${\rm KNAPSACK}$ Has an Approximation Threshold of Zero^a

Theorem 85 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.^b
- We must find an $I \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i$ is the largest possible.

^aIbarra & Kim (1975). This algorithm can be used to derive good approximation algorithms for some NP-complete scheduling problems (Bansal & Sviridenko, 2006).

^bIf the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

• Let

$$V = \max\{v_1, v_2, \dots, v_n\}.$$

• Clearly,
$$\sum_{i \in I} v_i \le nV$$
.

- Let $0 \le i \le n$ and $0 \le v \le nV$.
- W(i, v) is the minimum weight attainable by selecting only from the *first i* items and with a total value of *v*.

- It is an $(n+1) \times (nV+1)$ table.

- Set $W(0, v) = \infty$ for $v \in \{1, 2, ..., nV\}$ and W(i, 0) = 0for i = 0, 1, ..., n.^a
- Then, for $0 \le i < n$ and $1 \le v \le nV$,^b

$$W(i+1,v) = \begin{cases} \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}, & \text{if } v_{i+1} \le v, \\ W(i,v), & \text{otherwise.} \end{cases}$$

• Finally, pick the largest v such that $W(n, v) \leq W.^{c}$

^aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

^bThe textbook's formula has an error here. ^cLawler (1979).

With 6 items, values (4, 3, 3, 3, 2, 3), weights (3, 3, 1, 3, 2, 1), and W = 12, the maximum total value 16 is achieved with $I = \{1, 2, 3, 4, 6\}$; *I*'s weight is 11.

0	∞																	
0	∞	∞	∞	3	∞													
0	∞	∞	3	3	∞	∞	6	∞	∞	∞	∞	∞	∞	8	∞	∞	∞	∞
0	∞	8	1	3	∞	4	4	8	∞	7	∞	8	8	8	∞	∞	8	∞
0	∞	∞	1	3	∞	4	4	∞	7	7	∞	∞	10	∞	∞	∞	∞	∞
0	∞	2	1	3	3	4	4	6	6	7	9	9	10	∞	12	∞	∞	∞
0	∞	2	1	3	3	2	4	4	5	5	7	7	8	10	10	11	∞	13

- The running time $O(n^2 V)$ is not polynomial.
- Call the problem instance

$$x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n).$$

- Additional idea: Limit the number of precision bits.
- Define

$$v_i' = \left\lfloor \frac{v_i}{2^b} \right\rfloor.$$

• Note that

$$v_i - 2^b < 2^b v'_i \le v_i.$$
 (23)

• Call the approximate instance

$$x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n).$$

- Solving x' takes time $O(n^2 V/2^b)$.
 - Use $v'_i = \lfloor v_i/2^b \rfloor$ and $V' = \max(v'_1, v'_2, \dots, v'_n)$ in the dynamic programming.

- It is now an $(n+1) \times (nV+1)/2^b$ table.

- The selection I' is optimal for x'.
- But I' may not be optimal for x, although it still satisfies the weight budget W.

With the same parameters as p. 782 and b = 1: Values are (2, 1, 1, 1, 1, 1) and the optimal selection $I' = \{1, 2, 3, 5, 6\}$ for x' has a *smaller* maximum value 4 + 3 + 3 + 2 + 3 = 15 for x than I's 16; its weight is 10 < W = 12.^a

		-	-	-	_		
0	8	∞	∞	∞	8	8	8
0	8	3	∞	8	8	8	8
0	3	3	6	∞	8	8	8
0	1	3	4	7	∞	∞	∞
0	1	3	4	7	10	8	∞
0	1	3	4	6	9	12	∞
0	1	2	4	5	7	10	13

^aThe *original* optimal $I = \{1, 2, 3, 4, 6\}$ on p. 782 has the same value 6 and but higher weight 11 for x'.

