
Computation That Counts
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And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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Counting Problems

• Counting problems are concerned with the number of

solutions.

– #sat: the number of satisfying truth assignments to

a boolean formula.

– #hamiltonian path: the number of Hamiltonian

paths in a graph.

• They cannot be easier than their decision versions.

– The decision problem has a solution if and only if the

solution count is larger than 0.

• But they can be harder than their decision versions.
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Decision and Counting Problems

• FP is the set of polynomial-time computable functions

f : { 0, 1 }∗ → Z.

– GCD, LCM, matrix-matrix multiplication, etc.

• If #sat ∈ FP, then P = NP.

– Given boolean formula φ, calculate its number of

satisfying truth assignments, k, in polynomial time.

– Declare “φ ∈ sat” if and only if k ≥ 1.

• The validity of the reverse direction is open.
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A Counting Problem Harder than Its Decision Version

• cycle asks if a directed graph contains a cycle.a

• #cycle counts the number of cycles in a directed

graph.

• cycle is in P by a simple greedy algorithm.

• But #cycle is hard unless P = NP.

aA cycle has no repeated nodes.
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Hardness of #cycle

Theorem 97 (Arora, 2006) If #cycle ∈ FP, then

P = NP.

• It suffices to reduce the NP-complete hamiltonian

cycle to #cycle.

• Consider a directed graph G with n nodes.

• Define N ≡ �n log2(n+ 1)�.
• Replace each edge (u, v) ∈ G with this subgraph:

u v
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The Proof (continued)

• This subgraph has N + 1 levels.

• There are now 2N paths from u to v.

• Call the resulting digraph G′.

• Recall that a Hamiltonian cycle on G contains n edges.

• To each Hamiltonian cycle on G, there correspond

(2N )n = 2nN cycles (not necessarily Hamiltonian) on G′.

• So if G contains a Hamiltonian cycle, then G′ contains
at least 2nN cycles.
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The Proof (continued)

• Now suppose G contains no Hamiltonian cycles.

• Then every cycle on G contains at most n− 1 nodes.

• There are hence at most nn−1 cycles on G.

• Each k-node cycle on G induces (2N )k cycles on G′.

• So G′ contains at most nn−1(2N )n−1 cycles.

• As n ≥ 1,

nn−1(2N )n−1 = 2nN nn−1

2N
≤ 2nN nn−1

2n log2(n+1)−1

= 2nN 2nn−1

(n+ 1)n
≤ 2nN 2

n+ 1

(
n

n+ 1

)n−1

< 2nN .

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 856



The Proof (concluded)

• In summary, G ∈ hamiltonian cycle if and only if G′

contains at least 2nN cycles.

• G′ contains at most nn 2nN cycles.

– Every k-cycle on G induces (2N )k ≤ 2nN cycles on

G′.

– Every cycle on G′ is associated with a unique cycle

on G.

– There are at most nn cycles in G.

• This number has a polynomial length O(n2 logn).

• Hence hamiltonian cycle ∈ P.
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Counting Class #P

A function f is in #P (or f ∈ #P) if

• There exists a polynomial-time NTM M .

• M(x) has f(x) accepting paths for all inputs x.
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Some #P Problems

• f(φ) = number of satisfying truth assignments to φ.

– The desired NTM guesses a truth assignment T and

accepts φ if and only if T |= φ.

– Hence f ∈ #P.

– f is also called #sat.

• #hamiltonian path.

• #3-coloring.
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#P Completeness

• Function f is #P-complete if

– f ∈ #P.

– #P ⊆ FPf .

∗ Every function in #P can be computed in

polynomial time with access to a black boxa for f .

· It said to be polynomial-time Turing-reducible

to f .

– Oracle f can be accessed only a polynomial number

of times.

aThink of it as a subroutine. It is also called an oracle.
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#sat Is #P-Completea

• First, it is in #P (p. 859).

• Let f ∈ #P compute the number of accepting paths of

M .

• Cook’s theorem uses a parsimonious reduction from M

on input x to an instance φ of sat.

