
Graph Isomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.a

• The problem is in NP (hence IP).

• It is not likely to be NP-complete.b

aThe recent bound of Babai (2015) is 2O(logc n) for some constant c.
bSchöning (1987).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 702

graph nonisomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 �∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.a

• Surprisingly, graph nonisomorphism ∈ IP.b

aSchöning (1987).
bGoldreich, Micali, & Wigderson (1986).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 703

A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts; {G1 �∼= G2.}
12: else

13: Victor rejects; {G1
∼= G2.}

14: end if

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 704

Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 �∼= G2.

– Peggy is able to tell which Gi is isomorphic to H, so j = i.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical copies.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 705

Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable

boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than is necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See

www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 706

Knowledge in Proofs (concluded)

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,

but I prove nothing.

• Question 1: Can we design a protocol to convince Alice

(the knowledge) of a secret without revealing anything

extra?

• Question 2: How to define this idea rigorously?

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 707

Zero Knowledge Proofsa

An interactive proof protocol (P, V) for language L has the

perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with

expected polynomial running time.

• M on any input x ∈ L generates the same probability

distribution as the one that can be observed on the

communication channel of (P, V ′) on input x.

aGoldwasser, Micali, & Rackoff (1985).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 708

Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim.

– The proof is hence not transferable.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 709

Comments (continued)

• Whatever a verifier can “learn” from the specified prover

P via the communication channel could as well be

computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• Zero-knowledge proofs yield no knowledge in the sense

that they can be constructed by the verifier who believes

the statement, and yet these proofs do convince him.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 710

Comments (continued)

• The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• Computational zero-knowledge proofs are based on

complexity assumptions.

– M only needs to generate a distribution that is

computationally indistinguishable from the verifier’s

view of the interaction.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 711

Comments (concluded)

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in NP.a

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in PSPACE.b

• The verifier can be restricted to the honest one (i.e., it

follows the protocol).c

• The coins can be public.d

• The digital money Zcash (2016) is based on

zero-knowledge proofs.
aGoldreich, Micali, & Wigderson (1986).
bOstrovsky & Wigderson (1993).
cVadhan (2006).
dVadhan (2006).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 712

Quadratic Residuacity (qr)

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

• qr asks if x ∈ Z∗
n is a quadratic residues modulo n.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 713

A Useful Corollary of Lemma 82 (p. 687)

Corollary 83 Let n = pq be a product of two distinct

primes. (1) If x and y are both quadratic residues modulo n,

then xy ∈ Z∗
n is a quadratic residue modulo n. (2) If x is a

quadratic residue modulo n and y is a quadratic nonresidue

modulo n, then xy ∈ Z∗
n is a quadratic nonresidue modulo n.

• Suppose x and y are both quadratic residues modulo n.

• Let x ≡ a2 mod n and y ≡ b2 mod n.

• Now xy is a quadratic residue as xy ≡ (ab)2 mod n.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 714

The Proof (concluded)

• Suppose x is a quadratic residue modulo n and y is a

quadratic nonresidue modulo n.

• By Lemma 82 (p. 687), (x | p) = (x | q) = 1 but, say,

(y | p) = −1.

• Now xy is a quadratic nonresidue as (xy | p) = −1, again

by Lemma 82 (p. 687).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 715

Zero-Knowledge Proof of qra

Below is a zero-knowledge proof for x ∈ Z∗
n being a

quadratic residue.

1: for m = 1, 2, . . . , log2 n do

2: Peggy chooses a random v ∈ Z∗
n and sends

y = v2 mod n to Victor;

3: Victor chooses a random bit i and sends it to Peggy;

4: Peggy sends z = uiv mod n, where u is a square root

of x; {u2 ≡ x mod n.}
5: Victor checks if z2 ≡ xiy mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;

aGoldwasser, Micali, & Rackoff (1985).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 716

Analysis

• Suppose x is a quadratic residue.

– Then x’s square root u can be computed by Peggy.

– Peggy can answer all challenges.

– Now,

z2 ≡ (
ui
)2

v2 ≡ (
u2

)i
v2 ≡ xiy mod n.

– So Victor will accept x.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 717

Analysis (continued)

• Suppose x is a quadratic nonresidue.

– Corollary 83 (p. 714) says if a is a quadratic residue,

then xa is a quadratic nonresidue.

– As y is a quadratic residue, xiy can be a quadratic

residue (see Line 5) only when i = 0.

– Peggy can answer only one of the two possible

challenges, when i = 0.a

– So Peggy will be caught in any given round with

probability one half.

aLine 5 (z2 ≡ xiy mod n) cannot equate a quadratic residue z2 with

a quadratic nonresidue xiy when i = 1.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 718

Analysis (continued)

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

• Here is how.

