KNAPSACK Has an Approximation Threshold of Zero ${ }^{a}$

Theorem 85 For any ϵ, there is a polynomial-time
ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\mathrm{b}}$
- We must find an $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} w_{i} \leq W$ and $\sum_{i \in I} v_{i}$ is the largest possible.

[^0]
The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in I} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting only from the first i items and with a total value of v.
- It is an $(n+1) \times(n V+1)$ table.

The Proof (continued)

- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$
- Then, for $0 \leq i<n$ and $1 \leq v \leq n V$, ${ }^{\text {b }}$

$$
\begin{aligned}
& W(i+1, v) \\
&= \begin{cases}\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\}, & \text { if } v_{i+1} \leq v, \\
W(i, v), & \text { otherwise } .\end{cases}
\end{aligned}
$$

- Finally, pick the largest v such that $W(n, v) \leq W$. ${ }^{\text {c }}$

[^1]

The Proof (continued)

With 6 items, values ($4,3,3,3,2,3$), weights ($3,3,1,3,2,1$), and $W=12$, the maximum total value 16 is achieved with $I=\{1,2,3,4,6\} ; I$'s weight is 11.

0	∞																	
0	∞	∞	∞	3	∞													
0	∞	∞	3	3	∞	∞	6	∞										
0	∞	∞	1	3	∞	4	4	∞	∞	7	∞							
0	∞	∞	1	3	∞	4	4	∞	7	7	∞	∞	10	∞	∞	∞	∞	∞
0	∞	2	1	3	3	4	4	6	6	7	9	9	10	∞	12	∞	∞	∞
0	∞	2	1	3	3	2	4	4	5	5	7	7	8	10	10	11	∞	13

The Proof (continued)

- The running time $O\left(n^{2} V\right)$ is not polynomial.
- Call the problem instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)
$$

- Additional idea: Limit the number of precision bits.
- Define

$$
v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- Note that

$$
\begin{equation*}
v_{i}-2^{b}<2^{b} v_{i}^{\prime} \leq v_{i} . \tag{23}
\end{equation*}
$$

The Proof (continued)

- Call the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- Use $v_{i}^{\prime}=\left\lfloor v_{i} / 2^{b}\right\rfloor$ and $V^{\prime}=\max \left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ in the dynamic programming.
- It is now an $(n+1) \times(n V+1) / 2^{b}$ table.
- The selection I^{\prime} is optimal for x^{\prime}.
- But I^{\prime} may not be optimal for x, although it still satisfies the weight budget W.

The Proof (continued)

With the same parameters as p. 782 and $b=1$: Values are $(2,1,1,1,1,1)$ and the optimal selection $I^{\prime}=\{1,2,3,5,6\}$ for x^{\prime} has a smaller maximum value $4+3+3+2+3=15$ for x than I 's 16 ; its weight is $10<W=12$. ${ }^{\text {a }}$

0	∞						
0	∞	3	∞	∞	∞	∞	∞
0	3	3	6	∞	∞	∞	∞
0	1	3	4	7	∞	∞	∞
0	1	3	4	7	10	∞	∞
0	1	3	4	6	9	12	∞
0	1	2	4	5	7	10	13

${ }^{\text {a }}$ The original optimal $I=\{1,2,3,4,6\}$ on p .782 has the same value 6 and but higher weight 11 for x^{\prime}.

The Proof (continued)

- The value of I^{\prime} for x is close to that of the optimal I as

$$
\begin{aligned}
& \sum_{i \in I^{\prime}} v_{i} \\
\geq & \sum_{i \in I^{\prime}} 2^{b} v_{i}^{\prime} \quad \text { by inequalities (23) on p. } 783 \\
= & 2^{b} \sum_{i \in I^{\prime}} v_{i}^{\prime} \geq 2^{b} \sum_{i \in I} v_{i}^{\prime}=\sum_{i \in I} 2^{b} v_{i}^{\prime} \\
\geq & \sum_{i \in I}\left(v_{i}-2^{b}\right) \quad \text { by inequalities (23) } \\
\geq & \left(\sum_{i \in I} v_{i}\right)-n 2^{b} .
\end{aligned}
$$

The Proof (continued)

- In summary,

$$
\sum_{i \in I^{\prime}} v_{i} \geq\left(\sum_{i \in I} v_{i}\right)-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all i.
- Otherwise, item i is redundant and can be removed early on.
- V is a lower bound on OPT.
- Picking one single item with value V is a legitimate choice.