– That is, M(x)’s number of accepting paths equals φ’s

number of satisfying truth assignments.

• Call the oracle #sat with φ to obtain the desired

answer regarding f(x).

aValiant (1979); in fact, #2sat is also #P-complete.
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Leslie G. Valianta (1949–)

Avi Wigderson (2009), “Les Valiant

singlehandedly created, or com-

pletely transformed, several funda-

mental research areas of computer

science. [. . .] We all became ad-

dicted to this remarkable through-

put, and expect more.”

aTuring Award (2010).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 862



cycle cover

• A set of node-disjoint cycles that cover all nodes in a

directed graph is called a cycle cover.

• There are 3 cycle covers (in red) above.
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cycle cover and bipartite perfect matching

Proposition 98 cycle cover and bipartite perfect

matching (p. 519) are parsimoniously reducible to each

other.

• A polynomial-time algorithm creates a bipartite graph

G′ from any directed graph G.

• Moreover, the number cycle covers for G equals the

number of bipartite perfect matchings for G′.

• And vice versa.

Corollary 99 cycle cover ∈ P .
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Illustration of the Proof

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

w1

w4w3

w2 w5

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 865



Permanent

• The permanent of an n× n integer matrix A is

perm(A) =
∑
π

n∏
i=1

Ai,π(i).

– π ranges over all permutations of n elements.

• 0/1 permanent computes the permanent of a 0/1

(binary) matrix.

– The permanent of a binary matrix is at most n!.

• Simpler than determinant (9) on p. 523: no signs.

• Surprisingly, much harder to compute than determinant!
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Permanent and Counting Perfect Matchings

• bipartite perfect matching is related to

determinant (p. 524).

• #bipartite perfect matching is related to

permanent.

Proposition 100 0/1 permanent and bipartite

perfect matching are parsimoniously reducible to each

other.
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The Proof

• Given a bipartite graph G, construct an n× n binary

matrix A.

– The (i, j)th entry Aij is 1 if (i, j) ∈ E and 0

otherwise.

• Then perm(A) = number of perfect matchings in G.
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Illustration of the Proof Based on p. 865 (Left)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0

0 1 0 0 0

1 0 0 0 1

1 0 1 1 0

1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• perm(A) = 4.

• The permutation corresponding to the perfect matching

on p. 865 is marked.
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Permanent and Counting Cycle Covers

Proposition 101 0/1 permanent and cycle cover are

parsimoniously reducible to each other.

• Let A be the adjacency matrix of the graph on p. 865

(right).

• Then perm(A) = number of cycle covers.
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Three Parsimoniously Equivalenta Problems

We summarize Propositions 98 (p. 864) and 100 (p. 867) in

the following.

Lemma 102 0/1 permanent, bipartite perfect

matching, and cycle cover are parsimoniously

equivalent.

We will show that the counting versions of all three

problems are in fact #P-complete.

aMeaning the numbers of solutions are equal in a reduction.
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weighted cycle cover

• Consider a directed graph G with integer weights on the

edges.

• The weight of a cycle cover is the product of its edge

weights.

• The cycle count of G is sum of the weights of all cycle

covers.

– Let A be G’s adjacency matrix but Aij = wi if the

edge (i, j) has weight wi.

– Then perm(A) = G’s cycle count (same proof as

Proposition 101 on p. 870).

• #cycle cover is a special case: All weights are 1.
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An Examplea

4

4

4

2

3

4

4

4

2

3

4

4

4

2

3

There are 3 cycle covers, and the cycle count is

(4 · 1 · 1) · (1) + (1 · 1) · (2 · 3) + (4 · 2 · 1 · 1) = 18.

aEach edge has weight 1 unless stated otherwise.
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Three #P-Complete Counting Problems

Theorem 103 (Valiant, 1979) 0/1 permanent,

#bipartite perfect matching, and #cycle cover are

#P-complete.

• By Lemma 102 (p. 871), it suffices to prove that

#cycle cover is #P-complete.

• #sat is #P-complete (p. 861).

• #3sat is #P-complete because it and #sat are

parsimoniously equivalent.