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is

a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with

the same probability without accessing Peggy’s power.

aThere is no zero-knowledge requirement when x �∈ L.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 719

Analysis (concluded)

1: Bob chooses a random z ∈ Z∗
n;

2: Bob chooses a random bit i;

3: Bob calculates y = z2x−i mod n;a

4: Bob writes (y, i, z) into the transcript;

aRecall Line 5 on p. 716: Victor checks if z2 ≡ xiy mod n.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 720

Comments

• Assume x is a quadratic residue.

• For (y, i, z), y is a random quadratic residue, i is a

random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same

order as in the original transcript.

– Bob picks Peggy’s answer z first.

– Bob then picks Victor’s challenge i.

– Bob finally patches the transcript.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 721

Comments (concluded)

• So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.a

aOr apply Vadhan (2006).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 722

Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples encryption schemes randomly, commitsb them,

and sends π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to Peggy

for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the colors π(φ(u)) and π(φ(v)) and “proves”

that they correspond to their encryptions;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, & Wigderson (1986).
bContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 723

10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) �∈ { 1, 2, 3 } then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 724

Analysis

• If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

• Suppose the graph is not 3-colorable and Victor follows

the protocol.

• Let e be an edge that is not colored legally.

• Victor will pick it with probability 1/m per round,

where m = |E |.
• Then however Peggy plays, Victor will reject with

probability at least 1/m per round.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 725

Analysis (concluded)

• So Victor will accept with probability at most

(
1−m−1

)m2

≤ e−m.

• Thus the protocol is a valid IP protocol.

• This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any

verifier is intricate.a

aOr simply cite Vadhan (2006).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 726

Comments

• Each π(φ(i)) is encrypted by a different cryptosystem in

Line 3.a

– Otherwise, the coloring will be revealed in Line 6.

• Each edge e must be picked randomly.b

– Otherwise, Peggy will know Victor’s game plan and

plot accordingly.

aContributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
bContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 727

Approximability

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 728

All science is dominated by

the idea of approximation.

— Bertrand Russell (1872–1970)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 729

Just because the problem is NP-complete

does not mean that

you should not try to solve it.

— Stephen Cook (2002)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 730

Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

• Are there NP problems that cannot be approximated

well (assuming NP �= P)?

• Are there NP problems that cannot be approximated at

all (assuming NP �= P)?

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 731

Some Definitions

• Given an optimization problem, each problem

instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z
+.

– Here, cost refers to the quality of the feasible

solution, not the time required to obtain it.

– It is our objective function: total distance, number

of satisfied clauses, cut size, etc.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 732

Some Definitions (concluded)

• The optimum cost is

opt(x) = min
s∈F (x)

c(s)

for a minimization problem.

• It is

opt(x) = max
s∈F (x)

c(s)

for a maximization problem.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 733

Approximation Algorithms

• Let (polynomial-time) algorithm M on x returns a

feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if

for all x,
| c(M(x))− opt(x) |
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)

c(M(x))
≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))

maxs∈F (x) c(s)
≤ ε. (18)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 734

Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)

1− ε
.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (19)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 735

Lower and Upper Bounds (concluded)

• ε ranges between 0 (best) and 1 (worst).

• For minimization problems, an ε-approximation

algorithm returns solutions within[
opt,

opt

1− ε

]
.

• For maximization problems, an ε-approximation

algorithm returns solutions within

[(1− ε)× opt,opt].

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 736

Approximation Thresholds

• For each NP-complete optimization problem, we shall be

interested in determining the smallest ε for which there

is a polynomial-time ε-approximation algorithm.

• But sometimes ε has no minimum value.

• The approximation threshold is the greatest lower

bound of all ε ≥ 0 such that there is a polynomial-time

ε-approximation algorithm.

• By a standard theorem in real analysis, such a threshold

exists.a

aBauldry (2009).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 737

Approximation Thresholds (concluded)

• The approximation threshold of an optimization

problem is anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

• So assume P �= NP for the rest of the discussion.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 738

Approximation Ratio

• ε-approximation algorithms can also be measured via

the approximation ratio:a

c(M(x))

opt(x)
.

• For a minimization problem, the approximation ratio is

1 ≤ c(M(x))

mins∈F (x) c(s)
≤ 1

1− ε
. (20)

• For a maximization problem, the approximation ratio is

1− ε ≤ c(M(x))

maxs∈F (x) c(s)
≤ 1. (21)

aWilliamson & Shmoys (2011).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 739

Approximation Ratio (concluded)

• Suppose there is an approximation algorithm that

achieves an approximation ratio of θ.

– For a minimization problem, it implies a

(1− θ−1)-approximation algorithm by Eq. (20).