The Proof (concluded)

- The relative error from the optimum is:

$$
\frac{\sum_{i \in I} v_{i}-\sum_{i \in I^{\prime}} v_{i}}{\sum_{i \in I} v_{i}} \leq \frac{n 2^{b}}{V}
$$

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes ϵ-approximate. ${ }^{\text {a }}$
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$. ${ }^{\text {b }}$

[^2]
Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 46, p. 382).
- NODE COVER has an approximation threshold at most 0.5 (p. 747).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. - George Bernard Shaw (1856-1950)

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using monotone circuits.
- Monotone circuits are circuits without \neg gates. ${ }^{\text {a }}$
- Note that this result does not settle the P vs. NP problem.

[^3]
The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem: MONOTONE CIRCUIT VALUE (p. 321).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
- HAMILTONIAN PATH and CLIQUE.

CLIQUE $_{n, k}$

- CLIQUE $_{n, k}$ is the boolean function deciding whether a graph $G=(V, E)$ with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
- Gate $g_{i j}$ is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE $_{n, k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE $_{n, k}$ may use fewer gates.

Crude Circuits

- One possible circuit for CLIQUE $_{n, k}$ does the following.

1. For each $S \subseteq V$ with $|S|=k$, there is a circuit with $O\left(k^{2}\right) \wedge$-gates testing whether S forms a clique.
2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O\left(k^{2}\binom{n}{k}\right)$ gates, which is exponentially large unless k or $n-k$ is a constant.
- A crude circuit $\mathrm{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ tests if there is an $X_{i} \subseteq V$ that forms a clique.
- The above-mentioned circuit is $\mathrm{CC}\left(S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right)$.

The Proof: Positive Examples

- Analysis will be applied to only the following positive examples and negative examples as input graphs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from CLIQUE $_{n, k}$.

The Proof: Negative Examples

- Color the nodes with $k-1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^{n}$ such graphs.
- They all should elicit a false output from CLiQUE $_{n, k}$.
- Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

Positive and Negative Examples with $k=5$

A positive example

A negative example

A Warmup to Razborov's (1985) Theorem ${ }^{\text {a }}$

Lemma 86 (The birthday problem) The probability of collision, $C(N, q)$, when q balls are thrown randomly into $N \geq q$ bins is at most

$$
\frac{q(q-1)}{2 N} .
$$

Lemma 87 If crude circuit $C C\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ computes CLIQUE $_{n, k}$, then $m \geq n^{n^{1 / 8} / 20}$ for n sufficiently large.

[^4]
The Proof (continued)

- Let $k=n^{1 / 4}$.
- Let $\ell=\sqrt{k} / 10$.
- Let $X \subseteq V$.

The Proof (continued)

- Suppose $|X| \leq \ell$.
- A random $f: X \rightarrow\{1,2, \ldots, k-1\}$ has collisions with probability less than 0.01 by Lemma 86 (p. 799).
- Hence f is one-to-one with probability 0.99 .
- When f is one-to-one, f is a coloring of X with $k-1$ colors without repeated colors.
- As a result, when f is one-to-one, it generates a clique on X.

The Proof (continued)

- Note that a random negative example is simply a random $g: V \rightarrow\{1,2, \ldots, k-1\}$.
- So our random $f: X \rightarrow\{1,2, \ldots, k-1\}$ is simply a random g restricted to X.
- In summary, the probability that X is not a clique when supplied with a random negative example is at most 0.01.

The Proof (continued)

- Now suppose $|X|>\ell$.
- Consider the probability that X is a clique when supplied with a random positive example.
- It is the probability that X is part of the clique.
- Hence the desired probability is at most

$$
\frac{\binom{n-\ell}{k-\ell}}{\binom{n}{k}} .
$$

The Proof (continued)

- Now,

$$
\begin{aligned}
\frac{\binom{n-\ell}{k-\ell}}{\binom{n}{k}} & =\frac{k(k-1) \cdots(k-\ell+1)}{n(n-1) \cdots(n-\ell+1)} \\
& \leq\left(\frac{k}{n}\right)^{\ell} \\
& \leq n^{-(3 / 4) \ell} \\
& \leq n^{-\sqrt{k} / 20} \\
& =n^{-n^{1 / 8} / 20} .
\end{aligned}
$$

The Proof (concluded)

- In summary, the probability that X is a clique when supplied with a random positive example is at most

$$
n^{-n^{1 / 8} / 20}
$$

- So we need at least

$$
n^{n^{1 / 8} / 20}
$$

$X \mathrm{~s}$ in the crude circuit.

Sunflowers

- Fix $p \in \mathbb{Z}^{+}$and $\ell \in \mathbb{Z}^{+}$.
- A sunflower is a family of p sets $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most ℓ.
- Furthermore, all pairs of sets in the family must have the same intersection (called the core of the sunflower).