• We shall prove that #3sat is polynomial-time

Turing-reducible to #cycle cover.
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The Proof (continued)

• Let φ be the given 3sat formula.

– It contains n variables and m clauses (hence 3m

literals).

– It has #φ satisfying truth assignments.

• First we construct a weighted directed graph H with

cycle count

#H = 43m ×#φ.

• Then we construct an unweighted directed graph G.

• We shall make sure #H (hence #φ) is polynomial-time

Turing-reducible to #G (G’s number of cycle covers).
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The Proof: Comments (continued)

• Our reduction is not expected to be parsimonious.

– Suppose otherwise and

#φ = #G.

– Hence G has a cycle cover if and only if φ is

satisfiable.

– But cycle cover ∈ P (p. 864).

– Thus 3sat ∈ P , a most unlikely event!
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The Proof: the Clause Gadget (continued)

• Each clause is associated with a clause gadget.

a

b

c

• Each edge has weight 1 unless stated otherwise.

• Each bold edge corresponds to one literal in the clause.

• They are not parallel lines as bold edges are schematic

only (preview p. 890).
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The Proof: the Clause Gadget (continued)

• Following a bold edge means making the literal false (0).

• A cycle cover cannot select all 3 bold edges.

– The interior node would be missing.

• Every proper nonempty subset of bold edges corresponds

to a unique cycle cover of weight 1 (see next page).
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The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:

(1) a = 0, b = 0, c = 1, (2) a = 0, b = 1, c = 0, etc.

(1) (2) (3) (4) (5) (6) (7)
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The Proof: the XOR Gadget (continued)

- 1

- 1

- 1

2

3

u

v'

u'

v
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The Proof: Properties of the XOR Gadget (continued)

• The XOR gadget schema:

+

u u'

v' v

• At most one of the 2 schematic edges will be included in

a cycle cover.

• Only those cycle covers that take exactly one schematic

edge in every XOR gadget will have nonzero weights.

• There will be 3m XOR gadgets, one for each literal.
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The Proof: Properties of the XOR Gadget (continued)

Total weight of −1− 2 + 6− 3 = 0 for cycle covers not

entering or leaving it.

- 1
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v'

u'

v - 1
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u'

v
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The Proof: Properties of the XOR Gadget (continued)

• Total weight of −1 + 1− 6 + 2 + 3 + 1 = 0 for cycle

covers entering at u and leaving at v′.a

- 1

u

v'

u'

v

u

v'

u'

v

- 1

2

3

u

v'

u'

v

2

u

v'

u'

v 3

u

v'

u'

v

u

v'

u'

v

• Same for cycle covers entering at v and leaving at u′.
aCorrected by Mr. Yu-Tsung Dai (B91201046) and Mr. Che-Wei

Chang (R95922093) on December 27, 2006.
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The Proof: Properties of the XOR Gadget (continued)

• Total weight of 1 + 2 + 2− 1 + 1− 1 = 4 for cycle covers

entering at u and leaving at u′.

- 1

u

v'

u'

v

u

v'

u'

v

- 1

u

v'

u'

v

2

u

v'

u'

v

- 1

u

v'

u'

v

- 1 - 1

- 1
2

u

v'

u'

v

• Same for cycle covers entering at v and leaving at v′.
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The Proof: Summary (continued)

• Cycle covers not entering all of the XOR gadgets

contribute 0 to the cycle count.

– Let x denote an XOR gadget not entered for some

cycle covers for H.

– Now, such cycle covers’ contribution to the cycle

count totals, by p. 882,

∑
cycle cover c not entering x

(weight of c for H)

=
∑

cycle cover c not entering x

(weight of c for H − x)× (weight of c for x)

=
∑

cycle cover c not entering x

(weight of c for H − x)× 0 = 0.
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The Proof: Summary (continued)

• Cycle covers entering any of the XOR gadgets and

leaving illegally contribute 0 to the cycle count by p. 883.

• For every XOR gadget entered and exited legally, the

total weight of a cycle cover is multiplied by 4.