• The value of I' for x is close to that of the optimal I as

$$\sum_{i \in I'} v_i$$

$$\geq \sum_{i \in I'} 2^b v'_i \quad \text{by inequalities (23) on p. 783}$$

$$= 2^b \sum_{i \in I'} v'_i \geq 2^b \sum_{i \in I} v'_i = \sum_{i \in I} 2^b v'_i$$

$$\geq \sum_{i \in I} (v_i - 2^b) \quad \text{by inequalities (23)}$$

$$\geq \left(\sum_{i \in I} v_i\right) - n2^b.$$

• In summary,

$$\sum_{i \in I'} v_i \ge \left(\sum_{i \in I} v_i\right) - n2^b.$$

- Without loss of generality, assume $w_i \leq W$ for all *i*.
 - Otherwise, item i is redundant and can be removed early on.
- V is a lower bound on OPT.
 - Picking one single item with value V is a legitimate choice.

The Proof (concluded)

• The relative error from the optimum is:

$$\frac{\sum_{i\in I} v_i - \sum_{i\in I'} v_i}{\sum_{i\in I} v_i} \le \frac{n2^b}{V}.$$

- Suppose we pick $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$.
- The algorithm becomes ϵ -approximate.^a
- The running time is then $O(n^2 V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.^b

^aSee Eq. (18) on p. 734.

^bIt hence depends on the *value* of $1/\epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 46, p. 382).
- NODE COVER has an approximation threshold at most 0.5 (p. 747).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-degree independent set.
- *k*-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. — George Bernard Shaw (1856–1950) Exponential Circuit Complexity for NP-Complete Problems

• We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.

– Monotone circuits are circuits without \neg gates.^a

• Note that this result does *not* settle the P vs. NP problem.

^aRecall p. 320.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem: MONOTONE CIRCUIT VALUE (p. 321).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$CLIQUE_{n,k}$

- $CLIQUE_{n,k}$ is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- $CLIQUE_{n,k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that *non*monotone circuits for $CLIQUE_{n,k}$ may use *fewer* gates.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a circuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if there is an $X_i \subseteq V$ that forms a clique.

- The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

The Proof: Positive Examples

- Analysis will be applied to only the following **positive examples** and **negative examples** as input graphs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

A Warmup to Razborov's (1985) Theorem^a Lemma 86 (The birthday problem) The probability of collision, C(N,q), when q balls are thrown randomly into $N \ge q$ bins is at most

$$\frac{q(q-1)}{2N}$$

Lemma 87 If crude circuit $CC(X_1, X_2, ..., X_m)$ computes $CLIQUE_{n,k}$, then $m \ge n^{n^{1/8}/20}$ for n sufficiently large.

^aArora & Barak (2009).

- Let $k = n^{1/4}$.
- Let $\ell = \sqrt{k}/10$.
- Let $X \subseteq V$.

- Suppose $|X| \leq \ell$.
- A random $f: X \to \{1, 2, \dots, k-1\}$ has collisions with probability less than 0.01 by Lemma 86 (p. 799).
- Hence f is one-to-one with probability 0.99.
- When f is one-to-one, f is a coloring of X with k-1 colors without repeated colors.
- As a result, when f is one-to-one, it generates a clique on X.

- Note that a random negative example is simply a random $g: V \to \{1, 2, \dots, k-1\}.$
- So our random $f: X \to \{1, 2, \dots, k-1\}$ is simply a random g restricted to X.
- In summary, the probability that X is not a clique when supplied with a random negative example is at most 0.01.

- Now suppose $|X| > \ell$.
- Consider the probability that X is a clique when supplied with a random positive example.
- It is the probability that X is part of the clique.
- Hence the desired probability is at most

$$\frac{\binom{n-\ell}{k-\ell}}{\binom{n}{k}}$$

• Now,

$$\frac{\binom{n-\ell}{k-\ell}}{\binom{n}{k}} = \frac{k(k-1)\cdots(k-\ell+1)}{n(n-1)\cdots(n-\ell+1)} \\
\leq \left(\frac{k}{n}\right)^{\ell} \\
\leq n^{-(3/4)\ell} \\
\leq n^{-\sqrt{k}/20} \\
= n^{-n^{1/8}/20}.$$

The Proof (concluded)

• In summary, the probability that X is a clique when supplied with a random positive example is at most

$$n^{-n^{1/8}/20}$$

• So we need at least

 $n^{n^{1/8}/20}$

Xs in the crude circuit.

Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets { P_1, P_2, \ldots, P_p }, called **petals**, each of cardinality at most ℓ .
- Furthermore, all pairs of sets in the family must have the same intersection (called the **core** of the sunflower).

