$\#\phi = \#G.$$

- Hence G has a cycle cover if and only if ϕ is satisfiable.
- But CYCLE COVER $\in P$ (p. 864).
- Thus $3SAT \in P$, a most unlikely event!

• Each clause is associated with a **clause gadget**.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- They are not *parallel* lines as bold edges are schematic only (preview p. 890).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select *all* 3 bold edges.
 - The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

The Proof: Properties of the XOR Gadget (continued)

• The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- Only those cycle covers that take exactly one schematic edge in every XOR gadget will have nonzero weights.
- There will be 3m XOR gadgets, one for each literal.

The Proof: Properties of the XOR Gadget (continued) Total weight of -1 - 2 + 6 - 3 = 0 for cycle covers not entering or leaving it.

The Proof: Summary (continued)

- Cycle covers not entering *all* of the XOR gadgets contribute 0 to the cycle count.
 - Let x denote an XOR gadget not entered for some cycle covers for H.
 - Now, such cycle covers' contribution to the cycle count totals, by p. 882,

The Proof: Summary (continued)

- Cycle covers entering *any* of the XOR gadgets and leaving illegally contribute 0 to the cycle count by p. 883.
- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4.
 - Each such act multiplies the weight by 4 according to p. 884.

The Proof: Summary (continued)

- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
 - Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to **respect** the XOR gadgets.

• One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

The Proof: a Key Observation (continued)

Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

The Proof: a Key Corollary (continued)

- Recall that there are 3m XOR gadgets.
- Each satisfying truth assignment to ϕ contributes 4^{3m} to the cycle count #H.
- Hence

$$#H = 4^{3m} \times \#\phi, \tag{27}$$

as desired.

The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be *efficiently* replaced by some unweighted graph G.
- Furthermore, knowing #G should enable us to calculate #H efficiently.
 - This done, $\#\phi$ will have been Turing-reducible to $\#G.^{a}$
- We proceed to construct this graph G.

^aBy way of #H.

The Proof: Construction of G (continued)

• Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):

• The cycle count #H remains *unchanged*.

The Proof: Construction of G (continued)

- We move on to edges with weight -1.
- First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 877), and there are *m* of them (one per clause).
- Each revised XOR gadget contains 7 nodes (p. 896), and there are 3m of them (one per literal).
- Each choice gadget contains 2 nodes (p. 888), and there are $n \leq 3m$ of them (one per variable).
- So

$$M \le 4m + 21m + 6m = 31m.$$

The Proof: Construction of G (continued)

- $#H \le 2^L$ for some $L = O(m \log m)$.
 - The maximum absolute value of the edge weight is 1.
 - Hence each term in the permanent is at most 1.
 - There are $M! \leq (31m)!$ terms.
 - Hence

$$#H \leq \sqrt{2\pi(31m)} \left(\frac{31m}{e}\right)^{31m} e^{\frac{1}{12\times(31m)}} = 2^{O(m\log m)}$$
(28)

by a refined Stirling's formula.

The Proof (continued)

• #G equals #H after replacing each appearance -1 in #H with 2^{L+1} :

$$#H = \cdots + \underbrace{1 \cdot 1 \cdots (-1) \cdots 1}_{\text{a cycle cover}} + \cdots,$$

$$#G = \cdots + \underbrace{1 \cdot 1 \cdots 2^{L+1} \cdots 1}_{\text{t} + \cdots} + \cdots.$$

- Let $#G = \sum_{i=0}^{n} a_i \times (2^{L+1})^i$, where $0 \le a_i < 2^{L+1}$.
- Recall that $\#H \le 2^L$ (p. 898).
- So each a_i counts the number of cycle covers with i edges of weight -1 as there is no "overflow" in #G.

The Proof (concluded)

• We conclude that

$$#H = a_0 - a_1 + a_2 - \dots + (-1)^n a_n,$$

indeed easily computable from #G.

• We know $\#H = 4^{3m} \times \#\phi$ from Eq. (27) on p. 893.

• So

$$\#\phi = \frac{a_0 - a_1 + a_2 - \dots + (-1)^n a_n}{4^{3m}}$$

- Equivalently,

$$\#\phi = \frac{\#G \mod (2^{L+1}+1)}{4^{3m}}$$