– Each such act multiplies the weight by 4 according to

p. 884.
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The Proof: Summary (continued)

• Hereafter we consider only cycle covers which enter

every XOR gadget and leaves it legally.

– Only these cycle covers contribute nonzero weights to

the cycle count.

• They are said to respect the XOR gadgets.
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The Proof: the Choice Gadget (continued)

• One choice gadget (a schema) for each variable.

x x

• It gives the truth assignment for the variable.

• Use it with the XOR gadget to enforce consistency.
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Schema for (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w w y y z zx x

w

x

y x

y

z

+ + ++++

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 889



Full Graph (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w w y y z zx x

w

x

y x

y

z
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The Proof: a Key Observation (continued)

Each satisfying truth assignment to φ corresponds to a

schematic cycle cover that respects the XOR gadgets.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 891



w = 1, x = 0, y = 0, z = 1 ⇔ One Cycle Cover

w w y y z zx x

w

x

y x

y

z

+ + ++++
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The Proof: a Key Corollary (continued)

• Recall that there are 3m XOR gadgets.

• Each satisfying truth assignment to φ contributes 43m to

the cycle count #H.

• Hence

#H = 43m ×#φ, (27)

as desired.
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“w = 1, x = 0, y = 0, z = 1” Adds 46 to Cycle Count

w w y y z zx x

w

x

y x

y

z
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The Proof (continued)

• We are almost done.

• The weighted directed graph H needs to be efficiently

replaced by some unweighted graph G.

• Furthermore, knowing #G should enable us to calculate

#H efficiently.

– This done, #φ will have been Turing-reducible to

#G.a

• We proceed to construct this graph G.

aBy way of #H.
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The Proof: Construction of G (continued)

• Replace edges with weights 2 and 3 as follows (note that

the graph cannot have parallel edges):

- 1

- 1

- 1

u

v'

u'

v

• The cycle count #H remains unchanged.
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The Proof: Construction of G (continued)

• We move on to edges with weight −1.

• First, we count the number of nodes, M .

• Each clause gadget contains 4 nodes (p. 877), and there

are m of them (one per clause).

• Each revised XOR gadget contains 7 nodes (p. 896), and

there are 3m of them (one per literal).

• Each choice gadget contains 2 nodes (p. 888), and there

are n ≤ 3m of them (one per variable).

• So

M ≤ 4m+ 21m+ 6m = 31m.
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The Proof: Construction of G (continued)

• #H ≤ 2L for some L = O(m logm).

– The maximum absolute value of the edge weight is 1.

– Hence each term in the permanent is at most 1.

– There are M ! ≤ (31m)! terms.

– Hence

#H ≤
√

2π(31m)

(
31m

e

)31m

e
1

12×(31m)

= 2O(m logm) (28)

by a refined Stirling’s formula.
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The Proof: Construction of G (continued)

• Replace each edge with weight −1 with the following:

� � �

• Each increases the number of cycle covers 2L+1-fold.

• The desired unweighted G has been obtained.
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The Proof (continued)

• #G equals #H after replacing each appearance −1 in

#H with 2L+1:

#H = · · ·+
a cycle cover︷ ︸︸ ︷

1 · 1 · · · · (−1) · · · · 1+ · · · ,

#G = · · ·+
a cycle cover︷ ︸︸ ︷

1 · 1 · · · · 2L+1 · · · · 1+ · · · .

• Let #G =
∑n

i=0 ai × (2L+1)i, where 0 ≤ ai < 2L+1.

• Recall that #H ≤ 2L (p. 898).

• So each ai counts the number of cycle covers with i

edges of weight −1 as there is no “overflow” in #G.
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The Proof (concluded)

• We conclude that

#H = a0 − a1 + a2 − · · ·+ (−1)nan,

indeed easily computable from #G.

• We know #H = 43m ×#φ from Eq. (27) on p. 893.

• So

#φ =
a0 − a1 + a2 − · · ·+ (−1)nan

43m
.

– Equivalently,

#φ =
#G mod (2L+1 + 1)

43m
.
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Finis
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