The Erdős-Rado Lemma

Lemma 88 Let \mathcal{Z} be a family of more than $M \stackrel{\Delta}{=} (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued) For example,

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \\ \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\}\}, \\ \mathcal{D} = \{\{1, 2, 3, 5\}, \{0, 4, 8, 11\}\}.$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $|C| \le (p-1)\ell.$
 - C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$ - Consider $\mathcal{Z}' = \{Z - \{d\} : Z \in \mathcal{Z}, d \in Z\}.$

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - \mathcal{Z}' has more than $M' \stackrel{\Delta}{=} (p-1)^{\ell-1} (\ell-1)!$ sets.
 - -M' is just M with ℓ replaced with $\ell 1$.
 - \mathcal{Z}' contains a sunflower by induction, say

$$\{P_1, P_2, \ldots, P_p\}.$$

– Now,

 $\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$ is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If Z is a family of sets, the above result is denoted by pluck(Z).
- $pluck(\mathcal{Z})$ is not unique.^a

^aIt depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.

An Example of Plucking

• Recall the sunflower on p. 807:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \\\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

 $\operatorname{pluck}(\mathcal{Z}) = \{\{1, 2\}\}.$

©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University

Razborov's Theorem

Theorem 89 (Razborov, 1985) There is a constant csuch that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that^a

$$2\binom{\ell}{2} \le k - 1.$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.

– Recall the Erdős-Rado lemma (p. 808).

^aCorrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, \ldots, X_m)$, where:
 - $-X_i \subseteq V.$
 - $-|X_i| \le \ell.$
 - $-m \leq M.$
- It answers true if and only if at least one X_i is a clique.
- We shall show how to approximate any monotone circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i, j\})$.

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
 - Start with two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We will construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - For any node set $\mathcal{C}, \mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ if and only if $\mathcal{C} \in \mathcal{X}$ or $\mathcal{C} \in \mathcal{Y}$.
 - Hence $\mathcal{X} \cup \mathcal{Y}$ contains a clique if and only if \mathcal{X} or \mathcal{Y} contains a clique.
- Problem with $CC(\mathcal{X} \cup \mathcal{Y})$ occurs when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations are eliminated by using

 $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$

as the final approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

- If $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.
 - The quick reason: If Y is a clique, then a subset of Y must also be a clique.
 - Let $Y \in \mathcal{Z}$ be a clique.
 - There must exist an $X \in \text{pluck}(\mathcal{Z})$ such that $X \subseteq Y$.
 - This X is also a clique.

The Proof: OR (concluded)

- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return true.
- CC(pluck(X ∪ Y)) introduces a false negative if a positive example makes either CC(X) or CC(Y) return true but makes CC(pluck(X ∪ Y)) return false.
- We next count the number of false positives and false negatives introduced^a by $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$.
- Let us work on false negatives for OR first.

^aCompared with $CC(\mathcal{X} \cup \mathcal{Y})$ of course.

The Number of False Negatives^a

Lemma 90 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.
- This makes the test for cliqueness less stringent.^b

^aRecall that $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return false.

^bThe new crude circuit is at least as positive as the original one (p. 819).

The Number of False Positives

Lemma 91 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{2M}{p-1} 2^{-p} (k-1)^n$ false positives.

- Each plucking operation replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its common core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in *each* petal Z_i (and so $CC(Z_1, Z_2, \ldots, Z_p)$ returns false).
 - But the core contains distinctly colored nodes (thus forming a clique).
 - This implies at least one node from each identical-color pair was plucked away.

Proof of Lemma 91 (continued)

- We now count the number of such colorings.
- Color nodes in V at random with k-1 colors.
- Let R(X) denote the event that there are repeated colors in set X.

- Now
- $\operatorname{prob}[R(Z_{1}) \wedge \cdots \wedge R(Z_{p}) \wedge \neg R(Z)] \quad (24)$ $\leq \operatorname{prob}[R(Z_{1}) \wedge \cdots \wedge R(Z_{p}) | \neg R(Z)]$ $= \prod_{i=1}^{p} \operatorname{prob}[R(Z_{i}) | \neg R(Z)]$ $\leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_{i})]. \quad (25)$
- Equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as core Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in a subset, Z.