A Sample Sunflower

$$
\begin{aligned}
& \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\} \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

The Erdős-Rado Lemma

Lemma 88 Let \mathcal{Z} be a family of more than $M \triangleq(p-1)^{\ell} \ell$! nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ.
- For $\ell=1, p$ different singletons form a sunflower (with an empty core).
- Suppose $\ell>1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
- Every set in $\mathcal{Z}-\mathcal{D}$ intersects some set in \mathcal{D}.

The Proof of the Erdős-Rado Lemma (continued)
For example,

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,3,6,9\},\{0,4,8,11\} \\
& \{4,5,6,7\},\{5,8,9,10\},\{6,7,9,11\}\} \\
\mathcal{D}= & \{\{1,2,3,5\},\{0,4,8,11\}\}
\end{aligned}
$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
- \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
- Let C be the union of all sets in \mathcal{D}.
$-|C| \leq(p-1) \ell$.
- C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
- There is a $d \in C$ that intersects more than $\frac{M}{(p-1) \ell}=(p-1)^{\ell-1}(\ell-1)!$ sets in \mathcal{Z}.
- Consider $\mathcal{Z}^{\prime}=\{Z-\{d\}: Z \in \mathcal{Z}, d \in Z\}$.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
- \mathcal{Z}^{\prime} has more than $M^{\prime} \triangleq(p-1)^{\ell-1}(\ell-1)$! sets.
$-M^{\prime}$ is just M with ℓ replaced with $\ell-1$.
$-\mathcal{Z}^{\prime}$ contains a sunflower by induction, say

$$
\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}
$$

- Now,

$$
\left\{P_{1} \cup\{d\}, P_{2} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}
$$

is a sunflower in \mathcal{Z}.

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- Plucking a sunflower means replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- pluck (\mathcal{Z}) is not unique. ${ }^{\text {a }}$

[^5]
An Example of Plucking

- Recall the sunflower on p. 807:

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

- Then

$$
\operatorname{pluck}(\mathcal{Z})=\{\{1,2\}\} .
$$

Razborov's Theorem

Theorem 89 (Razborov, 1985) There is a constant c such that for large enough n, all monotone circuits for CLIQUE $_{n, k}$ with $k=n^{1 / 4}$ have size at least $n^{c n^{1 / 8}}$.

- We shall approximate any monotone circuit for CLIQUE $_{n, k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.

The Proof

- Fix $k=n^{1 / 4}$.
- Fix $\ell=n^{1 / 8}$.
- Note that ${ }^{\text {a }}$

$$
2\binom{\ell}{2} \leq k-1
$$

- p will be fixed later to be $n^{1 / 8} \log n$.
- $\operatorname{Fix} M=(p-1)^{\ell} \ell!$.
- Recall the Erdős-Rado lemma (p. 808).

[^6]
The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, where:
- $X_{i} \subseteq V$.
$-\left|X_{i}\right| \leq \ell$.
- $m \leq M$.
- It answers true if and only if at least one X_{i} is a clique.
- We shall show how to approximate any monotone circuit for CLIQUE n, k by such a crude circuit, inductively.
- The induction basis is straightforward:
- Input gate $g_{i j}$ is the crude circuit $\operatorname{CC}(\{i, j\})$.

The Proof (continued)

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
- Start with two crude circuits $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$.
$-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
- We will construct the approximate OR and the approximate AND of these subcircuits.
- Then show both approximations introduce few errors.

The Proof: OR

- $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
- For any node set $\mathcal{C}, \mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ if and only if $\mathcal{C} \in \mathcal{X}$ or $\mathcal{C} \in \mathcal{Y}$.
- Hence $\mathcal{X} \cup \mathcal{Y}$ contains a clique if and only if \mathcal{X} or \mathcal{Y} contains a clique.
- Problem with $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ occurs when $|\mathcal{X} \cup \mathcal{Y}|>M$.
- Such violations are eliminated by using

$$
\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))
$$

as the final approximate or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.

The Proof: OR (continued)

- If $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true.
- The quick reason: If Y is a clique, then a subset of Y must also be a clique.
- Let $Y \in \mathcal{Z}$ be a clique.
- There must exist an $X \in \operatorname{pluck}(\mathcal{Z})$ such that $X \subseteq Y$.
- This X is also a clique.