– For a maximization problem, it implies a

(1− θ)-approximation algorithm by Eq. (21).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 740

node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V,E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce an approximation ratio ofa

c(M(x))

opt(x)
= Θ(logn).

• So it is not an ε-approximation algorithm for any

constant ε < 1 (see p. 740).

aChvátal (1979).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 741

A 0.5-Approximation Algorithma

1: C := ∅;
2: while E �= ∅ do

3: Delete an arbitrary edge [u, v] from E;

4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u or v from E;

6: end while

7: return C;

aGavril (1974).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 742

Analysis

• It is easy to see that C is a node cover.

• C contains |C |/2 edges.a

• No two edges of C share a node.b

• Any node cover C ′ must contain at least one node from

each of the edges of C.

– If there is an edge in C both of whose ends are

outside C ′, then C ′ will not be a cover.

aThe edges deleted in Line 3.
bIn fact, C as a set of edges is a maximal matching.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 743

Analysis (continued)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 744

Analysis (concluded)

• This means that opt(G) ≥ |C |/2.
• The approximation ratio is hence

|C |
opt(G)

≤ 2.

• So we have a 0.5-approximation algorithm.a

• And the approximation threshold is therefore ≤ 0.5.

aRecall p. 740.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 745

The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. König’s theorem says the size of a maximum matching equals

that of a minimum node cover in a bipartite graph.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 746

Remarks

• The approximation threshold is at leasta

1−
(
10
√
5− 21

)−1

≈ 0.2651.

• The approximation threshold is 0.5 if one assumes the

unique games conjecture (ugc).b

• This ratio 0.5 is also the lower bound for any “greedy”

algorithms.c

aDinur & Safra (2002).
bKhot & Regev (2008).
cDavis & Impagliazzo (2004).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 747

Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth

assignment that satisfies the most simultaneously.

• max2sat is already NP-complete (p. 356), so maxsat is

NP-complete.

• Consider the more general k-maxgsat for constant k.

– Let Φ = {φ1, φ2, . . . , φm } be a set of boolean

expressions in n variables.

– Each φi is a general expression involving up to k

variables.

– k-maxgsat seeks the truth assignment that satisfies

the most expressions simultaneously.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 748

A Probabilistic Interpretation of an Algorithm

• Let φi involve ki ≤ k variables and be satisfied by si of

the 2ki truth assignments.

• A random truth assignment ∈ { 0, 1 }n satisfies φi with

probability p(φi) = si/2
ki .

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

p(Φ) =
m∑
i=1

p(φi)

expressions φi.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 749

The Search Procedure

• Clearly

p(Φ) =
p(Φ[x1 = true]) + p(Φ[x1 = false])

2
.

• Select the t1 ∈ { true, false } such that p(Φ[x1 = t1]) is

the larger one.

• Note that p(Φ[x1 = t1]) ≥ p(Φ).

• Repeat the procedure with expression Φ[x1 = t1] until

all variables xi have been given truth values ti and all φi

are either true or false.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 750

The Search Procedure (continued)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1])

≤ p(Φ[x1 = t1, x2 = t2])

≤ · · ·
≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn]).

• So at least p(Φ) expressions are satisfied by truth

assignment (t1, t2, . . . , tn).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 751

The Search Procedure (concluded)

• Note that the algorithm is deterministic!

• It is called the method of conditional

expectations.a

aErdős & Selfridge (1973); Spencer (1987).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 752

Approximation Analysis

• The optimum is at most the number of satisfiable

φis—i.e., those with p(φi) > 0.

• The ratio of algorithm’s output vs. the optimum isa

≥ p(Φ)∑
p(φi)>0 1

=

∑
i p(φi)∑

p(φi)>0 1
≥ min

p(φi)>0
p(φi).

• This is a polynomial-time ε-approximation algorithm

with ε = 1−minp(φi)>0 p(φi) by Eq. (21) on p. 739.

• Because p(φi) ≥ 2−k for a satisfiable φi, the heuristic is

a polynomial-time ε-approximation algorithm with

ε = 1− 2−k.

aBecause
∑

i ai/
∑

i bi ≥ mini(ai/bi).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 753

Back to maxsat

• In maxsat, the φi’s are clauses (like x ∨ y ∨ ¬z).
• Hence p(φi) ≥ 1/2 (why?).

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 1/2.a

• Suppose we set each boolean variable to true with

probability (
√
5 − 1)/2, the golden ratio.

• Then follow through the method of conditional

expectations to derandomize it.

aJohnson (1974).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 754

Back to maxsat (concluded)

• We will obtain a [(3−√
5)]/2-approximation

algorithm.a

– Note [(3−√
5)]/2 ≈ 0.382.

• If the clauses have k distinct literals,

p(φi) = 1− 2−k.

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.