Proof of Lemma 91 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is

• Now

$$\operatorname{prob}[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}.$$
 (26)

• So the probability^a that a random coloring yields a *new* false positive is at most 2^{-p} by inequality (25) on p. 826.

^aProportion, if you so prefer.

Proof of Lemma 91 (continued)

- As there are $(k-1)^n$ different colorings, *each* plucking introduces at most $2^{-p}(k-1)^n$ false positives.
- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- When the procedure $pluck(\mathcal{X} \cup \mathcal{Y})$ ends, the set system contains $\leq M$ sets.

Proof of Lemma 91 (concluded)

- Each plucking reduces the number of sets by p-1.
- Hence at most 2M/(p-1) pluckings occur in $pluck(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{2M}{p-1} \, 2^{-p} (k-1)^n$$

false positives are introduced.^a

^aNote that the numbers of errors are added not multiplied. Recall that we count how many *new* errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$

• We need to count the number of errors this approximate AND introduces on the positive and negative examples.

The Proof: AND (continued)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- Introduction of errors means we ignore scenarios where the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is already wrong.

The Proof: AND (continued)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives and no false negatives over our positive and negative examples.^a
 - Suppose $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ returns true.
 - Then some $X_i \cup Y_j$ is a clique.
 - Thus $X_i \in \mathcal{X}$ and $Y_j \in \mathcal{Y}$ are cliques, making both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ return true.
 - So CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}$ }) introduces no false positives.

^aUnlike the OR case on p. 818, we are not claiming that $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ is equivalent to the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$. Equivalence is more than we need in either case.

The Proof: AND (concluded)

- (continued)
 - On the other hand, suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique C of size k.
 - This clique \mathcal{C} must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - As this clique C also contains $X_i \cup Y_j$,^a the new circuit returns true.
 - $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
- We now bound the number of false positives and false negatives introduced^b by the approximate AND.

^aSee next page.

^bCompared with CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}$ }) of course.

The Number of False Positives

Lemma 92 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- We prove this claim in stages.
- We already knew $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.^a
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces no *additional* false positives because we are testing potentially *fewer* sets for cliqueness.

^aRecall p. 832.

Proof of Lemma 92 (concluded)

- $| \{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, | X_i \cup Y_j | \le \ell \} | \le M^2.$
- Each plucking reduces the number of sets by p-1.
- So pluck({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell$ }) involves $\le M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 91 (p. 823).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p} (k-1)^n \le M^2 2^{-p} (k-1)^n.$$

The Number of False Negatives

Lemma 93 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- We knew $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.^a

^aRecall p. 832.

Proof of Lemma 93 (continued)

- CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell$ }) introduces $\le M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z \stackrel{\Delta}{=} X_i \cup Y_j$ larger than ℓ introduces false negatives only if Z is part of a clique.

- There are
$$\binom{n-|Z|}{k-|Z|}$$
 such cliques.

* It is the number of positive examples whose clique contains Z.

$$- \binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| > \ell.$$

- There are at most
$$M^2$$
 such Zs.

Proof of Lemma 93 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.^a

^aRecall p. 819.

Two Summarizing Lemmas

From Lemmas 91 (p. 823) and 92 (p. 835), we have:

Lemma 94 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 90 (p. 822) and 93 (p. 837), we have:

Lemma 95 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 96 Every final crude circuit is:

- 1. Identically false—thus wrong on all positive examples.
- 2. Or outputs true on at least half of the negative examples.
- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with

$$|X| \le \ell = n^{1/8} < n^{1/4} = k.$$

Proof of Lemma 96 (concluded)

- Inequality (26) (p. 827) says that at least half of the colorings assign different colors to nodes in X.
- So at least half of the colorings thus negative examples have a clique in X and are accepted.

• Recall the constants on p. 815:

$$k \stackrel{\Delta}{=} n^{1/4},$$

$$\ell \stackrel{\Delta}{=} n^{1/8},$$

$$p \stackrel{\Delta}{=} n^{1/8} \log n,$$

$$M \stackrel{\Delta}{=} (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}} \text{ for large } n.$$

- Suppose the final crude circuit is identically false.
 - By Lemma 95 (p. 840), each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^\ell \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 96 (p. 842) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 94 (p. 840), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

Alexander Razborov (1963–)

$P \neq NP$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!