The Proof: OR (continued)

The Proof: OR (concluded)

- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return false but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- We next count the number of false positives and false negatives introduced ${ }^{\text {a }}$ by $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$.
- Let us work on false negatives for or first.
${ }^{\text {a }}$ Compared with $\mathrm{CC}(\mathcal{X} \cup \mathcal{Y})$ of course.

The Number of False Negatives ${ }^{\text {a }}$

Lemma $90 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.
- This makes the test for cliqueness less stringent. ${ }^{\text {b }}$

[^7]
The Number of False Positives

Lemma $91 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces at most $\frac{2 M}{p-1} 2^{-p}(k-1)^{n}$ false positives.

- Each plucking operation replaces the sunflower $\left\{Z_{1}, Z_{2}, \ldots, Z_{p}\right\}$ with its common core Z.
- A false positive is necessarily a coloring such that:
- There is a pair of identically colored nodes in each petal Z_{i} (and so $\mathrm{CC}\left(Z_{1}, Z_{2}, \ldots, Z_{p}\right)$ returns false).
- But the core contains distinctly colored nodes (thus forming a clique).
- This implies at least one node from each identical-color pair was plucked away.

Proof of Lemma 91 (continued)

Proof of Lemma 91 (continued)

- We now count the number of such colorings.
- Color nodes in V at random with $k-1$ colors.
- Let $R(X)$ denote the event that there are repeated colors in set X.

Proof of Lemma 91 (continued)

- Now

$$
\begin{align*}
& \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right] \tag{24}\\
\leq & \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right] \\
= & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \\
\leq & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right] . \tag{25}
\end{align*}
$$

- Equality holds because $R\left(Z_{i}\right)$ are independent given $\neg R(Z)$ as core Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_{i} decreases given no repetitions in a subset, Z.

Proof of Lemma 91 (continued)

- Consider two nodes in Z_{i}.
- The probability that they have identical color is

$$
\frac{1}{k-1} .
$$

- Now

$$
\begin{equation*}
\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\binom{\left|Z_{i}\right|}{2}}{k-1} \leq \frac{\binom{\ell}{2}}{k-1} \leq \frac{1}{2} \tag{26}
\end{equation*}
$$

- So the probability ${ }^{\text {a }}$ that a random coloring yields a new false positive is at most 2^{-p} by inequality (25) on p. 826 .

[^8]
Proof of Lemma 91 (continued)

- As there are $(k-1)^{n}$ different colorings, each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives.
- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2 M$.
- When the procedure pluck $(\mathcal{X} \cup \mathcal{Y})$ ends, the set system contains $\leq M$ sets.

Proof of Lemma 91 (concluded)

- Each plucking reduces the number of sets by $p-1$.
- Hence at most $2 M /(p-1)$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$
\frac{2 M}{p-1} 2^{-p}(k-1)^{n}
$$

false positives are introduced. ${ }^{\text {a }}$

[^9]
The Proof: And

- The approximate AND of crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is

$$
\mathrm{CC}\left(\operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)\right) .
$$

- We need to count the number of errors this approximate AND introduces on the positive and negative examples.

The Proof: AND (continued)

- The approximate AND introduces a false positive if a negative example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return false but makes the approximate and return true.
- The approximate AND introduces a false negative if a positive example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true but makes the approximate AND return false.
- Introduction of errors means we ignore scenarios where the AND of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is already wrong.

The Proof: AND (continued)

- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives and no false negatives over our positive and negative examples. ${ }^{\text {a }}$
- Suppose CC(\{Xi $\left.\left.\cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ returns true.
- Then some $X_{i} \cup Y_{j}$ is a clique.
- Thus $X_{i} \in \mathcal{X}$ and $Y_{j} \in \mathcal{Y}$ are cliques, making both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true.
- So $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives.
${ }^{\text {a }}$ Unlike the or case on p .818 , we are not claiming that $\mathrm{CC}\left(\left\{X_{i} \cup\right.\right.$ $\left.\left.Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ is equivalent to the and of $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$. Equivalence is more than we need in either case.

The Proof: AND (concluded)

- (continued)
- On the other hand, suppose both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ accept a positive example with a clique \mathcal{C} of size k.
- This clique \mathcal{C} must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$.
- As this clique \mathcal{C} also contains $X_{i} \cup Y_{j},{ }^{\text {a }}$ the new circuit returns true.
- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives.
- We now bound the number of false positives and false negatives introduced ${ }^{b}$ by the approximate AND.

[^10]

The Number of False Positives

Lemma 92 The approximate and introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

- We prove this claim in stages.
- We already knew $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives. ${ }^{\text {a }}$
- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces no additional false positives because we are testing potentially fewer sets for cliqueness.