• All the results hold even if clauses are weighted.

aLieberherr & Specker (1981).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 755

max cut Revisited

• max cut seeks to partition the nodes of graph

G = (V,E) into (S, V − S) so that there are as many

edges as possible between S and V − S.

• It is NP-complete.a

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

• Next we present a local-search algorithm for max cut.

aRecall p. 391.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 756

A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 757

Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 758

Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Our algorithm returns a cut of size

e13 + e14 + e23 + e24.

• The optimum cut size is

e12 + e34 + e14 + e23.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 759

Analysis (continued)

• For each node v ∈ V1, its edges to V3 ∪ V4 cannot be

outnumbered by those to V1 ∪ V2.

– Otherwise, v would have been moved to V3 ∪ V4 to

improve the cut.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14.

– 2e11, because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 760

Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24) = 2×opt.

• The above says our solution is at least half the optimum.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 761

Remarks

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.b

aGoemans & Williamson (1995).
bH̊astad (1997).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 762

Approximability, Unapproximability, and Between

• Some problems have approximation thresholds less than

1.

– knapsack has a threshold of 0 (p. 778).

– node cover (p. 745), bin packing, and maxsata

have a threshold larger than 0.

• The situation is maximally pessimistic for tsp (p. 764)

and independent set,b which cannot be approximated

– Their approximation threshold is 1.

aWilliamson & Shmoys (2011).
bSee the textbook.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 763

Unapproximability of tspa

Theorem 84 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ε-approximation

algorithm for tsp for some ε < 1.

• We shall construct a polynomial-time algorithm to solve

the NP-complete hamiltonian cycle.

• Given any graph G = (V,E), construct a tsp with |V |
cities with distances

dij =

⎧⎨
⎩

1, if [i, j] ∈ E,
|V |
1−ε , otherwise.

aSahni & Gonzales (1976).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 764

The Proof (continued)

• Run the alleged approximation algorithm on this tsp

instance.

• Note that if a tour includes edges of length |V |/(1− ε),

then the tour costs more than |V |.
• Note also that no tour has a cost less than |V |.
• Suppose a tour of cost |V | is returned.

– Then every edge on the tour exists in the original

graph G.

– So this tour is a Hamiltonian cycle on G.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 765

The Proof (concluded)

• Suppose a tour that includes an edge of length

|V |/(1− ε) is returned.

– The total length of this tour exceeds |V |/(1− ε).a

– Because the algorithm is ε-approximate, the optimum

is at least 1− ε times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

aSo this reduction is gap introducing.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 766

metric tsp

• metric tsp is similar to tsp.

• But the distances must satisfy the triangular inequality:

dij ≤ dik + dkj

for all i, j, k.

• Inductively,

dij ≤ dik + dkl + · · ·+ dzj .

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 767

A 0.5-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 2

(see p. 740).

aChoukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986);

Kou, Markowsky, & Berman (1981); Plesńık (1981).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 768

A 0.5-Approximation Algorithm for metric tsp
(concluded)

1: T := a minimum spanning tree of G;

2: T ′ := duplicate the edges of T plus their cost; {Note: T ′

is an Eulerian multigraph.}
3: C := an Euler cycle of T ′;
4: Remove repeated nodes of C; {“Shortcutting.”}
5: return C;

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 769

Analysis

• Let Copt be an optimal tsp tour.

• Note first that

c(T) ≤ c(Copt). (22)

– Copt is a spanning tree after the removal of one edge.

– But T is a minimum spanning tree.

• Because T ′ doubles the edges of T ,

c(T ′) = 2c(T).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 770

Analysis (concluded)

• Because of the triangular inequality, “shortcutting” does

not increase the cost.

– (1, 2, 3, 2, 1, 4, . . .) → (1, 2, 3, 4, . . .), a Hamiltonian

cycle.

• Thus

c(C) ≤ c(T ′).

• Combine all the inequalities to yield

c(C) ≤ c(T ′) = 2c(T) ≤ 2c(Copt),

as desired.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 771

A 100-Node Example

The cost is 7.72877.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 772

A 100-Node Example (continued)

The minimum spanning tree T .

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 773

A 100-Node Example (continued)

“Shortcutting” the repeated nodes on the Euler cycle C.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 774

A 100-Node Example (concluded)

The cost is 10.5718 ≤ 2× 7.72877 = 15.4576.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 775

A (1/3)-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 3

2

(see p. 740).

• This is the best approximation ratio for metric tsp as

of 2016!

aChristofides (1976).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 776

A 100-Node Examplea

The cost is 8.74583 ≤ (3/2)× 7.72877 = 11.5932.b

aContributed by Mr. Yu-Chuan Liu (B00507010, R04922040) on July

15, 2017.
bIn comparison, the earlier 0.5-approximation algorithm gave a cost

of 10.5718 on p. 775.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 777