[^11]
Proof of Lemma 92 (concluded)

- $\left|\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right| \leq M^{2}$.
- Each plucking reduces the number of sets by $p-1$.
- So pluck $\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ involves $\leq M^{2} /(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives by the proof of Lemma 91 (p. 823).
- The desired upper bound is

$$
\left[M^{2} /(p-1)\right] 2^{-p}(k-1)^{n} \leq M^{2} 2^{-p}(k-1)^{n} .
$$

The Number of False Negatives

Lemma 93 The approximate and introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- We knew $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives. ${ }^{\text {a }}$

[^12]
Proof of Lemma 93 (continued)

- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set $Z \triangleq X_{i} \cup Y_{j}$ larger than ℓ introduces false negatives only if Z is part of a clique.
- There are $\left(\begin{array}{c}\left.n-\left\lvert\, \begin{array}{c}Z \mid \\ k-|Z|\end{array}\right.\right) \text { such cliques. }\end{array}\right.$
* It is the number of positive examples whose clique contains Z.
$-\binom{n-|Z|}{k-|Z|} \leq\binom{ n-\ell-1}{k-\ell-1}$ as $|Z|>\ell$.
- There are at most M^{2} such $Z \mathrm{~s}$.

Proof of Lemma 93 (concluded)

- Plucking introduces no false negatives.
- Recall that if $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true. ${ }^{\text {a }}$

[^13]
Two Summarizing Lemmas

From Lemmas 91 (p. 823) and 92 (p. 835), we have:
Lemma 94 Each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

From Lemmas 90 (p. 822) and 93 (p. 837), we have:
Lemma 95 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 96 Every final crude circuit is:

1. Identically false-thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with

$$
|X| \leq \ell=n^{1 / 8}<n^{1 / 4}=k .
$$

Proof of Lemma 96 (concluded)

- Inequality (26) (p. 827) says that at least half of the colorings assign different colors to nodes in X.
- So at least half of the colorings - thus negative examples - have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 815:

$$
\begin{aligned}
k & \triangleq n^{1 / 4} \\
\ell & \triangleq n^{1 / 8} \\
p & \triangleq n^{1 / 8} \log n \\
M & \triangleq(p-1)^{\ell} \ell!<n^{(1 / 3) n^{1 / 8}} \quad \text { for large } n
\end{aligned}
$$

The Proof (continued)

- Suppose the final crude circuit is identically false.
- By Lemma 95 (p. 840), each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are $\binom{n}{k}$ positive examples.
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^{2}}\left(\frac{n-\ell}{k}\right)^{\ell} \geq n^{(1 / 12) n^{1 / 8}}
$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
- Lemma 96 (p. 842) says that there are at least $(k-1)^{n} / 2$ false positives.
- By Lemma 94 (p. 840), each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{(k-1)^{n} / 2}{M^{2} 2^{-p}(k-1)^{n}}=\frac{2^{p-1}}{M^{2}} \geq n^{(1 / 3) n^{1 / 8}}
$$

gates.

Alexander Razborov (1963-)

$\mathrm{P} \neq \mathrm{NP}$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $\mathrm{P} \neq \mathrm{NP}$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

[^0]: ${ }^{\text {a }}$ Ibarra \& Kim (1975). This algorithm can be used to derive good approximation algorithms for some NP-complete scheduling problems (Bansal \& Sviridenko, 2006).
 ${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

[^1]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.
 ${ }^{\mathrm{b}}$ The textbook's formula has an error here.
 ${ }^{\mathrm{c}}$ Lawler (1979).

[^2]: ${ }^{\text {a }}$ See Eq. (18) on p. 734.
 ${ }^{\mathrm{b}}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

[^3]: ${ }^{\text {a Recall p. } 320 . ~}$

[^4]: ${ }^{\text {a }}$ Arora \& Barak (2009).

[^5]: ${ }^{\text {a }}$ It depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.

[^6]: ${ }^{\text {a }}$ Corrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

[^7]: ${ }^{\text {a }}$ Recall that $\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
 ${ }^{\mathrm{b}}$ The new crude circuit is at least as positive as the original one (p. 819).

[^8]: ${ }^{a}$ Proportion, if you so prefer.

[^9]: ${ }^{\text {a }}$ Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

[^10]: ${ }^{\text {a }}$ See next page.
 ${ }^{\mathrm{b}}$ Compared with $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ of course.

[^11]: ${ }^{\text {a Recall p. } 832 .}$

[^12]: ${ }^{\text {a Recall p. } 832 .}$

[^13]: ${ }^{\text {a Recall p. }} 819$.

